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QUANTUM CHEMISTRY - THEORY 

Introduction:  

                       The classical mechanics includes Newtonian laws of motion of macroscopic bodies, Maxwell’s 

theory of electricity, magnetism and electromagnetic radiation, thermodynamics and the kinetic theory of gases. 
In the late nineteenth century, it was felt that this classical mechanics was found not successful to explain the 
behaviour of the sub-atomic particles. Such phenomena are black body radiation, photoelectric effect, Compton 
effect, spectrum of H-atom, etc.  

In the history, first classical theory fails to explain the observed frequency distribution of radiation energy 
emitted by a hot body. To explain the phenomenon, in Dec 14, 1900, Max Planck presented his revolutionary 
theory to the Berlin Physical Society. He proposed the quantum nature of electromagnetic radiation. According 
to this theory, radiation is assumed to be composed of bundles of discrete energy packets; each is called 
quantum or photon. The energy of the photon, 

photon h   =
hc


, 

where   is the frequency of the radiation and h is called Planck’s constant and its value is 6.626
2710 erg sec, 

c is the velocity of light in vacuum and its value is 103 10  cm/sec and   is its wave length of the light. 
If a photon undergoes interaction with matter, either it can be completely absorbed transferring all its energy 
(photo electric effect) or it may transfer part of its energy and its frequency is adjusted to a lower value, thereby 
maintaining particle character (Compton Effect). 

Intensity of the radiation is a measure of number of photons falling per unit time and it has no concerned with 
individual photon energy. The energy of the photon is independent of its intensity and is dependent only on its 
frequency. This concept is contrary to the classical ideas where radiation is considered purely as waves and 
energy is estimated by the intensity of the wave disturbance, dependent on the physical properties of the 
medium. 

           In 1905, Einstein used this theory to explain successfully the photoelectric effect in which emission of 
electrons from metal surface occurs by irradiation of light. In 1913, Niels Bohr developed his theory of H-atom 
assuming the quantization of angular momentum of the electron rotating in a circular path keeping nucleus at 
the centre. 
In 1924, de Broglie used the idea of quantum theory to explain the wave-particle duality of the radiation.   
The development of the subject up to 1925 is based on assumptions and is called ‘quantum theory’. 
In 1926, Erwin Schrödinger and Heisenberg independently developed quantum mechanics based on rigid 
mathematical model. Thus the subject developed after 1925, is called quantum mechanics.     
 
Black Body Radiation 

What is black body? 

                        When radiation falls on an object, a part of it is reflected, a part is absorbed and the remaining 
part is transmitted. This is due to the fact that no object is a perfect absorber.  
In contrast to this, we may visualize a black body which completely absorbs all  
the radiations that incident on it and retain all the radiant energy that strikes it.  
For experimental purposes, a black body is generally a metallic surface with  
cavity blackened inside with a tiny hole. Radiation that enters the hole is repeatedly 
reflected within the cavity. At each reflection, a certain fraction of radiation is  
absorbed by the cavity walls and the large number of reflections causes virtually 
all the incident radiation to be absorbed. Such a material is called a black body  
and a nearest approach of a perfect absorber of radiation. 
Criteria of the black body radiation: 
                           A black body is not only a perfect absorber, but also is an idealized radiator. When the radiant 
energy absorbed by the body is equal to the heat emitted; the system will be in thermal equilibrium. Thus, when 
the cavity is heated, its walls emit radiation and a tiny portion of which escapes through the hole. Radiation 
emitted by such a body at constant temperature is known as black body radiation. It can be shown that the rate 
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of radiation emitted per unit surface area of the black body is a function of only its temperature and is 
independent of the material of which black body is made up (Kirchhoff in 1859).  

Experimental observations:  Radiant energy may be analyzed by passing it through a prism and breaking it up 
into radiations of various frequencies. The energy associated with different frequencies can be measured.  
The usual practice is to measure the amount of black body radiant energy emitted in a given narrow frequency 
range. The frequency distribution of the emitted radiation is described by  
the function ( )R  , where ( )R d   is the energy with frequency  

in the range   to d   that is radiated per unit times per unit  
surface area of the black body. Some experimentally observed  

( )R  vs.   curves at two T are shown by the adjoining figure.   

(1) Distribution  function per unit frequency, ( )R   is more at high 
      temperature than at low temperature. It is a function of  
      temperature and frequency ( ).  Experimentally, it is found  
      that at any temperature T, ( )R   increases with , reaches a  
      maximum and then falls off to zero.   
(2) As T increases, the maximum in ( )R   shifts to higher  
      frequencies. 
      As we find that when a metal rod is heated, it first glows red then  
      orange-yellow, then white, then blue-white.(White light is a mixture of all colors).  
      Our bodies are not so hot to emit visible light, but it emits infrared radiation.       

Raleigh formulation: In June, 1900, Lord Raleigh attempted to derive the theoretical expression for the  
                  function, ( )R  . He used the equipartition of energy theorem (Classical theory) and formulated  

                                               2 2( ) 2R kT c   . The result is found absurd as it predicts the amount of 

energy emitted would increase without limit as  increases which are contrary to the experimental observations.  

Plank’s Radiation Law: Radiation is emitted by any substance at any temperature due to oscillation of its  
                                      particles, so each particle acts as an oscillator. These oscillators vibrate with certain 
frequency which is also equal to the frequency of the radiation they emit. Planck proposed the following two 
postulates relating to quantum nature of radiation emitted by the oscillators present in the black body. 
(1) An oscillator absorbs or emits radiation discontinuously, in the form of energy packets, called quanta or  
     photons. Radiation behaves like a stream of particles, possessing mass, momentum and energy.  
     The energy of each quantum radiation is given as  
                                                                         h  ,   

     where   is the frequency of radiation emitted by the oscillator  and h  is called Planck’s constant.  

     The value of h   in SI system is 346.626 10 Js and in cgs system its value is 346.626 10  Js.  
(2) The oscillator has definite amount of energy in discrete energy levels. The energy of the n th energy level  
     will be integral multiple of a quantum. i.e.   
                                                                       n nh  , 

     where  n  = 0, 1, 2, 3, etc, up to very high value tending to  . 
     The population of oscillators at different energy levels is given  
     in the adjoining figure. The relative population with reference  
     to ground level ( n  = 0) is  given by Boltzmann distribution law,  

    0
kT

nN N e   or, 0
kT

nN N e  , where 0n n       

     as 0 = 0.  So, 0
n kT

nN N e 
  and  n nh  .  

     Thus,  0
nh kT

nN N e  .                                                         

The average energy of the oscillators is E N  , E  is the total energy and N is the total number of oscillators 
in the black body. This can be written as, 
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Now taking the summation, we get     
 
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2
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  or,  
1h kT

h

e 




.  

[Mathematics: Let 2 31 ....S x x x      or,  2 3 ....xS x x x    , subtracting the two we get (1 ) 1S x   

or,  
1

1S x


  . Similarly, 2 32 3 ....x x x    =  21 2 3 ....x x x   . Again, let 21 2 3 ....S x x     

or, 2 32 3 ....x S x x x   , subtracting, we get  
2

1S x


  . Thus,  
22 32 3 .... 1x x x x x


     ] 

The number of oscillators per unit area of the cavity wall within frequency range    to d   is given by  

                                    
2

2

2
dN d

c


  , where  c  is the velocity of light in vacuum ,equal to 3 × 108 m/s. 

Thus, the energy distribution, ( )R d   within frequency range   to d   is equal to the product of the 

number of oscillators per unit area ( dN ) and the average energy of each oscillator ( ). 
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 In terms of wavelength (  ),  the distribution,  
2
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Thus, the energy distribution function within unit frequency range of the black body radiation is given by 
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Thus at lower frequency ( ), the non-exponential term ( 3 ) dominates and ( )R   increases with the increase 

of  . But at higher frequency, the exponential term  
2

1

1A Te 

 
 

 
 dominates and ( )R   decreases with 

increase of  . So, ( )R  increases with the increase of   passes through maximum and then drops almost to 
zero. 
The experimental curve, ( )R  vs.  is explained by the Planck’s formulation of black body radiation.  

It also explains that ( )R   increases with increase of T so, ( )R  is a function of   and T .  
Thus Planck’s formulation, based on quantum theory, successfully explains the experimental observations of 

black body radiation.   
 
Quantum result of Planck is reduced to classical result of Raleigh when 0h . 

                             Max Planck planned to take 0h  in his result and found that his expression is reduced to   
Raleigh’ expression that is based on the energy equipartition theorem. 
Expanding the Planck’s distribution function, we get 
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But Raleigh expression fails to explain the experimental observations and so the correct expression can be 
obtained only when Planck’s constant, 0h  . 
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 Photo-electric Effect 
            The effect: It is the emission of electrons from a clean surface of some metals (like Na, K, Zn, etc) 
when light of suitable frequency falls on the metal plate. The ejected electrons are called photo-electrons. 
Visible light is used for the alkali metal surface, near ultra-violet light for other metals and extreme ultra-violet 
for other substances besides metals. 
             Experimental set-up: In 1888, Henry and Millikan performed the experiment with a beam of visible 
and ultra-violet light which falls on a clean surface of a metal in an almost evacuated vessel. They found that 
electrons are emitted from the metal surface if radiation of suitable frequency is used.             
                                                                               M = metal surface on which light is allowed to fall. 
                                                                                P = electron collector plate and is made anode (+ve) to   
                                                                                     accelerate the release of electrons.                                                                                 
                                                                                G = galvanometer to record the current (photocurrent) i .  
                                                                                       This i  is directly proportional to the rate of electrons  
                                                                                        emitting.                                                            
                                                                                 V = potential difference applied across M and P by using a  
                                                                                        a battery.   
bat                                                        tery.            When M is made (–ve) and P is (+ve), electrons are  
                                                                                          accelerated towards P.  
                                                                                 When P is made (–ve) and M is (+ve), electrons are  
                                                                                          retarded.                                                                  
Observations of the experiment: 
 (1) There is no time-lag between the falling of light on the metal plate and ejecting of electrons from the plate. 
      That is, the process is instantaneous.  
 (2) For monochromatic radiation of fixed frequency, the photocurrent ( i ) increases with the intensity (I) of    
      radiation. When V is (+ve) [i.e. P = (+ve) and M = (–ve)], i  reaches saturation value and if intensity (I) of 
      light is doubled, photocurrent strength ( i ) also becomes doubled.   
                                                          When V is made (–ve) [i.e. P = (–ve) and M = (+ve)], current strength  
                                                           decreases rapidly and becomes zero at a particular value of V, called  
                                                           stopping potential (V0).  
                                                           Since V0 potential is required to stop the electrons of having maximum  
                                                            speed (v ), then V0 is a measure of KE of electrons, i.e,  eV0   =  ½ mv2 

 
                                                         Stopping potential and KE :          
                                                         This observation helps conclude that for fixed frequency of radiation, 
                                                         i  depends on I of light. V0 and hence KE of the ejecting electrons does not  
                                                         depend on intensity of radiation used. 
 (3) For fixed intensity of light, the photocurrent strength ( i ) remains unchanged but stopping potential (V0)  
     increases with increase of radiation frequency ( ). 

                                                                                          As        , 0 0 0V V V    . 

                                                                              This concludes that the KE of the emitted electrons (½ mv2 ) 
                                                                              increases with the increase of radiation frequency and  
                                                                              photocurrent strength ( i ) remains unaffected.  
                                                                                         
                                                                        (4) Again if the frequency of radiation is decreased continuously,  
                                                                             it is found that photocurrent ( i )  
                                                                             stops abruptly when the frequency  
                                                                             becomes below a certain 
     value ( c ) for a given  metal surface. This particular frequency is called  

      threshold  or cut-off frequency below which there is no emission of electrons                                                                              
      regardless of  intensity of light used. This cut-off frequency is the  
      characteristic  property of the metal.      

 

 

 

 

 

 



 

5 
                                                            Quantum Chemistry  – Dr N C Dey  

In brief, we may summarize the observations as given below: 
(1) The process is instantaneous i.e. there is no time-lag between irradiation  
      and ejection of electrons from the metal plate. 
(2) When frequency ( ) of radiation is kept fixed and intensity (I) is increased, photocurrent ( i ) is also  
      proportionately increased. 
(3) When I is kept fixed and   is increased, stopping potential (V0 ) is increased linearly and thus KE of the  
     electrons (½ mv2) is  also increased  since KE (½ mv2) = eV0. 
(4) There is threshold or cut-off frequency ( c ) below which there is no photoelectric effect of the metal what  

     ever high the intensity light beam is used. This frequency is the characteristic property of the metal used.  
  
