

B.Sc. Honours 6th Semester Examinations, 2022

# CHEMISTRY

# **INORGANIC CHEMISTRY-IV**

# CORE-13

Time Allotted: 2 Hours

The figures in the margin indicate full marks. All symbols are of usual significance.

# **GROUP-A**

1. Answer any *ten* questions from the following:

(a) Calculate the value of 'x' in Co<sub>2</sub>(CO)<sub>x</sub> using 18 electron rule.

(b) Write down the formula of Collman's reagents.

(c) How many bridging carbonyls are present in  $Mn_2(CO)_{10}$ ?

- (d) Which d orbitals of Cr participate in  $\pi$  bonding with the ligands in Cr(CO)<sub>6</sub>?
- (e) What is the heptacity of cyclo-pentadienyl ring present in ferrocene?
- (f) Draw the most stable structure of the oxidative addition product of Vaskas's complex with  $O_2$  molecule.
- (g) What is the possible chemical composition of Ziegler-Natta catalyst?
- (h) What are the alkylation products of ferrocene?
- (i) What is oxidative addition reaction?
- (j) Give one example of reductive carbonylation reaction.
- (k) What is the oxidation state of Fe in the following complex?

 $O - Fe (CO)_3$ 

(1) What is the hybridisation of Fe in  $Fe_2(CO)_9$ ?

### **GROUP-B**

### Answer any one question from the following

2. (a) The carbonyl stretching frequencies of  $[Mn(CO)_6]^+$ ,  $[Cr(CO)_6]$  and  $[V(CO)_6]^-$  occurs at 2090, 2000 and 1860 cm<sup>-1</sup> respectively. Give reasons for such variation.

1

(b) Why Ethylene can not be hydrogenated by Wilkinson's catalyst?

 $1 \times 10 = 10$ 

Full Marks: 25

3

2

### UG/CBCS/B.Sc./Hons./6th Sem./Chemistry/CCCEMH13/2022

| 3. (a) How terminal CO group can be distinguished from a bridging CO group — Explain briefly on basis of IR spectrum.                                                                         | 2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (b) Why do ferrocene not undergo nitration reaction under similar condition to that of<br>benzene? How can nitroferrocene be prepared?                                                        | 3 |
| 4. (a) To a dry THF solution of Fe(CO) <sub>5</sub> , metallic sodium is added and refluxed. CH <sub>3</sub> Br is added to the reaction mixture. Predict the product with Chemical equation. | 3 |
| (b) Classify the following reactions— (as oxidative addition, reductive elimination, insertion etc.)                                                                                          | 2 |
| (i) Ti Cl <sub>4</sub> + 2Et <sub>3</sub> N $\rightarrow$ TiCl <sub>4</sub> (NEt <sub>3</sub> ) <sub>2</sub>                                                                                  |   |

(ii)  $Co_2(CO)_8 + H_2 \rightarrow 2HCo (CO)_4$ 

# **GROUP-C**

| Answer any <i>one</i> question                                                                                | $10 \times 1 = 10$ |
|---------------------------------------------------------------------------------------------------------------|--------------------|
| 5. (a) Discuss the mechanistic steps for the hydrogenation of olefins by Wilkinson's catalyst.                | 5                  |
| (b) What is 'trans-effect'? Ni(II) does not show 'trans-effect' - Explain.                                    | 2+1                |
| <ul> <li>(c) Predict the product of the following reactions.</li> <li>(i) V(CO)<sub>6</sub> + NO →</li> </ul> | 2                  |
| (ii) $H_3C - Mn(CO)_5 + SO_2 \rightarrow$                                                                     |                    |
| 6. (a) Discuss briefly the differences of bridging efficiency of $Al_2(CH_3)_6$ and $Al_2Cl_6$ .              | 3                  |
| (b) What is Wacker process? Explain the role of $[PdCl_4]^{2-}$ in this reaction.                             | 2+3                |
| (c) Show that cyclopentadienyl ligand is a flexidentate ligand.                                               | 2                  |

\_\_\_\_X\_\_\_\_\_

6013T



B.Sc. Honours 6th Semester Examinations, 2022

# **CHEMISTRY (PRACTICAL)**

# CORE-13

Time Allotted: 5 Hours

Full Marks: 15

The figures in the margin indicate full marks. All symbols are of usual significance.