Main features of the classical theory of light:  
      Main contents of the classical theory of light are as follows: 
(1) Light beam propagates as wave and the system absorbs energy of the light continuously. 
(2) Energy of the light beam depends on its intensity and intensity depends on the amplitude of the light wave. 
(3) Energy of the light beam does not depend on its frequency ( ). With increase of frequency, light will be 
      more penetrating due to shorter wave length and it adds to the color of the light beam.  
Attractive potential of the electrons in the metal: 
Electrons on the surface of the metal are free to move from atom to atom and that gives rise to electrical 
conductivity to the metal. These electrons, however, can not come out of the metal surface at normal                                                                               
temperature. This is due to the fact that when they try to be ejected outwards, they have (+ve) ions behind  
which exert enough Coulombic attraction at the surface. Only when the electrons pick up sufficient energy by 
absorption of light and overcome attractive potential, they come out of the metal surface.  
[Similar phenomenon also occurs when the metal is sufficiently heated so that the electrons acquire enough 
kinetic energy to overcome attractive potential for emission from the metal surface]. 
Failure of the classical theory to explain the observations: 
         Classical theory of light fails to explain the observations of photoelectric effect. 
Observation (1):  
  When light beam falls on the metal plate, the electrons on the surface under exposure absorbs energy    
   continuously. It will take time for the electrons to acquire sufficient energy to overcome the Coulombic 
   attractive potential. Thus there should have some time-lag and the process should not be instantaneous.  
Observation (2):  
  With fixed frequency ( ) of light, when intensity (I) is increased, it means that higher energy light beam falls        
  on the electrons. So the KE of the electrons should increase but not the photocurrent ( i ) strength that depends      
  on the number of electrons ejecting. 
Observation (3):  
  With fixed intensity (I) of light beam, when frequency ( ) is increased, the energy of the light beam is not      
  increased and so KE of the electrons should not increase. 
Observation (4):  
   According to classical theory, there should not exist any threshold or cut-off frequency ( c ), since even low  

   frequency but high intensity should favour the ejection of electrons from the metal plate under the exposure of  
   light. 
Success of quantum theory: 
      In 1905, Albert Einstein explained the photoelectric effect very nicely on the basis of Planck’s quantum 

theory of light. According to this theory, light is composed of discrete particles, called photons each of having  
energy h . When a photon of energy h  is incident on the metal surface, it gives up its entire energy to the 
electron on the surface. The entire energy of photon is absorbed by the single electron on the metal surface. 
Einstein suggested that a portion of the absorbed energy is utilized to liberate the electron from the metal plate 
by overcoming the attractive potential, called work function ( ). This attractive potential depends on the 
nature of the metal from which the electrons are ejecting. The rest part of the absorbed energy of photon 
imparts the electron for its KE (½ mv2). Thus, Einstein’s famous photoelectric equation is  

  21 2h mv    

From the experiment it is seen that when  c  , KE = 0, hence ch   and the equation becomes                                                                             

                                                                          21 2ch h mv    

This equation explains all the characteristics of the photoelectric effect. 
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Observation (1):  
  This explains irradiation and ejection of electrons occur instantaneously. The electrons immediately eject as 
  soon as light falls on it. 
Observation (2):  
  According to quantum theory, increase of intensity with no change in frequency increases the number of    
  photons falling per unit time. As more number of photons falls, more number of electrons are ejected from the 
  metal plate per unit time. Thus the photocurrent strength ( i ) is also increased proportionately.  
Observation (3):  
  When frequency of light is increased with no change of intensity, electrons absorb photons of higher energy 
  and so KE of the ejected electrons are increased, i.e.  ½ mv2  = ch h   . Thus KE of the emitted electrons is 

  linearly increased with frequency of light ( ), so stopping potential (V0) is also increased. 
Observation (4):  
   The equation also explains the existence of threshold frequency ( c ). When c  , there will be no ejection  

   of electrons and no photoelectric effect as the energy of the photon ( ch )  absorbed by the electron is not    

   sufficient to overcome the attractive potential.  Since ch  , so  c  is a measure of the attractive     

    potential of the  metal and it is a characteristic property of the metal surface used.     
  
Experimental verification: 
     Difficulty in testing the equation is the need to maintain a very clean surface of the metal. Though Einstein’s 

theory of photoelectric effect agrees well with the observations qualitatively, it was R A Millikan in 1916 who 
made an accurate quantitative test of the equation. Replacing KE (½ mv2) by eV0, we have the equation   

                                               0ch h eV      or,     0c e h V   .  

Millikan used different frequency of light ( ) and determined the stopping  
potentials (V0).  
When the frequency of light ( ) is plotted against stopping potentials (V0), 
 a straight line is obtained with intercept equal to the cut-off frequency ( c ) 

 and slope equal to  e h . Millikan verified the equation and had shown 

 that different metals used for experiment show different intercepts but 
 identical slope. This is due to the fact that different metals have different  
 cut-off frequencies and hence have the different intercepts. The slopes contain  
 universal constants and hence have same value for all the metals. 
 Millikan also determined the value of Planck’s constant (h) from the slope as  
 he already determined the charge of the electron by his famous oil-drop experiment. The value of h, he found   

 equal to 276.625 10 erg sec. 
          This proves the correctness of Einstein’s photoelectric equation and incidentally gives a decisive 

evidence in support of the particle nature (atomic nature) of light.  
Importance of the effect: 
          Photoelectric effect is widely used in the construction of photoelectric cell which converts light energy 
into electric energy. This type of effect is also utilized in photospectrometer to determine the intensity of light. 
Work function and Ionization energy: 
            It is seen that work function ( ) i.e. work or energy required to  
remove the electron from the surface of a metal is less than the  ionization 
potential (IP) i.e. work or energy required to remove electron from an isolated  
gaseous atom in its ground state of energy.                                            
In the metal, other electrons on the surface repel the electron to be removed  
and hence   is less than IP of the isolated gaseous atom in its lowest energy  
state.  
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Problem: The threshold frequency ( c ) of photoelectric emission for a certain metal is 1015 Hz.  

                    Calculate the cut-off wavelength and work function. Calculate also KE, velocity and stopping  
                    potential when radiation of  = 1800 Ǻ is incident on the surface.                                                          
Answer:   c  = 3000 Ǻ,   = 4.13 eV, KE = 2.78 eV, v  = 9.6 × 107 cm/sec, V0 = 2.78 V.                                                                  

     
Problem: Light of frequency  is found to eject electrons of velocity ev from a clean potassium surface in  

                 vacuum. Which of the following is true concerning the phenomenon?    
          (A) The frequency   is most likely in the infrared region. 
          (B) This phenomenon is best explained theoretically by using the wave model of light. 
          (C) The minimum energy required to remove the electron from the metal is h ½ mv2 
          (D) Light of frequency 2  will eject electrons of velocity 2 ev . 

          (E) A more  intense light  source of frequency  will eject electrons with a velocity greater than ev .   

Answer: (C)                                                                                                                 [GRE sample question]   
Problem: When Li is irradiated with light, the KE of the ejected electrons is 192.935 10 J for   = 300.0 nm 

                 and 191.280 10 J for  = 400.0 nm. Calculate (a) Planck’s constant (b) the threshold frequency  
                 and (c) work function of Li. 

Answer : (a) 346.625 10h    J s  (b) 145.564 10c    Hz   (c)    = 193.7 10 J.   

 
Action small and action large 
                                 A dynamic particle may have several variables associated with its motion. Such variables 
are position, momentum, angular momentum, azimuthal angle (for rotating system), energy, time, etc. When the 
product of two such variables has the dimension of Planck constant (h), the pair of variables are called 
conjugate variables, or canonically conjugate variables. These pair of variables are intricately related to each 
other. Such pair of variables are linear momentum and position, angular momentum ( p ) and azimuthal      

angle ( ), energy ( ) and time ( t ). 
                                                                        The product of the two canonically conjugate variables is called 
‘action’ (or characteristic action of the dynamic particle, Jc). The Planck’s constant ( h ) is called ‘action 

constant’. When Jc is much larger than h ( .i e Jc h ), it is called ‘action-large’ and when Jc h , it is called 

‘action small’. Jc or h has the dimension, 2 1ML T  . Motion of electron in the atomic or molecular system exerts 
‘action-small’ while motion of a macroscopic body is ‘action-large’. Quantum mechanics could be used to 
explain or interpret the motion of action-small while classical mechanics is sufficient to interpret the motion 
relating to ‘action-large’.  
                                   When a particle is executing periodic motion i.e. when any one or both of the conjugate 
variables will be repeating after certain fixed time or distance interval, the characteristic action integrated over 

one period of motion is called action integral or phase integral. It is denoted by CJ .  

These are                                       xp dx ,  p d     and   E dt . 

 
Wilson - Sommerfeld Quantization rule: 
                                                                         In 1915, W. Wilson and A. Sommerfeld proposed a general rule 
independently to predict the energy values of stationary states of a periodic system.  

The rule states that  k k kp dq n h , where kq  is the variable along the k th degree of freedom which is 

repeating after a fixed time or distance interval and kp  is its conjugate variable along that degree of motion.                                                                                                                    

kn = quantum number along this degree of motion = 0, 1, 2, 3, etc i.e.,  any positive integer including zero.                                            

It is stated in detail as         
                                                    
                            “For system executing periodic motion, the phase integral of the conjugated pair of variables 

in each degree of freedom will be integral multiple of Planck’s constant i.e. k kk
p dq n h . kp  and kq  are 

some periodic functions of time, or any case kp  remains constant, kq  will have the periodicity but not 

necessarily with respect to time. 
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                             When an election is moving in an elliptical path keeping the nucleus at any of foci of H-atom 
then according to the Sommerfeld model, both distance (r) of the electron from the nucleus and azimuthal angle 
( ) vary periodically with time and so, 

                                              r rp dr n h   and  p d n h   , 

where     rn = radial quantum number  and n = azimuthal quantum number. 

 
Applications: 
 
This quantization rule is used to predict the expression of the discrete values of certain properties of the 
dynamic particles executing periodic motion. Such cases may happen to Bohr model of electron-motion in H-
atom, the rigid free-axis rotation, particle in one-dimensional box, simple harmonic oscillation, etc.                                                                                                                                                             
 
(1) Bohr H-atom: 

According to Bohr’s concept of H-atom, electron is rotating in a circular path with nucleus at the centre. 
Radial distance (r) remains constant while azimuthal angle ( ) varies periodically with range 0 to 2 .                                                              

                                       The conjugate variable of azimuthal angle is angular momentum ( p ) which remains 

        constant for the motion. Thus, Wilson- Sommerfeld quantization rule for the motion of electron is 

            p d nh   or, 
2

0

p d nh


           or,    2
nhp 

 .                                                                                                                                                                                                                                                                                                                                                                

                  This is one most important postulate of Bohr for H-atom. 
       It means that angular momentum of the election in H-atom takes  
       only certain discrete values and it does not change continuously.                        
       It will be / 2h   , 2 / 2h  , 3 / 2h  , etc, but no value between                                    
      / 2h  and 2 / 2h   or 2 / 2h   and 3 / 2h                                                                                                                                                                
 This quantum condition of p  leads to the expression of discrete energy values of H-atom. The velocity (v) 

and radius (r) of the circular orbits also take certain discrete values.  

But p mvr  , so 2
nhmvr


 so, 2v nh mr  or, 2 2 2 2 2 24v n h m r .  

Again when the election moves, the centrifugal force  2mv r  balances the centripetal force  2 2Ze r  of the 

election, and so 2 2 2mv r Ze r  or, 2 2v Ze mr . Equating 2v , we have 2 2 2 24r n h mZe . Putting the 

value of r in the expression of v, we get   2 2 2 22 4v nh m n h mZe  
 

      or,
22 Ze

v
nh


 .  

Thus, both r  and v  are quantized, certain discreet circular paths are allowed. The total energy of the electron in 

H-atom, E KE PE  . 21

2
KE mv  but 

2 2

2

mv Ze

r r
  so, 

2
2 Ze

mv
r

 and 
2

2

Ze
KE

r
 . 

The PE  =
2

2
2 2

( )
r rZe dr

dr Ze
r r



   
22 1

r

ZeZe rr 

 
    

 
. Putting the expression of KE and PE, we get 

                          
2 2 2

2 2

Ze Ze Ze
E

r r r
      but 

2 2

2 24

n h
r

mZe
  hence, 

2 2 4

2 2

2
n

mZ e
E

n h


   

For H-atom, Z =1 and m is replaced by reduced mass of H-atom  , where n e

n e

m m

m m
 


 which is very close to

em . Thus it is seen that the energy of H-atom is quantized and it takes certain discreet values. (ve) sign of the 

energy signifies that the electron is bound within the atom and energy is required to remove electron from the 
atom.  
 
(2) Rigid rotator                                       
  A rigid rotator is a dumb-bell shaped body in which two spheres are connected by rod of very thin breadth.  
  The   system rotates about an axis passing through the centre of mass and perpendicular to the line joining the  
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  two masses 1m  and 2m . Axis of rotation is assumed to be free, i.e. it may attain any rotation in space. 

  The moment of inertia of the rigid rotator, 2 2
1 1 2 2I m r m r   but according to the  

  figure, 1 1 2 2m r m r (condition of centre of mass) or, 1 1 2 1 2 1 2 2m r m r m r m r    

  or, 1 1 2 2 1 2 2( ) ( )r m m m r r m r    so, 2
1

1 2

.
m

r r
m m




. Similarly, 1
2

1 2

m
r r

m m



. 

   Putting this values of 1r  and 2r in I , we get, 

  

2 2

2 1
1 2

1 2 1 2

m m
I m r m r

m m m m

   
    

    

2 21 2

1 2

m m
r r

m m
 


,  where 1 2

1 2

m m

m m
 


, called reduced mass of  

  the rotator. The reduced mass of the system is not the total mass of the system; it measures the contribution of  
  rotating ability of the spheres. 

  Let 2 1m m  then 1 2
1

2

m m
m

m
 , it is more close to the smaller mass of the sphere. It means that lighter    

  body contributes mainly to the rotational process i.e. lighter body moving and heavier body remains almost   
  stationary.  If 1 2m m m  , then 2m    i.e. both spheres contribute equally to the process of rotation. 

                           For this system, the angle of rotation ( ) changes periodically within the range 0 2to  . 

  The conjugate variable corresponding to  is p which remains constant during the rotation. 

  The Wilson-Sommerfeld quantization rule for the system is, p d nh      or, 
2

0

p d nh


    

                  or, 
2

0

p d nh


     or,
2

h
p n



 
  

 
. The angular momentum is thus quantized. 

  The energy of the rotator, E = KE + PE  but for this rigid rotator, PE = 0 as no force is acting on the system. 

  Thus, E = KE = ½ 2v    but, v r , where   is angular velocity. Thus,  2 2 2 21 1
2 2E r r     

   or,                   E =  
 

2
21

22
I

I I


  ,  but I p    thus,
2

2
p

E I
 .    

  Putting the expression,
2
h

p n


 
 
 

 , we have energy of the rotator,
2 2

28

n h
E

I
 . 

  This system is analogous to the rotation of diatomic molecule and the connecting  
  thin rod is compared to the chemical bond binding the two atoms in the molecule. 
  However, energy of the rotator can be formulated in another way by using the quantum condition of p . 

  2 2
1 1 2 2

1 1

2 2
E KE m v m v    =    

2 2

1 1 2 2

1 1

2 2
m r m r   =  2 2 2

1 1 2 2

1

2
m r m r   = 

 
2 2

21

2 2 2

pI
I

I I


   , 

  but 
2
h

p n


 
 
 

 . Thus putting the value of p , we have energy of the rotator, 
2 2

28

n h
E

I
 .    

Problem: The bond length for H 19F is 91.68 ×10-12 m. Where does the axis of rotation intersect the molecular    
                 axis?  [Ans. 87.096 ×10-12 m away from H-atom]                                            [Burdwan Univ. 2015] 
 
(3) Particle in one-dimensional box    
            Let us consider a particle of mass m  which is constrained to move in one  
  dimensional rectangular box  of length L. It is assumed that no force is acting on 
  the particle except during  collision at the wall it rebounds elastically.  
  The position ( x ) of the particle is periodically within  the length 0 to 2L.  

  The conjugate variable of x  is x - component linear  momentum  xp .   

  The Wilson-Summerfield quantization rule  when applied to the  system becomes  
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2

0

L

xp dx nh  but xp  remains constant since velocity of the particle remains constant 

  as no force is acting on it, thus, 
2

0

L

xp dx nh  or, 2xp L nh     or,  2x
nhp L , 

                                                                       where  n  = 1, 2, 3, etc excluding zero. 
  This states that certain x - component momentum values are allowed for the particle  
  executing periodic motion in a box. The energy of the particle, E = KE + PE  
  but  PE = 0. (As no force is acting  on the system). 

  so,  
   

2 22
21

2

2

2 2 2
x x

x

mv nh Lp

m m m
E mv       or,  

2 2

28n

n h
E

mL
 . 

This shows that the total energy of the particle is quantized and it takes certain  
        
discrete values only, though in classical theory it is assumed that energy of  
the system changes continuously. 
This energy difference between two successive energy levels (i.e. 1n n  ) is  

                        
2 2 2

2

1 2 2
1

8 8n n

h n h
E E E n

mL mL             or, 
  2

2

2 1

8

n h
E

mL


  . 

This shows that for macroscopic body of large mass ( m ), 0E  and energy then changes continuously. 
Conjugated polyenes could be viewed as one dimensional box in which  - electrons are moving to and fro 
motions periodically within the chain length L.  For example, in CH2 = CH – CH = CH2,  L = end to end chain 
length of the molecule. m  = mass of the electron. 
 
(4) Simple harmonic Oscillator:                                        
  One dimensional oscillation is viewed as a particle of mass m oscillating along  

 x - axis through an equilibrium position  0x   with restoring force xF .  

  For simple harmonic oscillator, this restoring force Fx is proportional to the  
  displacement ( x ) from the mean position i.e.  xF x   or, xF k x  , where k is  

  restoring force constant, () sign is added to indicate that restoring force is acting  
  in opposition to the displacement of the particle.  

           The potential energy  
0 0

( )
x x

xPE F dx kx dx         or,   21
2PE kx .    

This indicates that the PE follows parabolic curve with x . Wilson-Sommerfeld  

quantization rule can be applied to the motion of simple harmonic oscillator (SHO) as  xp dx nh ,  

where n  = 0, 1, 2, 3, etc. 
 
In this system both x  and xp  are varying with time. xp  is maximum, when x  = 0 and xp = 0 when x  is 

maximum. The value of the phase integral xp xd  can be obtained by graphical method or by direct 

integration. 

(a) Graphical method:   The energy of the system, E = KE + PE = 
2

21

22
xp

kx
m

   or, 
 

22

1
2 2

xpx

E k mE
  . 

   
            This is an equation of ellipse with coordinate axes, x  and xp . 

   The semi major axis ( a ), =  2E k and semi minor axis ( ) 2b mE .  

   The displacement ( x ) and the   momentum ( xp ) of the oscillator at any instant  

   are represented by the coordinates of a particular point on this ellipse. During one  
   complete oscillation, the above point describes a complete cycle on the ellipse in the phase plane. It should be  
   noted that the ellipse, we are talking about, does not represent the orbit of any real particle. The positions of  
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   the different points on the ellipse are the pictorial representation of the mathematical relationship between the  
   position ( x ) and momentum ( xp ) of the oscillator at different instant of time. That is, the points are the  

   phase  path for the linear oscillator.  

   The area of the ellipse 
2

2
E

ab mE
k

      2
m

E
k

  or,  
0

1
2

Ek
E

m 

 
  
 

  , since 
1

2
k
m

 

    is 0 , the frequency of the oscillator.   

   Again, the area of the stripe in the phase diagram = xp xd and is called unit action. 

   When the oscillator completes one motion, the stripe covers the whole ellipse.     
   Thus the total area of the ellipse can also be represented as    

   xp xd ,  thus 0xp x Ed   by comparing the area of the ellipse in both the  

    cases.      

    But Wilson-Sommerfeld quantization rule states that  xp dx nh .  

     So, 0E nh     or,  0nE nh  

 
                                                                                                         
                                                       
                                                         
 
 
 
 
  The energy of SHO is quantized and the energy levels are equispaced. This is also called energy ladder. 
  Quantum condition also asserts that the phase path of the harmonic oscillator can only be discrete set of   
  ellipses which encloses the areas h, 2h, 3h, etc. The ellipse in between the two is not allowed.  
 

(b) Mathematical method (Direct integration):   The quantum condition for the system is  xp dx nh .                                                        

   We have total energy, E KE PE  2 21
22xp m kx  . At the two extreme points of the displacement  ex ,     

   21
2 eE PE kx   since at these points, 0KE   or, 2ex E k . Thus the displacement of SHO ranges  

   from ex to ex  and so from 2E
k   to  2E

k   in one direction of the motion.  The action integral  

   for one complete motion of the oscillator is       

2

2

2

E
k

E
k

xp dx nh





 .   

   But 2 21
22xE p m kx     so,   21

2 2xp E kx m  . Putting the value in action integral, we get 

    
2

21
2

2

2 2

E
k

E
k

m E kx dx nh





  . The integration,  
2

21
2

0

2 2 2

E
k

I m E kx dx



    ,  

    [Since ( ) ( )F x F x   so ( )F x   = even function and hence 
0

( ) 2 ( )
a a

a

F x dx F x dx
 



   .] 

    Now the integration,  
2

21
2

0

4 2

E
k

I m E kx dx



   = 

2

2

0

2
4 2

2

E
kk E

m x dx
k



 
  

 
  

                                          = 

2

2

0

2
4

E
k E

mk x dx
k



 
 

 
 .  
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     [Using standard integral rule of by parts, we get 
2

2 2 2 2 1sin
2 2

x a x
a x dx a x C

a
  

     
 

 ]. 

     Applying it in the integration, we get  

     

2

2 1

0

2 2
4 sin

2 2 2

E
k

x E E x
I mk x

k k E k


   
           

= 14 0 sin 1
E

mk
k

 
 

 
 = 4

2

E
mk

k


   

         =  2 E m k . Quantization rule states, 2 mE nhk   or, 
1

2
E k mnh


  .   

        But, 
1

2
k m


 = 0 , the frequency of the oscillator. Thus the energy of the oscillator, 0E nh . 

(3) Another method using energy-time conjugate variables: 
 
     The oscillator comes to a definite position after certain time interval ( 0 , time period), where the frequency,    

     0 01  . So, the phase integral involving energy and time variables is  Edt nh . 

     Time of the SHO ranges from 0 to 0  (time period). Thus, action integral, 
0

Edt nh


 .  

     But E  remains constant during the oscillation, so  
0

T

E dt nh  or, 
0

nhE  or, 0E n h . 
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Wave-Particle Duality  
 

Wave aspect and particle aspect of radiation: 
               With the development of various experiments, it is conclusively proved that electromagnetic radiation 
has both wave aspects and particle aspects. Interference and diffraction of X-rays in Bragg experiment proves 
the wave nature while photoelectric effect, black body radiation can only be explained by the particle nature of 
radiation. 
 
 
 
 
 
 
Thus light seems to exhibit dual nature behaving like waves in some situations and particle in other situations. 
Particles are localized in space while waves spread over space. These two aspects are contradictory. However, 
This condition is hidden in Planck’s theory itself. 
               In Planck’s equation photon h hc    , the quantity photon  is a particle concept but the wave 

length ( ) is a wave concept. So the equation itself shows dual behaviour of light.   
 
Particle aspect and wave aspect of electron: 
             Microscopic particles also behave a particle and wave both. For example, particle character of a sub-
atomic particle like electron is evidenced by the experiment of charge determination of electron by Millikan and 

 e m  of electron in Thomson experiment. The mass and momentum are the characteristics of the particle 

nature of electron.  
              Davission and Germer in 1927 showed the wave nature of electron by their famous electron diffraction 
experiment. A beam of electrons are made to impinge upon a Ni-crystal and diffraction maximum is obtained. 
They also were able to determine the wavelength ( ) of the electron-beam.  
 
 
 
 
                                                                                                                                                                                                                                     
 
     
 
 
                   This shows a break-down of particle character in the micro world.  
 
De – Broglie Relation:  
             In 1924, de-Broglie combined the wave aspect and particle aspect of light and formulated an important 
relation between the two conflicting aspects. 
             He utilized Planck’s quantum theory and Einstein’s theory of relativity. The energy of the smallest unit 
of light, called photon is given by Planck’s theory as  
                                         photon h  , but c  , so  photon hc  . 

Again, when mass of the photon is converted into energy according to Einstein’s theory of relativity 

                                                               2
photon mc  . 

Combining the two relations, we have  2hc
mc


   or,  

h

mc
      but, mc = momentum of the photon ( p ). 

So,                                                           
h

p
  . 

This is the famous de-Broglie relation that connects the wave nature ( ) and particle nature ( p ) of light. 
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De-Broglie extended the relation for matter wave also. He suggested that every particle in motion is also 
associated with wave, like photon. Thus de-Broglie made a hypothesis that for sub-atomic particles in motion, 

the relation      
h

p
        also holds, where  = wave length associated with the particle of momentum p . 