#### Qualitative Analysis of Inorganic Sample (Semi-Micro Method)

1. Students are advised to detect four radicals from the supplied Inorganic Samples marked as  $I_n$  ( $n = 1, 2, 3, \dots$ )

Perform Inorganic qualitative analysis as (Question No. 1) per the following points.

A. Solubility Test:

| Solvent                                                   | Cold | Warm |
|-----------------------------------------------------------|------|------|
| (i) H <sub>2</sub> O                                      |      |      |
| (ii) Conc. HCl                                            |      |      |
| (iii) Conc. HNO <sub>3</sub>                              |      |      |
| (iv) Aquaregia                                            |      |      |
| (v) Insoluble in the above mentioned solvents if present. |      |      |

B. Dry Test for basic radicals

| Sl. No. | Experiment            | Observation | Inference |
|---------|-----------------------|-------------|-----------|
| 1.      | Ignition Test         |             |           |
| 2.      | Flame Test            |             |           |
| 3.      | Borax-bead Test       |             |           |
| 4.      | Oxidative fusion Test |             |           |
| 5.      | Fluorescence Test     |             |           |

(Students are advised to write only positive observations in the above tabular form)

C. Dry Test for acid radicals

#### UG/CBCS/B.Sc./Hons./6th Sem./Chemistry/CCCEMH13/Prac./2022

| Sl. No. | Experiment                                                                           | Observation | Inference |
|---------|--------------------------------------------------------------------------------------|-------------|-----------|
| 1.      | Sample + a few cc.<br>Dil. $H_2SO_4$ and warm                                        |             |           |
| 2.      | Sample + a few cc. $Conc^n$<br>H <sub>2</sub> SO <sub>4</sub> and warms              |             |           |
| 3.      | Chromyl Chloride Test                                                                |             |           |
| 4.      | Sample + $Conc^n H_2SO_4 + Cu - turning and warm$                                    |             |           |
| 5.      | $\begin{array}{l} Sample \ + \ MnO_2 \ + \ Conc^n \\ H_2SO_4 \ + \ warm \end{array}$ |             |           |

(Students are advised to write both positive and negative observations in the above mentioned tabular form)

D. Test for interfering acid radicals-

| Sl. No. | Experiment                                                                                                                   | Observation | Inference |
|---------|------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 1.      | A few cc. HNO <sub>3</sub> extract<br>and ammonium molybdate<br>in excess boil if required                                   |             |           |
| 2.      | Sample in dry test tube + a<br>few cc. methanol / ethanol,<br>the evolved gas is ignited<br>on the mouth of the test<br>tube |             |           |
| 3.      | Repeat the experiment No. 2 with a few cc. of $Conc^n H_2SO_4$                                                               |             |           |

(Students are advised to write both positive and negative observations in the above mentioned tabular form)

E. Confirmatory Test for acid radicals (Na<sub>2</sub>CO<sub>3</sub> extract is not mandatory for water soluble sample)

| Sl. No. | Radical(s) Present | Confirmatory Test |  |
|---------|--------------------|-------------------|--|
|         |                    |                   |  |

F. Confirmatory Test for basic radicals-

| Sl. No. | Radicals<br>Present | Name<br>the Gr. | Solvent | Confirmatory Test |
|---------|---------------------|-----------------|---------|-------------------|
|         |                     |                 |         |                   |

Students are advised to report insoluble part if present in the above mentioned section. viz. E and F

G. Probable composition

### UG/CBCS/B.Sc./Hons./6th Sem./Chemistry/CCCEMH13/Prac./2022

| Section | Marks              |
|---------|--------------------|
| А       | 0.5                |
| В       | 2                  |
| С       | 1                  |
| D       | 1.5                |
| E and F | $1.5 \times 4 = 6$ |
| G       | 1                  |

—×—

Marks distribution pattern- (for Q. No. 1 only)

# 2. Laboratory Note Book

3. Viva-voce

2

1



B.Sc. Honours 6th Semester Examinations, 2022

# CHEMISTRY

**PHYSICAL CHEMISTRY-V** 

### CORE-14

Time Allotted: 2 Hours

Full Marks: 25

 $1 \times 10 = 10$ 

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. All symbols are of usual significance.

### **GROUP-A**

- (a) When are two eigen functions mutually orthogonal?
- (b) Write down the operator corresponding to linear momentum in y-direction.
- (c)  $f(x) = xe^{-x^2}$  is an odd function. Justify.
- (d) Which of the following molecules give pure rotational spectra:

HCl, CO, CH<sub>3</sub>Cl, N<sub>2</sub>.