                       It is obvious that wave character ( ) and particle character ( p ) are inversely related. If in a 
phenomenon, particle character becomes prominent, then wave character remains subdued. De-Broglie concept 
does not mean that matter behaves like particle at one time and wave at another time in the same experiment. 
Rather, wave nature is an inherent property of each dynamic particle. If in an experiment, the particle character 
is revealed then wave character remains concealed. Both aspects do not appear simultaneously in any one 
experiment. This aspects are complimentary to each other and mutually exclusive. 
                     This relation also shows that for macroscopic bodies, p  is large and so   is so small that wave 
character becomes negligible. Only for sub-atomic particles like electron, proton, etc. wave character becomes 
important as p  is small.       
                         
Davisson and Germer electron diffraction experiment: 

                         Davisson and Germer verified the relation in 1927 by their famous electron diffraction 
experiment. They used Ni crystal as diffraction grating for mono energetic electron beam. The surface of the 
crystal contains parallel rows of atoms with spacing of 2.15Ǻ. Waves falling on the surface gets diffracted at an 
angle  , the angle between the direction of incident and diffracted beam.   

In the figure, I and D are the incident and diffracted beams.  
AC = the path difference between the diffracted beams 
          AB cos (90 –  ) = AB sin   = d sin   = n  for constructive interference.  
Thus, d sin   = n  is analogous to Bragg’s relation of X-rays of light. 
 
Experimental set-up:  
                                                                             Davisson and Germer found that diffraction of electron beam  
                                                                             occurred at   = 50o and 55o for electrons when accelerated  
                                                                             by 54 volts and 181 volts respectively. 
                                                                             The wave length ( ) of the electron beam when accelerated  
                                                                              by 54 volts is predicted by de-Broglie relation as 

                                                                               
h

p
  , but 

2
21

2 2

p
mv eV

m
     or, 2 2p meV  

                                                                              or,   2p meV . Thus, 
2

h

meV
  . 

Putting the values, we get 
34

31 19

6.625 10

2 9.1 10 1.6 10 54

Js

kg C V




 




    
 = 101.67 10 m  = 1.67Ǻ. 

The experimental value of   from Davisson and Germer experiment is calculated as given below: 
                               sinn d  ,  but  n  = 1  when   = 50o,  d  = 2.15 Ǻ. 
So,                                      2.15  Ǻ sin 50o  or,        = 1.65 Ǻ. 
Thus de Broglie prediction of   = 1.67 Ǻ  is in good agreement with the experimental value of   = 1.65 Ǻ. 
 
Comparison between photon and electron:  
                 In the relation 2

photon mc  , m  is the relativistic mass of the  photon. A photon has a zero rest 

mass, but photons always move at speed c in vacuum and are never at rest. At speed  c , the photon has non-
zero mass. 
                Similar to photon, an electron is neither a particle nor a wave. It is something that can not be 
adequately described  in terms of a suitable model. 
                The significant differences between light and electrons can be made though they both show  
wave-particle duality. Light travels at a speed c  in vacuum and photon has zero-rest mass. Electrons always 
travel at speed less than c and have always a non-zero rest mass.   
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Application of de Broglie Relation  
 Introduction:   Imposition of wave character in the moving particle brings out the quantum condition of the 
system. We can cite by two examples given below. 
 
(1) Quantization of Bohr H-Atom:   

De Broglie relation is, 
h

p
  = 

h

mv
 suggests that waves are associated with the electron moving in H-atom. 

The wave in the stationary Bohr orbit forms standing wave whose position of maxima and minima do not 
change with time. A stationary wave produces a stationary pattern, its profile being fixed within the space 
allowed to it and it does not travel beyond the allowed space.  
Thus to form standing wave, the circumference of the Bohr circular orbit ( 2 r ) must accommodate the 
integral multiple of wave length ( n ) i.e. 2 r n  . 
The wave length ( ) associated with the moving electron  

in the Bohr orbit is equated with h mv . 

Thus,     2
h

r n
mv


 

  
 

          or,      
2

h
mvr n



 
  

 
. 

de Broglie relation thus imposes quantum condition of the  
angular momentum ( mvr ) for the electron moving in Bohr orbit  
of H-atom. 

Using the above relation,   2mvr n h  , it is possible to  

derive the quantized value of energy of Bohr H-atom. 

        
2 4

2 2

1 2
n

e
E

n h

  
  

 
, where   = reduced mass of H-atom = n e

n e

m m

m m
. 

 
(2) Quantization of Energy of a Particle in a Box 
                    When a particle is executing to-and-fro-motion in one dimensional box, 
 it produces standing waves. 
The nodes must be at the two sides of the box and distance between the walls must 

 be integral multiple of half wave length  2 . Standing wave produces stationary 

 energy state of the system.  

Thus,  2L n   or, 2L n . But de Broglie relation gives xh p  . 

Putting, we get                     2 xL nh p   or,  2xp n h L .  

That is x- component linear momentum of the particle in the box is quantized. The total energy of the particle in 

the box is, E KE PE  , but for this system, PE = 0, so  2 2xE KE p m  . Now putting the quantum 

condition of xp , we have the total energy of the particle in the box, 
 

2
2

2n

nh L
E

m
  or,  

2
2

28n

h
E n

mL
 .    

This shows that energy of the particle in the box takes discrete values only.  
The number of nodes where the amplitude of the wave is zero (except the two ends of the box)  = 1n .   
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Heisenberg Uncertainty (Indeterminacy) Principle 
Principle: 
                The principle states that it is not possible to design an experiment with the help of which one can 
determine simultaneously the precise values of a pair of conjugate variables like position and momentum, 
angular momentum and azimuthal angle, energy and time, etc.  
 
Mathematical form of the principle: 
                The uncertainty in position  x  and uncertainty in momentum  xp  is given by the principle 

                  1 2xx p   , where = 4h  , called reduced Planck’s constant. 

                Approximately, we can write xx p h    (Plank’s constant). 

                Other conjugate variables follow  p h      and  t h   .  

In general, the principle is  1 2p q h   , where p  and q  are conjugate variables in the same direction 

in space. Momentum ( p ) parallel to x  and position ( q ) along x are complimentary and therefore can not be 
specified simultaneously with precision greater than allowed by the principle.  
 
Critical comment: 
               However, the value of any one conjugate quantity  can be determined accurately at any time though 
simultaneous determination of two conjugate quantities induces inaccuracy with the limit given by the 
principle. 
Momentum perpendicular to x  and position along x are not conjugate variables and for this, the principle does 
not hold i.e.  0yp x   . 

 
Approximate formulation and illustration of the principle 
 
This principle can be approximately formulated as given below:  
Let the position of the electron is detected by a microscope using light of  
wavelength  . The position of the electron remains uncertain within the  
length  (approximately) i.e. x   . 
Again, when the photon of the light strikes the electron it can impart momentum p  to the  electron.  

The momentum of the electron remains uncertain within the limit xp  i.e.  x
hp p


       (According to de 

Broglie relation). 
Thus the product of the uncertainty of position ( x ) and momentum ( xp ) of the electron is  

                                                   x
hp x h


     .           

This is the lowest value of the uncertainty of momentum and position. If one tries to reduce the uncertainty in 
position ( x ) to a negligible extent, then the principle suggests to use short   value of light. This improves 
the position measurement i.e.  x  will be small but the electron recoil effect will induce large uncertainty in 

momentum ( x
hp p


    ) in the measurement. 

Breaking of Newtonian mechanics: 
The principle breaks the Newtonian mechanics in which both position and velocity (hence momentum) can be 
determined very accurately and simultaneously for macro objects. Due to association of wave aspect in micro 
particles, Newtonian mechanics fails and uncertainty develops. 
The principle does not arise due to imperfection of the experimental technique but it is the result of the 
interaction of the system with the measuring instrument. This uncertainty is thus a fundamental limit of nature.  
 
Micro particles have no definite trajectory and rejection of Bohr orbit): 
             Since microscopic particles have no definite position and momentum, we can not draw any definite 
trajectory of a micro particle. Thus the principle at once invalidates Bohr-Sommerfeld theory. Since in this 
theory, electrons are assigned to definite orbits (tracks) with precise velocity (and hence momentum) and 
position. This rejection of Bohr model of having a definite trajectory (orbit) can be explained as follows:  
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  Let the electron moving in Bohr orbit in H-atom with velocity, 82 10 / secv cm   and momentum,  
28 8 199.1 10 2 10 / sec 1.81 10 / secp mv gm cm gmcm        . Even we can determine momentum with 

error within 0.1 % (0.001), then 19 221.81 10 / sec 0.001 1.81 10 / secp gmcm gmcm       . 
Thus uncertainty in position according to the principle,  

                            
h

r
p

 


    or,  
27

5
22

6.626 10 sec
3.66 10 3660

1.81 10 / sec

erg
r cm

gmcm







    


Ǻ. 

While the radius of the first Bohr orbit is 0.5Ǻ, the uncertainty in radius lies 3660Ǻ. That is, it seems that it is 

not even known at a given instant whether the electron is within the atom or not.  
The principle thus demonstrates the inadequacy of the Bohr orbit.   
         
Energy time uncertainty and unstable state:      

                    For energy-time uncertainty, the principle states that 
4

h
t


   ,  where t should not be 

regarded as the uncertainty in the measurement of time, rather it should be treated as the duration of the 
measurement or life period. If t  is very large,   will be very small which means that the energy is 
determined with great accuracy. That is, if the energy of a system in a given state has a precise value, the life-
time of the system in that state is infinite and we can say that the system is in a stationary state.  
This is in agreement with Bohr’s concept of discrete energy levels associated with stationary (infinitely long-
lived) states. 
         For unstable system (for dissociating molecule or atoms in excited state) whose life-time is short say, t , 
the energy levels are imprecisely defined at the extent h t . 
 
Uncertainty of the conjugate variables is their RMS deviation:  

        In the principle,
4x
h

p x


   ,   2 2
x xxp p p        and  2 2x x x       and so xp and x  

are root-mean-square deviation of momentum, xp  and position, x of a micro particle respectively. 

 
Simple view of the uncertainty principle: 
       If two spots are viewed under a microscope (given in the sketch), there is limitation on the proximity of 
two spots in order that these two can be detected as distinct spots. The physical principle of distance restriction 
is sinx        or,  x    (approximately). The photon of wave length   has momentum h  . 

                                                                            
Assuming that this momentum of photon is transferred to the electron which is then having momentum 
uncertainty p h   and hence the principle is thus  xp x h   .    

Problem: Making use of the expression, 
4x
h

p x


   , show that for a free particle 
4

h
t


   , where 

                   and t  are the minimum uncertainty in energy and duration of measurement of energy and  
                 duration of measurement of velocity, respectively.  

Solution: For free particle, PE = 0, so 2 2xKE p m     or, 
2

2
x

x

p
p

m


 
   

 
 or,  

2

2x
x

m
p

p


 
   

 
.   

               Again, x x

x
p mv m

t


 


  or, xp

x t
m

   . It is given that 
4x
h

p x


   ,  

               now putting the above, we get 
2

2 4
x

x

pm h
t

p m




   
      

  
      or,   

4

h
t


   . 
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Bohr’s correspondence principle:    
                                               
                                                  Theory of micro particles is in some sense finer than those of macro particles. 
But in some situations, however, it is possible that some behavior in microscopic domain resembles the 
classical interpretation. Thus, one finds a correspondence between classical and quantum results. Bohr’s 

principle refers to the n is the limit to bridge the results. The principle thus states that quantum results of 
an event must go over to classical results when the quantum number describing the system becomes very large, 
i.e. when n both theories merge. This is Bohr’s correspondence principle.  
 
(1) Bohr’s correspondence principle and Bohr H-atom:  

Let us take the Bohr’s H-atom, whose energy of the nth state,
2 4

2 2 2

2
n

me A
E

n h n


     , where

2 4

2

2 me
A

h


 .                              

  Thus, 
   

1 2 22 2

1 1

1 1
n n

A A
E E E A

n nn n


 
        

   

   or,   
 

22

2 1

1

n
E A

n n

 
   

  

 

This is energy difference between the two successive energy-levels. 

But when n, 2 1 2n n  and 1n n ,             2 2

2nA
E

n n
 


        or,    3

2A
E

n
  . 

Thus for the transition of the atom from n  to 1n energy state, it absorbs one photon of energy h .  

Thus 3

2A
h E

n
     or, 3

2A

n h
  . So the frequency of radiation absorbed by H-atom is predicted by quantum 

calculation. This frequency of radiation is called perturbation frequency as it disturbs the equilibrium of H-atom 
by promoting the energy state from n  to n  +1. 
                But classical theory states that resonance absorption or emission of radiation would occur only when 
the perturbation frequency matches the system frequency. In this example, the system frequency is the 
frequency of the electron with which it is revolving round the nucleus of the H-atom. 

                 Thus the system frequency, 
2syst

v

r



   for the n th state of H-atom. 

But 
22 e

v
nh


  and  

2 2

2 24

n h
r

me
 . Hence,

2 4

.3 3 3

4 2

2syst perturb

v me A

r n h n h


 


    . 

Therefore, when n the quantum results merge with the classical results. 

[NOTE: and r can have the expressions from the two equations, (I) 
2

h
mvr n



 
  

 
  and  (II)  

2 2

2

mv e

r r
 ] 

(2) Bohr’s correspondence principle and rigid rotator: 
 
         For rigid rotator, 2 2 28E n h I . The energy difference between two consecutive energy levels is 

                   
2 2 2 2 2 21 8 8E n h I n h I      or,     2 22 1 8E n h I   . If the transition is made by 

absorption of radiation of frequency, , then   2 22 1 8h E n h I     or,   22 1 8n h I   . 

But when n, 2 1 2n n   and so 24nh I  . Thus the quantum result for the frequency of radiation 

absorbed, called perturbation frequency ( purturbation ) = 24nh I .  

Classical theory assumes that this perturbation frequency is equal to the frequency with which the rotator 

rotates  ( system ) which is equal to  
2




. But for rigid rotator, 

2 2
2

2

1

2 8

n h
E I

I



   or,  

2 2
2

2 24

n h

I



  

or, 22 4system

nh

I




 
  . Thus quantum result and classical result merge each other when n.  

This is Bohr’s correspondence.   
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(3) Bohr’s correspondence principle and particle in 1-D box: 
 
     purturbation  = 2(2 1) 8n h mL , but when n, 2 1 2n n   and purturbation  = 24nh mL .  

On the other hand,  2system v L  . But 2p nh L  or 2mv nh L  or, 2v nh mL .  

Thus, 22 4system v L nh mL   . Classical result corresponds to the quantum result when n  and  

this is Bohr’s correspondence principle.      
 

Problem(1): An electron with an effective mass 289 10 gm is free to move in a crystal lattice with interionic  

                    separation 510  cm. Find the various energy levels of the electron.  Calculate the wave length  
                    of the absorbed photons during the transition of the electron from the level n  = 1 to the level  
                   n  = 2 . 

Solution: we have the expression, 2 2 2( ) 8nE n h mL .  Putting the values, we get     

                   2 27 2 28 -5 2( )(6.627 10 sec) 8 9 10  gm (10 cm)nE n erg      = 2 176.1 10n erg  .  

                  The various  energy levels could be found by putting n  = 1, 2, 3 etc .  

                  Thus, 17
1 6.1 10E erg  , 17

2 4 6.1 10E erg   , 17
3 9 6.1 10E erg   , etc. 

                  The energy of the photons absorbed for transition n = 1 to n  = 2,   2 1h E E     

                  or, 17(4 1) 6.1 10hc erg     . Thus, the wave length of radiation absorbed for the above  

                  transition is    27 10 1 176.627 10 sec 3 10 sec 3 6.1 10 1.08erg cm erg cm          . 

Problem (2): The difference in the ground state energies (kJ/mol) of an electron in one dimensional boxes of  
                       lengths 0.2 nm and 2 nm is --------------.                                                                    [GATE, 2015] 

Answer. The energy of the electron in 1-D box is given as 
2 2

28n

n h
E

mL
 . Foe ground state of the electron, 1n  . 

                When L = 0.2 nm, 
2

1 28 (0.2)

h
E

m
  and when L = 2 nm, 

2

2 28 (2)

h
E

m
 .  

                 The difference of energies of the electron in the two boxes are 
2

1 2 2 2

1 1

8 (0.2) (2)

h
E E E

m

 
     

 
. 

                  Putting the values of 346.625 10h Js  , 319.1 10m kg  , we get 181.48 10E J   . 

                  The energy per mole, we have 18 23 31.48 10 6.02 10 10 891E J         kJ/mol. 
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QUANTUM CHEMISTRY - MECHANICS 

Introduction 
Wave-particle dual nature of microscopic particles: De Broglie’s suggestion of matter wave and its confirmation 

by Davisson and Germer’s electron diffraction experiment conclusively proves that electron is not an ordinary 

particle. It has both the particle nature [as evidenced by the experiment of determination of mass ( m ) and e m
] and wave nature [as evidenced by Davisson and Germer’s electron diffraction experiment]. All sub-atomic 
particles are found to possess both the particle and wave nature  i.e., they play dual nature. 
The two natures of the electron are contradictory as a particle is highly localised i.e., it could not be found more 
than one point at a time while wave is a kind of disturbance which varies from point to point and cannot be 
localised. 
Necessity of quantum mechanical model: Therefore to describe the finer details of microscopic 
 (sub-atomic) particles like electron, it is necessary to create a mathematical model which can reconcile both the 
particle nature and wave nature of the substance. Quantum mechanics is such a mathematical model. 
Function used to define quantum mechanical state: In classical mechanics, position and momentum of a dynamic 
particle are definite and so its state is defined by position and momentum coordinates which are expressed by 
number only. But if the state of a microscopic particle is described by numbers, then it violates Heisenberg 
uncertainty principle as it states that position and momentum of a sub-atomic particle could not be known 
accurately and simultaneously. Therefore to incorporate the uncertainty principle, the state of sub-atomic 
particle should be described not by numbers but by a function. A function is more generalised way of describing 
a state. A continuous function refers to infinitude of numbers. These are usually functions of space coordinates 
(Schrodinger representation). In one dimension ( x ), a quantum mechanical state is thus defined by some 
function of x  only. 
Measurable properties of a quantum mechanical system: The observable properties of a dynamical particle like 
mass, position, velocity, momentum, energy, etc, are obtained by treating the function with an appropriate 
quantum mechanical operator. Each observable property has a definite quantum mechanical operator which on 
operation with the function gives the value of the property. Though the uncertainty in the variables are 
considered in quantum mechanics, the values of the observable properties of the system are obtained very 
accurate. This is the triumph this new model. 
     
 Classical Wave and Wave Equation  

Classical wave and SHM is the simplest one:   All waves originate from some kind of vibratory (oscillatory) 
motion.  The simplest of these is simple harmonic motion (SHM).  A SHM is one in which some physical 
quantity assumes definite value after a definite period of time. In a water wave, this quantity is the height of 
water and in vibration of string; it is the vertical displacement of the string from its mean position. This is 
sometimes called amplitude function ( ). This quantity is a function of space coordinate (x in one dimension) 

and time (t) i.e.,  ,f x t  . 

 

 

 

 
 
 Definition of , ,T and   :  This amplitude ( , )x t assumes the definite value as the wave is in  

progress after the distance x and it is the wave length    of the wave. The time interval t  at which it takes 

same definite value is called time period (T). Hence the velocity of the wave, c T .  But 1 T  , the 

frequency of the wave which is the number of waves passed at a point in unit time. Again, 1   , the wave 
number i.e.,  it is the number of waves in unit length. The periodic nature of the certain property suggests that 
the analytical expression is either a sine or cosine function of x  and t. Such expression of   is obtained by the 
general differential wave equation,    
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General Differentia Equation:                         
2 2

2 2 2

1

x c t

  


 
. 

The equation is derived from Newton’s 2nd law of motion and also considering that each wave propagates along 
the medium continuously. The wave equation is a differential equation with a constant coefficient ( c ). Hence 
this equation has a number of solutions. Let us consider a solution in terms of sine function, as                

sin 2
x

A t  


 
  

 
, 

where   is a amplitude function, A is amplitude, x is displacement of the wave at time  t .   and   are the 
wave length and frequency of the wave respectively. This wave equation represents a plane wave travelling 
from left to right starting from the origin of the wave. An equivalent wave travelling in the opposite direction is 

given as     sin 2
x

A t  


 
  

 
 

Formulation of Standing Wave Function: When the two waves of the above form travel with equal velocity but 
in opposite directions, the resultant amplitude function is obtained by the principle of superposition of waves, as      

                      
2

sin 2 sin 2 2 sin .cos 2
x x x

A t A t A t


     
  

   
       

   
                                        

This resultant wave neither move forward nor backward directions and it is called standing wave or stationary 
wave. Mathematically, all waves whose amplitude function can be product of two functions – one dependent of 
space coordinate (say, x ) and the other dependent of time ( t ) are standing wave or stationary wave.  
Characteristics of Standing Wave Function: The standing wave equation shows that   vanishes irrespective of 

the value of t  for the points at which  sin 2 x  = 0 i.e., at the points, 0, 2,2 2, 2.x n     These 

points are known as nodes (minimum amplitude). The distance between two successive nodes is 2 . The 
mid-point between two nodes is antinode (maximum amplitude) 
Formulation of Differential Equation of Standing Wave: The amplitude function for standing wave is      
                         2 sin 2 ( ).cos2 ( ). ( )A x t x f t       , 

 Where ( ) 2 sin 2 ( )x A x    and ( ) cos 2f t t    or,    we write simply as  . f  . 

These two functions are independent of each other.  

Therefore,                                 
2 2

2 2
f

x x

  
 

 
  or, 

2 2

2 2
cos 2 t

x x

 


 


 
.  

 

Again,                             
2 2

2 2 2
2 2

4 cos 2 4 cos 2
c

t t
t


      




       

. 

Putting these expression in the generalised differential wave equation,  
2 2

2 2 2

1

x c t

  


 
,  we get  

2 2
2

2 2 2

1
cos 2 4 cos 2

c
t t

x c


   



 
    
  

.  Now cancelling the like terms, we have   

               
2

2 2
2

4
d

dx


    .  This is differential equation of the standing wave where t  is absent. 
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The Schrodinger Time-independent Equation for Matter Waves :  

                                                  Using the de Broglie’s wave particle duality, E. Schrodinger in 1926,                                          
argued that microscopic particles such as electrons behave like standing wave in atoms and molecules. 
Therefore, he proposed a wave equation analogous to that used to describe the standing wave system such as the 
vibrating string tied at both the ends.  
[Vibration of string  is given as:  The analytical expression 

 of amplitude  function is  sin 2A x   .  

For matter wave, it is  sin 2A x   .  

Double differentiation of   with respect to x gives the  
differential form of the standing wave,       

                   
2

2 2
2

4
d

dx


    .] 

 The equation proposes probable distribution of the electron instead of the well defined trajectory.  

                                 Schrodinger used the time-independent wave equation   
2

2 2
2

4
d

dx


    , 

where ( )x  , represents the quantity analogous to the amplitude function in classical wave. 

Introducing the de Broglie relation, xh p  , we get  
2

2 2 2
2

4 x

d
p h

dx


    ,  

where xp is the x component momentum .  

The kinetic energy, 2 2xT p m  = E – V , so  2 2xp m E V  , where E = total energy of the system and V 

= time-independent  potential energy.  Now replacing 2
xp  in the wave equation, we get x - directional 

Schrödinger equation, 
2 2

2 2

4 2 ( )d m E V

dx h

 


 
   or, 

2 2

2 2

8 ( )d m E V

dx h

 



  . We may use 2h  , 

called reduced Planck’s constant in the equation and then it is   

2

2 2

2
( ) 0

d m
E V

dx


   .  It is in one dimension time-independent  Schrodinger equation.  

However, in three-dimensions, the equation is  
2 2 2

2 2 2 2

2
( ) 0

m
E V

x y z

  


  
    

  
.  

But,      
2 2 2

2
2 2 2x y z

  
  

  
(del squared), Laplacian operator. So the Schrodinger equation in 3-D 

is       2
2

2
( ) 0

m
E V       or,  

2
2

2
V E

m
      or, 

2
2

2
V E

m
 

 
    
 

  

or, Ĥ E  , where 
2

2ˆ
2

H V
m

     and is called Hamiltonian operator  is an energy operator. 

Schrodinger equation is an energy eigen value equation. It is, in fact, the quantum mechanical analogue of the 
classical standing wave equation. It describes the finer details of the particle in motion in atoms and molecules. 
Predictions of this equation have been confirmed without exception.   
Schrodinger Equation for different systems: The Schrodinger equation  
 (1) For particle in one dimensional box: For system, the potential energy (V) = 0, hence  

                                 
2

2 2

2
0

d mE

dx


     , where m = mass of the particle moving in the box. 