- (e) For a normalised wave function  $\psi$ , what will be the value of  $\int (\psi^* \psi d\tau)_{\text{all space}}$ ?
- (f) Write down the SI unit of molar extinction coefficient.
- (g) What is the Einstein's photoelectric equation?
- (h) What are anti-Stokes lines in Raman spectroscopy?
- (i) The intensities of hot band are usually very weak and become intense on increasing temperature, –Why?
- (j) Write down the expression for zero point energy of a particle in one-dimensional box.
- (k) State Frank-Condon principle.
- (l) Give one example of Photosensitizer.

#### **GROUP-B**

#### Answer any *one* question from the following $5 \times 1 = 5$

- 2. (a) Distinguish between photochemical reactions and thermal reactions. 2+3
  - (b) Derive the Lambert-Beer's law in photochemistry.

# 3. (a) Starting from the Schrodinger equation, derive the equation of wave function 4+1 $\left(\psi_n = A \sin \frac{n\pi x}{l}\right)$ for particle in a one-dimensional box.

1

(b) Explain why a value of quantum number n = 0 is not permitted.

#### UG/CBCS/B.Sc./Hons./6th Sem./Chemistry/CCCEMH14/2022

- 4. (a) Write down the full Schrodinger equation (including all attraction and repulsion 2+3 terms) for Li(n = 3) atom.
  - (b) The average solar energy incident per hour on Cooch Behar is  $10^7 \text{ J/m}^2$ . Calculate the number of photons falling on unit square centimetre in one second. Take the average wavelength of light 550 nm.

#### **GROUP-C**

#### Answer any *one* question from the following $10 \times 1 = 10$

- 5. (a) With the help of Jablonski diagram briefly explain the phenomenon of 5+3+2 fluorescence, phosphorescence, intersystem crossing, internal conversion and vibrational relaxation.
  - (b) Why pure vibrational transition without affecting rotation is not permitted?
  - (c) What are the P, Q and R branches in vibrational-rotational spectroscopy?
- 6. (a) From uncertainty principle show that electron cannot exist in the nucleus. Given 3+3+2+2 that, radii of nucleus is of the order  $10^{-14}$  m.
  - (b) A particle of mass "m" is in a 3D cube with sides "L". It is in the third exited state. Corresponding to  $n^2 = 11$ , calculate the possible combinations of  $n_1$ ,  $n_2$  and  $n_3$ .
  - (c) The gap between two successive rotational lines of a diatomic molecule AB is  $10 \text{ cm}^{-1}$ . Find the frequency of J = 1 to J = 2 transition.
  - (d) How would you explain very high and very low quantum yields of some photochemical reactions?
- 7. (a) Explain Born-Oppenheimer approximation used in molecular spectroscopy. 2+3+3+2
  - (b) How do HCl and DCl differ in respect of vibrational spectra? Explain each case separately.
  - (c) Show that the function  $h(x) = \sin(nx)$  is an eigen function of the operator  $\frac{d^2}{dx^2}$

but not  $\frac{d}{dx}$ . What is the eigen value of the former?

(d) Sketch the vibrational modes of  $CO_2$ . Explain which of them will be IR active and Raman active.

-X-



B.Sc. Honours 6th Semester Examinations, 2022

# **CHEMISTRY (PRACTICAL)**

# CORE-14

Time Allotted: 3 Hours

Full Marks: 15

The figures in the margin indicate full marks. All symbols are of usual significance.

| 1. |     | Verify Lambert-Beer's law and find out the unknown concentration from Colorimetric / Spectrophotometric analysis:                                                                                                            |     |
|----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (  | (a) | Derivation of working formula.                                                                                                                                                                                               | 3   |
| (  | (b) | Prepare $\left(\frac{M}{1000}\right)$ order standard K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> solution as stock solution and prepare                                                                                    | 2+2 |
|    |     | at least 05 sets of solution of different concentration from the stock solution by dilution method.                                                                                                                          |     |
| (  | (c) | Find the absorbance of the solutions using 430 nm wavelength of light in a spectrophotometer. Plot an absorbance versus concentration graph from the above results and find out the concentration of given unknown solution. | 3+2 |
| (  | (d) | Viva-voce                                                                                                                                                                                                                    | 2   |
| (  | (e) | Submit Signed LNB                                                                                                                                                                                                            | 1   |

—×—