 (2) For particle in three dimensional box: 2
2

2
0

mE
    , where 

2 2 2
2

2 2 2x y z

  
   

  
. 
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(3) For simple harmonic oscillator in 1D motion:  
2

2
2 2

2
1 2 0

d m
E kx

dx


      , as 21

2
V kx  

(4) For H – atom:  2 2
2

2
0E e r


      , as 

2e
V

r
    and r is distance of the electron  

      from the nucleus and  = reduced mass of the atom. Laplacian operator in polar coordinates is  

     
2

2 2
2 2 2 2 2

1 1 1
sin

sin sin
r

r r r r r


    

       
      

       
, where  = zenith angle and  

      = azimuthal angle. Thus the Schrodinger equation for H – atom in polar coordinates is  

               
2 2

2
2 2 2 2 2 2

1 1 1 2
sin 0

sin sin

e
r E

r r r r r r

   
 

    

        
        

         
 . 

(5) For rigid rotator:  The particle of mass m is rotating on the XY  plane along the Z axis and V = 0. 

      
2 2

2 2 2

2
0

mE

x y
 

  
   

  
.  For the system in polar coordinates, r is constant,  = 90o and  

        is varying from 0 to 2 .  When it is changed in polar coordinates,  sin 1, 0
r




 


 and  

      0






,  so the equation is 

2

2 2 2

1 2
0

d E

r d

 



   or,   

 22

2 2

2
0

r Ed

d





  .  

       But 2r I  , moment of inertia of the system. So the equation is  
2

2 2

2
0

d IE

d





   . 

(6) For He atom: The atom contains two electrons and one nucleus of charge 2e . 

    
2 2 2

2 2
1 2 2

1 2 12

2 2 2
0

e e e
E

r r r


 

 
       

 
 

   where,  
2 2 2

2
1 2 2 2

1 1 1x y z

  
   

  
  and 

2 2 2
2

2 2 2 2
2 2 2x y z

  
   

  
. 

   One electron has the coordinates  1 1 1, ,x y z and the other electron 

   has the coordinate   2 2 2, ,x y z .   This is shown pictorially as : 

Interpretation of Wave Function ( )  
Introduction: The Schrodinger time-independent wave equation is the best mathematical model to describe the 
motions of the particles in an isolated atom or molecule. The acting forces among the charged particles depend 
on the space coordinates only and do not depend on time. The potential energy (V ) coming out from these 
forces is also time-independent. For one particle in 3D motions, the Schrodinger equation is  

                                                  2
2

2
( ) 0

m
E V      . 

Here,   is called quantum mechanical wave function and it is the function of space coordinates only i.e. 

 , ,f x y z  . 

Interpretation of  : (1) The wave function in quantum mechanics is the analogue of amplitude function in 
classical wave mechanics. However, amplitude function in wave mechanics can be determined experimentally 
and hence a physical quantity. But wave function ( ) is not to be thought of a physical wave but an abstract 

mathematical entity and has no experimental bearing. 
(2) It is supposed that all the information of a state of the system is mysterically hidden within the expression of 
  and so it is often called state function of the system. Any observable property of the system can be obtained 
by the mathematical treatment of the wave function of that system. If any property or information could not be 
obtained from  , it is believed that this property or information is not at all present in the system. 

(3) Though  has no physical meaning as such, 2 bears a meaningful physical concept.  
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Max Born in 1926, postulated that  2  gives probability density for finding the particle at a point in space, 

hence it must be a real quantity. When   is a complex function,   is used as a measure of probability of 

finding the particle at the point in space. In general it is written as
2

  (modulus square of  ).  Thus classical 

mechanics is a deterministic theory but quantum mechanics fails to give exact trajectory or path of the particle 
like classical mechanics. It gives probable positions of the particle at different locations in space, hence it is 
probabilistic theory. 
(4) Let P is the probability of finding the particle at the 
 point, A in space within range x to x dx , y to y dy  
and z to z dz , then it is the probability of  finding  
the particle in a tiny rectangular box-shaped region 

 located at point  , ,x y z in space having edges dx , dy  

and dz . Born’s postulates is then probability 

(P) =  
2

, ,x y z dxdydz  = 
2

d  ,  

where d  is infinitesimal volume element equal to  

dxdydz  in space at the point  , ,x y z . 
2

 is called probability density of finding the particle  

at the point  , ,x y z and 
2

d  is called probability of  

finding the particle within the volume element d . 
Similarly, if the wave function of a particle has a value of  at some point A located at x within range dx , the 

probability ( P ) of finding the particle between this infinitesimal distance range  is  

                                                             
2

P dx       

(5) Probability idea also imposes that total probability of finding the particle in all available range must be 

unity. i.e.,  
2

1
all space

d   . 

(6) If the particle is smeared into cloud, then often 
2

 denotes the particle density. If the particle is charged, 

then it denotes the charge density at the given point.  This concept arises for the particle like electron due to 
their wave character and are delocalised. 
Conditions of Accepted (Well-behaved) Wave Function 
                                                      The Schrodinger wave equation is a double differential equation and so it 
produces a number of solutions of . But all the expressions of   are not quantum mechanically accepted. The 
quantum mechanical restrictions for   being well-behaved originate from the following two considerations. 

(a) The Schrodinger equation must be finite at every point within the system and 

(b) 
2

  measures the probability density at a point and hence it must be finite  

These above conditions put some restrictions of  for being quantum mechanically accepted. 
 
(1) The accepted wave function must be single-valued. 
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( )x  assumes single-valued  at a given point. But it is possible for   to have same value at                                      

different values of x  as for the function 
2

sin
x

A





  viz. ( ) ( )x x                                                                                  

or at different value of   for the function ( ) (2 )n      . But this function is not acceptable as it 

assumes more than one value  at x x      
                                                                                                                                                                                                          
(2) The accepteble wave function must be finite. 
                                                                                                                These functions, ( )x  are  
                                                                                                                acceptable since at any point x  
                                                                                                                            the function is finite including  
                                                                                                                            zero. 
 
 
 
              But these functions given below are not acceptable. 
                                                                                                                                  This also arises from the  

                                                                                                                                  probability idea that 
2

  

                                                                                                                     never be infinity and in that  
                                                                                                                     case probability density  
                                                                                                                     would be infinity which is 
                                                                                                                     not possible. 
                                                                                                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                          
 
(3) The acceptable wave function must be continuous. 
                                                                             This   is acceptable since it varies continuously with 
                                                                              the change of x . The probability of finding the 
                                                                              particle must be continuous. It means that the  
                                                                              probability density at x must not differ to large extent 
                                                                              at a point x dx . For example, if the probability at 
                                                                             x  were 90%, and that at the adjacent point x dx     
                                                                              only 10%, it would be highly absurd situation 

       Not only   is continuous,  , ,
x y z

    

  
  must also be continuous, otherwise double  

       differentiation of   ,  2 must be infinite. But the Schrodinger equation is finite at every point   
       of the system.                                                                                  
                                                                                                                 In (a) and (b),   functions are  
                                                                                                                 not acceptable since they  
                                                                                                                 assume sudden change with x .   
                                                                                                                 In (c),   is continuous but  the 

                                                                                                                  slope 
d

dx


 is not continuous.  

  
  (4)   must be quadratically integrable. Otherwise the probability idea  
         becomes untenable as                                                                                                            

       2d  is finite. For example, 4x dx




  is equal to infinity hence  

        2x function is not quadratically integrable.   
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  Problem: Indicate which of the functions are acceptable as wave functions? 

                   (i) x  ,    (ii) 2x     (iii) sin x      (iv) xe      (v) xe     (vi) 
2xe   

                   (vii) tan x  .                                                           [Ans. (iii)  and (vi) are acceptable] 
 
 Problem: Show whether the following functions belong to the well-behaved class in the range given: 
                  (a) (0, )xe      (b) ( , )xe       (c) 1sin ( 1, 1)x        

                  (d) 
2

( , )xe       (e) (0, )xe      (f) cos x    (g) (0,2 )ie    (h) xe  .        

                                                                                                                                      [Ans. (a), (d), (g)]                                                                                                                            
                                                                                                                       

Illustration: (a) (0, )xe   acceptable.    (b) not acceptable as when x    ,  xe  . 
                      (c) not acceptable, as it leads to multi-valued.    (d) acceptable     (e) not acceptable as 

                      when x   , xe     (f) not acceptable,  is continuous but 
d

dx


 is not continuous. 

                      (g) acceptable as cos sinie i     .                                                                                                    
                                                                                                                 
    Some Important Properties of Wave Function 

                                     (1) Normalised Wave Function: If 
2

d  is the probability of finding a particle in the 

volume element d , then the sum of such probabilities over the entire space must be unity. Mathematically, it is 
expressed as   

                                                     
2

1
all space

d   .  

        When a wave function satisfies this condition, it is said to be a normalised wave function. 
If a wave function is not normalised, then it can be normalised by multiplying the function by a constant A , 
called normalised constant so that 

           
2

1
all space

A d   .     The value of A can be calculated by    2
2

1

all space

A
d 




. 

If   is a solution of the Schrodinger equation, it could be shown that A  is also a solution of the equation. 

For a particle in one dimensional box, the normalisation condition is  
2

0

1
L

dx  , if the particle is constraint 

to move within a distance L . 
This condition of normalisation arises from the fact that total probability of finding the particle within the all 
available space must be unity.  

Mathematically, we can write the normalisation condition as,   1i jd 




 ,   when i j .  

Exercise:  

(1) The wave function of a particle moving within a box of length L  is given by 2sinn

n x
A

L


   . 

      Find the normalisation constant A . 

Answer: Putting the normalisation condition,    2

0

1
L

n dx    or, 2

0

sin 1
L n x

A dx
L


  

 or,   
2

2

0

2sin 1
2

LA n x
dx

L


   or, 

2

0

2
1 cos 1

2

LA n x
dx

L

 
  

 
     or, 

2 2

0 0

2
cos 1

2 2

L LA A n x
dx dx

L


                                                                                                         

                                                                                                                                                                                                                                                                                                                                               

or, 
2

1
2

A
L  ,     since  

0

2
cos 0

L n x
dx

L


 ,  hence   

2
A

L
  .                                                                                                                                                                                                                                   
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   (2) The wave function for the ground state of H-atom is proportional to 0

r
ae



, where 0a  = constant. 

      Find the normalisation constant, N  such that 0( )
r

ar Ne


  is normalised to unity. 

Answer: Using normalisation condition, we have 
2

( ) 1
all space

r d   , but d dxdydz         

                                                                                                                               2 sinr dr d d   .                                                                                                                           

Therefore, 0

2 2 2
2

0 0 0

sin 1
r

a

r

Ne r dr d d
 

 

  




  

 
 

 
     or, 

3
2 0 2 2 1

4

a
N        or,   

1
3 2
0N a



 . 

(3) Normalise the wave function cos
n x

L


over the integral L x L   .      [Answer: 

1
cos

n x

LL


] 

(4) A system is defined by the wave function, 
2

2
x

A x e


 . Calculate the value of A if the wave  

     function is normalised.                                                                                       [Ans.   
1

44A


  ]                                             

 (2) Orthogonal Wave Functions: 

                            The functions f and g  are said to be orthogonal if  0f g d


 . 

In quantum mechanics, there may be many acceptable wave functions to Schrodinger equation  
                                                               H E                            for a particular system. 

Each wave function  has a corresponding energy value E . For any two wave functions i  and j  

corresponding to the energy values iE  and jE  respectively, they are orthogonal to each other. 

That is,                                   0i j

all space

d   , when i j .   

It means that two wave functions that correspond to different energy values of a quantum mechanical system 
are orthogonal. [ In geometry, orthogonal means perpendicular to each other.] 
Orthogonal wave functions are completely independent functions and one can not be expressed in terms of 
other. It implies also that the energy levels corresponding to the orthogonal functions are not overlapping or 
interacting each other. 

Exercise: Check whether the wave functions of a particle in one-dimensional box, sinn

n x
A

L


    

                 within box length L  are orthogonal. 

Answer: We have to show 
0

0
L

i j dx   . Now for the system,  

2

0

sin sin
L

ji
n xn x

A dx
L L




2

0

2sin sin
2

L
ji

n xn xA
dx

L L


 

   2

0

cos cos
2

L
i j i jn n x n n xA

dx
L L

   
  

  


   2 2

0 0

cos cos
2 2

L L
i j i jn n x n n xA A

dx dx
L L

  
    

 = 
   2 2

0 0

1 1
sin sin

2 2

L L

i j i j

i j i j

n n x n n xA L A L

n n L n n L

 

 

       
                     

 

   
2 21 1

0 0 0 0 0
2 2i j i j

A L A L

n n n n 

   
              

.  

  This shows that wave functions of the system are orthogonal to each other.                                                                                                                  
(3) Orthonormal wave functions: Two wave functions are said to be Orthonormal when the following  
     two conditions are simultaneously satisfied. 
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                   1,i j

all space

d    when i j  and  0,i j

all space

d    when i j . 

    The integration is known as Kronecker delta,  i j  and for orthonormal conditions,   

                                   1i j  , when i j   and   0i j  , when i j .                                                                                                           

Example: Show that the wave functions of a particle in one-dimensional box, 
2

sinn

n x

L L


   are 

                orthonormal.                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                       
(4) Degenerate Wave Functions: When two wave functions i  and j  correspond to the same energy  

     E , the wave functions are said to be in a degenerate state. 
      However, the degenerate wave functions will not necessarily be orthogonal. The p - orbitals are  
      three-fold degenerate since they have same energy. 
Operators 
                      Formal treatment of quantum mechanics requires the idea of the operator algebra, eigen values, 
eigen functions and a set of postulates called quantum mechanical laws. Let us start with quantum mechanical 
operators. 
                      An operator is a mathematical instruction to be applied to a function or a number to give a new 

function or number. For example,  is an operator which itself does not mean anything, but if a quantity is 

put under it, it transforms that quantity into square root, another quantity i.e. 4 2 . 

Similarly, 
d

dx
 is an operator which operates on  cos x gives  sin x   i.e.,  

cos
sin

d x
x

dx
  .  

                        In general,    Af x g x , where A  is an operator operating on the function  f x  

giving a new function  g x . Let 
d

A
dx

  and   25f x x , then  
 

 
25

10
d x

Af x x g x
dx

   . 

A list of mathematical operators is given below: 

Operation                                      Operator                          Result of operation on 3x  

taking square                                    2( )                                          6x  

taking square root                                                                      
3

2x  

multiplication by a constant k            k                                           3k x   

differential with respect to x              
d

dx
                                         23x  

integration with respect to x              dx                                         41

4
x c  

Algebra of Operator: 
                                    Although the operators do not have any physical meaning, they can be added, subtracted, 
multiplied and have some other properties. 
Addition and Subtraction:  
The addition or subtraction of operators yields new operators.  As for example,   

                                                      ˆ ˆˆ ˆA B f x Af x Bf x   .  

If ˆ logeA , ˆ d
B

dx
 , then sum or difference yields new operators, loge

d

dx
 

 
 

. When operated on the 

function 2x , we get 2loge

d
x

dx
 

 
 

 2

2log 2log 2e e

d x
x x x

dx
    .                                                                                                                                                                                                                                                              
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Problem: 
     

2 2
2 2 2 2 2 2

22 2 28 2 4
x xh d h x h

e c e
dxm m

 

  

 
 
   
  

, where h ,  and m are constants.  

                  Then c  is   (A) 2
m

     (B) 2m
     (C) m

     (D) 
2

m
 .                     [GATE, 2014]  

Ans.  (C). 
                 
 
Multiplication: Multiplication of two operators means operations by two operators one after the other, the order 

of operation being from right to left. For example,  ˆ ˆAB f x  means that the function  f x is first operated on 

by B̂  to yield a new function  g x  which is then operated on by Â to yield function  h x . 

     i.e.                                    ˆ ˆ ˆˆ ˆAB f x A Bf x Ag x h x   
 

. 

Let 2ˆ 4A x  , ˆ d
B

dx
  and   3f x ax  then    2 3 2 2 4ˆ ˆ 4 . 4 .3 12

d
AB f x x ax x ax ax

dx
   . 

If the order of operation is changed, the result of operation may be or may not be different.   
The square of an operator means that the same operator is applied successively twice  

i.e.                                               2ˆ ˆ ˆ ˆA f x A Af x Ag x h x   
 

. 

Let ˆ d
A

dx
  and   sinf x x , then    

2
2ˆ sin sin cos sin

d d d d
A f x x x x x

dx dx dx dx
   

       
   

. 

Rules for Quantum Mechanical Operators:  
(1) Linear Operators: An operator is said to be linear if its application on the sum of two functions gives the 
result which is equal to the sum of operations of the two functions separately.   

   i.e.        ˆ ˆ ˆA f x g x Af x Ag x      and     ˆ ˆAcf x cAf x , where c  is constant. 

Examples: (i) 
d

dx
 is a linear operator since       m n m nd d d

ax bx ax bx
dx dx dx

   . 

             (ii) Square root    operator is not linear operator, as        f x g x f x g x   . 

                  log,sin,cos, etc are not linear operators. 
                                   All quantum mechanical operators are linear operators.  

Commutator Operator: For two operators Â  and B̂ , the difference  ˆ ˆˆ ˆAB BA is called “commutator operator” 

. This commutator operator of Â  and B̂  is simply denoted by ˆ ˆ,A B 
 

. 

If  Â  and B̂  commute, then  ˆ ˆ,A B 
  0 , where 0 is called zero operator which means multiplying a function 

with zero. For example, ˆ d
A

dx
 , 2ˆ 3B x  and   sinf x x , the commutator operator is obtained  as:     

         2 2ˆ ˆ ˆˆ ˆ ˆ, . 3 sin 3 . sin
d d

A B f x AB BA f x x x x x
dx dx

     
 

      

 =      2 26 .sin 3 cos 3 cos 6 sin 6x x x x x x x x x f x    . 

 The commutator operator of 
d

dx
and 23x  is 6x . The value of commutator of two operators is same 

irrespective of function. If we consider the function xe , then the commutator of the above two operators will be 
the same i.e. 6x .   

Commutative property:  If ˆ ˆ,A B 
 

 = 0 then the operators Â  and B̂  are commuting and 

                                      when  ˆ ˆ, 0A B  
 

, then the operators Â  and B̂  are not commuting. 

Example:  ˆ, 0xx p  i.e. x and ˆ xp  are not commuting but  ˆ, 0xy p   i.e. y  and ˆ xp are commuting. 
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Every physical property of a system has its quantum mechanical operator. If the two operators are not 
commuting, and in these cases, physical properties (such as x and xp  ) they represent, cannot be determined 

accurately and simultaneously beyond a certain limit.                                                                                                          
If the two operators are commuting, then their corresponding physical properties (such as y and xp ) 

can be determined accurately and simultaneously.  

Two physical properties position ( x )  and x -component momentum ( xp ) have operators x̂  and
2

h d

i dx
. 

These operators are not commuting  i.e. ˆ, 0
2

h d
x

i dx

 
 

 
, hence x  and xp  of a system cannot 

be determined accurately at the same time.  It is to be noted that operators representing physical quantities must 
be linear.  

To show that x̂ and ˆ xp  are not commuting. Let the function is taken as  x , then  

     ˆ ˆ ˆ, , . .
2 2 2x

h d h d h d
x p x x x x x

i dx i dx i dx
 

  

   
    
   

 
 

2 2

d xh h d
x x x

i dx i dx




 
      

 
 

 
2 2 2

d x d xh h h
x x x

i dx i i dx

 


  
    

2

h
x

i



  0 .  

Hence the commutator operator is 
2

h

i
  and the operators are not commuting.  

Eigen Values and Eigen Functions: If an operator Â operates on a well-behaved (i.e., finite, continuous and 
single-valued) function f  to give the same function but multiplied by a constant, then the function f  is called 
the ‘eigen function’ and the constant is called ‘eigen value’. The equation is called ‘eigen value equation’. 

[Eigen means characteristic, a German word]. 

                            For example, if the function axf e  is acted upon by the operator 
d

dx
, the result is  

                                                 ax axd
e a e

dx
   .  

Therefore,  axe  is the eigen function of the operator  
d

dx
 with eigen value  a . An eigen function does not 

have any absolute meaning, it always refers to an operator. 

Example: (1) Show that sin 2x is not an eigen function of the operator 
d

dx
 but of 

2

2

d

dx
;  

                     What is the eigen value? 

Answer:    sin 2 2 cos 2
d

x x
dx

 , hence sin 2x is not eigen function of  the 
d

dx
 operator. 

               Again,    
2

2
sin 2 4 sin 2

d
x x

dx
  , hence sin 2x is an eigen function of  the 

2

2

d

dx
 operator 

                and the eigen value is  4 . 

Example: (2) Show that if   is an eigen function of a linear operator Â  with an eigen value  ,  

                    then c  , where c  is constant, is also an eigen function of  Â  with same eigen value  . 

 Answer: Â  , but Â is linear, so    ˆ ˆA c cA c c       , here c and   are just the  

                numbers.   

Example: (3) Show that axe  is an eigen function of the operator 
n

n

d

dx
. What is the eigen value? Answer: When 

axe is operated n  times,     
n

ax n ax
n

d
e a e

dx
 , so axe  is an eigen function of 

n

n

d

dx
 

                 and the eigen value is na .  
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The Schrodinger wave equation Ĥ E   is also an eigen value equation.   is the eigen function  

of the Hamiltonian operator  Ĥ  with eigen value E . 

Both coskx  and sin kx  are the eigen functions of the operator 
2

2

d

dx
 with same eigen value  2k . 

Such eigen functions are called degenerate functions. The 3 p -orbitals are also three-fold degenerate wave 
functions. 

Operator algebra differs from ordinary algebra. From Ĥ E  , one cannot conclude that Ĥ E Ĥ  is an 

operator and E  is a property and two are not equal. Thus,    2 22x xd
e e

dx
  , but 

d

dx
2  

Exercise: (1) Which of the functions sin3x , 6cos4x , 25x , 
1

x
, 53 xe  are eigen functions of 

2

2

d

dx
? For each 

eigen function, state the eigen value. (2) Show the function 3( ) (6 ) yf y y y e   is an eigen function of the 

operator
2

2 2

2 2 2ˆ d d
A

dy y dy y y

       
           

      
. Find the eigen value. 

1

3
 
 
 

. 

Hermitian  Operator:  If a linear operator, Â  has two eigen functions   and   with eigen value, and if it 

satisfies the following condition, then Â  is called Hermitian operator. The condition is, 

                               ˆ ˆA d A d       ,      when    and   are real and  

                               ˆ ˆA d A d     


   ,   when   and   are complex,    is the complex 

 conjugate of  . d  is the infinitesimal volume element of space in which the functions are defined.                                                                                   

Example: Check  
2

2

d

dx
 as Hermitian operator of the eigen functions ixe   and sin x  . 

                 
2

2
ˆ sin sinix ixd
A d e x dx e x dx

dx
     

   
 

    and        

                 
2

2
ˆ sin sinix ixd
A d x e dx e x dx

dx
  




 
   

 
   . 

There are three important properties of the Hermitian operator. 
(1)  The eigen values of the Hermitian operator are real. 

       It can be easily proved. Let Â  is Hermitian operator for the eigen function with eigen value  .    

      Then     Â d d d                , since Â  .  

       And       Â d d d          


       , since    Â   
     . 

But Â is Hermitian operator, hence    Â d d     


   , so   , i.e.,   is real. 

(2) Eigen functions of a Hermitian operator corresponding to different eigen values are orthogonal. 

     Let 1  and 2  are the two eigen functions of a Hermitian operator Â with different eigen values  

    1  and 2  , then 1 1 1Â    and  2 2 2Â  . If complex conjugate of 2  is used,  

    Then  2 2 2Â     2 2  , since 2  is always real. 

    Now,              2 1 1 2 1Â d d             and      1 2 2 2 1Â d d      


   . 

    From these two equations, it follows that      2 1 1 2 1 2 2 1
ˆ ˆA d A d d          


        

    But left hand side is zero since Â  is Hermitian operator, hence  1 2 2 1 0d      ,  

The two integrals are same,  

hence 
2

2

d

dx
is Hermitian 

operator 
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    but 1 2 0   , hence 2 1 0d     i.e., 1  and 2  are orthogonal. 

(3) The eigen functions i  of a Hermitian operator form a complete set of functions if it is possible to  

     expand any function,   that obeys the same boundary conditions as the eigen function. 

                                          1 1 2 2 3 3c c c                i.e., i ic    or,  

    This is an important method of expanding a function in terms of a set of eigen functions.   
 
Basic Postulates of Quantum Mechanical  
Introduction: 
                        Quantum mechanical calculations of observable properties are based on four postulates. 
These postulates cannot be derived or proved rather these are taken as axioms. However, these postulates form 
the basic format of quantum mechanics. 
Postulate I: (Construction of quantum mechanical operators) 
Examples of Physical Properties:  Every physical property (observable) of a system has a corresponding quantum 
mechanical operator. These operators are linear and Hermitian. The physically measurable properties of a 
system are position ( q ), momentum ( p ), kinetic energy (T ), potential energy (V ), total energy ( E ), angular 

momentum ( L ), etc. 
Rules for Setting Quantum Mechanical Operators: Rules for setting up a quantum mechanical operator for a 
physical property are given below: 
(1) First, the physical property is to be expressed as a function of Cartesian coordinates and  
     corresponding momenta i.e., the property is expressed in terms of position coordinates ( , ,x y z )   

     and corresponding momenta ( , ,x y zp p p ). 

(2) These position coordinates and momenta are then replaced by corresponding operators. 
(3) Operator for a position coordinate (say, q ) is multiplied by that variable itself i.e., q̂ q . 

(4) Operator for a momentum qp , say ˆ
2q

h d
p

i dq
 = 

d
i

dq
 .  

d

dq
 in the operator is the 1st  

     derivative with respect to q . 

Formulation of ˆ qp : The formulation of ˆ qp  operator can be obtained from the differential equation of standing 

wave along q - axis (as for example, q - axis can be taken as x - axis ). 

The wave equation is
2 2

2 2

( ) 4
( )

d x
x

dx

 



  . But de Broglie relation is, 

2
x

h

p
  ,   

so,  
2 2 2 22

2 2 2

4( )
( ) ( )x xp i pd x
x x

dx h


     or, 

2 2
2

2 2
( ) ( )x

d
x p x

i dx
   . This shows that 2

xp  is the eigen 

value of the operator
2 2

2 2

d

i dx
 for the eigen function ( )x . Thus the operator of xp is 

d

i dx
But 2( ) i  , so the 

operator, ˆ x

d
p i

dx
    in the  (+ve) direction. 

Other linear momentum operators are  ˆ y

d
p i

dy
  and ˆ z

d
p i

dz
  . 

(1) Construction of Hamiltonian operator (energy operator)  
     [The Hamiltonian reflects the contribution made by Sir William Rowan Hamilton to the  
     formulation of mechanics during the nineteenth century (1805 – 1865)] can be made by using the  
     above rules. 

     Energy of the system, E = KE + PE = 
2

( )
2

xp
V x

m
 , when the system acts along x - axis. 

     Replacing by operators,     
21ˆ ˆ( )

2
dH i V xdxm

            or,     
2 2

2
ˆ ˆ( )

2

d
H V x

m dx
    . 

     In three dimensions, the Hamiltonian operator is   
2 2 2 2

2 2 2
ˆ ˆ( , , )

2
H V x y z

m x y z

   
     

   
 



 

33 
                                                            Quantum Chemistry  – Dr N C Dey  

                                     or,    
2

2ˆ ˆ( , , )
2

H V x y z
m

                                                                                                                                   

 (a) For one-dimensional box, ( )V x  = 0,    so     
2 2

2
ˆ

2

d
H

m dx
  . 

 (b) For one-dimensional simple harmonic oscillator, 21ˆ
2

V k x , so 
2 2

2
2

1ˆ
2 2

d
H k x

m dx
   .  

 (c) For H-atom, 
2 2

2ˆ
2

e
H

r
    , where   is reduced mass of H-atom and PE, 

2

ˆ e
V

r
   .  

    In polar coordinates, 
2 2 2

2
2 2 2 2 2

1 1 1ˆ sin
2 sin sin

e
H r

r r r r r r


     

        
        

        
.   

(d) For rigid rotator (PE = 0),  
2 2 2

2 2
ˆ

2
H

x y

  
   

  
. 

     In polar coordinates, 
2 2

2 2
ˆ

2

d
H

r d 
  =  

2 2

22

d

I d
 , where 2I r , moment of inertia. 

(e) For He-atom (two-electron system), 
2 2 2 2

2 2
1 2

1 2 12

2 2ˆ
2

e e e
H

r r r
         .   

(f) For a system of n  particles,  
2

2
2

1ˆ ˆ , ,
8 i

i

h
H V x y z

m
      =  

2
21 ˆ , ,

2 i
i

V x y z
m

    , 

      where im  is the mass and 2
i  the Laplacian operator of the i th particle.  

(2) Construction of kinetic energy operator in one dimension is given as  

                    
2

2
xp

T
m

  so,  
21ˆ

2
dT i dxm

     or,   
2 2

2
ˆ

2

d
T

m dx
  . 

(3) Construction of Angular momentum operators  ˆ ˆ ˆ, ,x y zL L L . 

      Angular momentum (L) is very important physical quantity for rotating system. 

      Classically, it is obtained by the cross vector product of position  r  and linear momentum  p . 

      i.e., L r p  . If , ,i j k  are the unit vectors along ,x y and z  respectively, then we have  

      r i x j y k z    ,  x y zp i p j p k p     and  x y zL i L j L k L   .  

     So,    x y z x y zL i L j L k L i x j y k z i p j p k p          . Thus   

x y z

i j k

L x y z

p p p

  

                                                 =      z y x z y xi yp zp j zp xp k xp yp     . 

      Equating, we get the formulation of the angular momentum in classical coordinates, as  
                                       x z yL yp zp  , y x zL zp xp   and z y xL xp yp  . 

      Replacing by the corresponding operators of position and momentum, we have  
      the angular momentum operators as  

     ˆ . .
2x

h
L y z

i z y

  
  

  
, ˆ . .

2y

h
L z x

i x z

  
  

  
 and ˆ . .

2z

h
L x y

i y x

  
  

  
 = 

2

h

i 




 

      or, ˆ . .xL i y z
z y

  
   

  
, ˆ . .yL i z x

x z

  
   

  
 and ˆ . .zL i x y i

y x 

   
     

   
. 

Commutator of angular momenta is given as  
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 ˆ ˆ ˆ ˆ ˆ ˆ,

. . . . . . . .

x y x y y xL L L L L L i y z z x z x y z
z y x z x z z y

i y z y x z z z x z y z z x y x z
z x z z y x y z x z x y z z z y

i

                                               

                   
           

                   

 
2 2 2 2 2 2 2 2

2 2
2 2

0 0 0 0 0 0

ˆ .z

y yz xy z xz yz z xy x xz
x z x z y x y z x z x y z y z x

i x y i L
y x

          
               

                

  
   

  

 

 list of operators corresponding to the physical properties of the system is given here. 

---

2

2
2

2 2

2

ˆ( )
( )

( )
. ( ) 2

( )

( )
2

( )
2

x

x

Physical properties QM operators
Physical properties QM operators

potential energy V V
Position x x

total energy Ed
x comp momentum p i m

dx
momentum p i

kinetic energy T
m

d
x component KE T

m dx

 
 

 

 

 

 2 ˆ , ,

,

.

.

.

V x y z

d
or i

dt

x comp angular momentum i y z
z y

y comp angular momentum i z x
x z

z comp angular momentum i x y
y x





  
   

  

  
   

  

  
   

   ----

------------------------------------------------------------------------------------------------------------------------------- 
--------------------------------------------------------------------------------------------------------------------------- 
Expressions of Some Operators:                                             

                                      (1) Expansion of the operator, 
2

d
x

dx
 
 
 

. Let the wave function be ( )x . Then 

2 2

2

( ) ( ) ( ) ( )
( )

d d d x d d x d x d x
x x x x x x x x

dx dx dx dx dx dx dx

   


       
          

        
 

                          = 
2 2

2 2
2 2

( ) ( )
( )

d x d x d d
x x x x x

dx dx dx dx

 


 
   

 
. Thus  

2 2
2

2

d d d
x x x

dx dx dx
 

  
 

. 

                                       (2) Expansion of the operator, 
2

.
d

x
dx

 
 
 

. Let the wave function be ( )x . 

Then  
 2 ( ) ( )

. ( ) . . ( ) . . ( )
d x xd d d d d d x

x x x x x x x x x
dx dx dx dx dx dx dx

 
  

          
             

          
 

                                    = 
2

2 2
2

( ) ( ) ( ) ( )
( ) 2 ( )

d d x d x d x d x
x x x x x x x

dx dx dx dx dx

   
 

 
     

 
 

                                    = 
2

2
2

3 1 ( )
d d

x x x
dx dx


 

  
 

. Thus, 
2 2

2
2

. 3 1
d d d

x x x
dx dx dx

 
   

 
. 

                               (3) Expansion of the operator
2

d
x

dx
 
 
 

:  Let the function be   that depends on x . 

Then
2

d d d d d
x x x x x

dx dx dx dx dx


  

       
             

       
= 2d d d

x x x
dx dx dx

 
 

 
   

 
 



 

35 
                                                            Quantum Chemistry  – Dr N C Dey  

                                 = 
2

2
2

d d d
x x x

dx dx dx

  
      =

2
2

2
2 1

d d
x x

dx dx


 
   

 
. 

So,                   Thus 
2 2

2
2

2 1
d d d

x x x
dx dx dx

 
     

 
. 

Non-commuting Operators: When a physical quantity contains a product of a Cartesian coordinate and its 
conjugate momentum (such as xx p  ), we face the problem of non-commutativity in constructing the correct 

quantum mechanical operator. Several different rules have been proposed to solve this problem.  
Construction of quantum mechanical operator is difficult for the physical property that contains non-Cartesian 
coordinates.  
Postulate II: 
                      The exact or precise value of physical quantities (like energy, momentum, angular momentum, 
etc) of a given state of the system is obtained by the eigen value of the operator equation. 
This is called eigen value equation and it is 

                                                                   ˆ
i i iA    , 

where Â  is the operator of the physical quantity i . For the quantum mechanical system, the operator Â  

must be linear and Hermitian and the wave function is well-behaved.  

i is the eigen value of the physical property of the i th state of the system. 

                    When the eigen value equation is satisfied, the physical quantity obtained is exact and precise. The 
eigen function and the operator may be real or imaginary but the eigen value is always real since the operator is 
Hermitian in nature. The eigen value represents the magnitude of the physical property. 
                      If the eigen value equation is not satisfied for a physical quantity, then we get a spread jin the 
measured values of the property. In that case, we remain satisfied with the average value of the property. 
Example: The wave function of the ground state of 1D simple harmonic oscillator (SHO) is given by  

                                             
2

2
x

x Ae





   and 1 k  . 

Show that the KE of the system does not satisfy the eigen value equation. But the total energy (E) satisfies the 

equation. The operator of KE ( T̂ ) is 
2 2

22

d

dx
 , hence 

(i) 
2 22 2 2

2 2
2

2ˆ ( )
2 2 2

x xd d x
T x Ae Ae

dx dx

  


 

     
        

    
= 

22
2

2

xd
xAe

dx





  
  

  
 

                     = 
2 22

2 2
2

2 2

x x x
Ae xAe

  



   
   

  
=  

22
2 21

2

x

x Ae






  

                     =  
2

21 ( )
2

x x


 


  constant ( )x . The eigen value equation is not satisfied.  

(ii) The energy operator, 
2 2

2
2

1ˆ
2 2

d
H k x

dx
   ,  

       so    
 

 
22 2 2

2 2
2 2

1 1ˆ
2 2 2 2

d xd
H x k x x k x x

dx dx


  

 

   
        

  
 

                      =      
2

2 21
1

2 2
x x k x x   


  =    

2
2 2 21

2 2
x k x x  



 
  

 
 

                      =     
2

1 2 2 21

2 2
k k x k x x  



  
  

 
 

                      =    
2 2

1 2 2 21

2 2 2
k k x k x x  

 

  
    

 
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                =  2 21 1

2 2 2
k k x k x x


 
  

 
=  

1

2 2

h k
x

 

 
 
 

 =  0

1

2
h x 

 
 
 

. 

This shows that the total energy of 1D SHO is constant and the eigen value equation is satisfied. 

Its value in the ground state is 0 0

1

2
E h . But the KE (T) of the system does not yield constant value. Its value 

varies with x .   
  
One example of solving eigen value equation: When the eigen 
value equation is constructed for a given property of the  
system, the eigen function and eigen value can be obtained  
by solving the eigen value equation. 
As for example, let us consider a rotating system. A particle 
is rotating in the xy  plane along the fixed z - axis. Let us  

consider zL  ( z - component angular momentum),  

 the property of the system. 

The eigen value equation if the property is ˆ ( ) ( )z zL L    . 

But the  operator of zL  is ˆ
z

d
L i

d
  .   is the azimuthal angle which is changing with the rotation of the 

particle and its limit is 0 to 2 . Thus the eigen value equation for zL  is
( )

( )z

d
i L

d

 
 


      or, 

( )

( )
zLd

d
i

 


 
  .  Integrating, we get       

( )

( )
z zL iLd

d d
i

 
 

 
      

   or,  ( ) zln iL ln A     (integration constant)  or,  ( ) ziLAe 
   .  

Let   zL m  so, ( ) imAe    . The value of A  is obtained from the normalisation condition, 
2

2

0

( ) 1d


       or,   
2

0

( ) ( ) 1d


         or,   
2

2

0

1im imA e e d


       or,   
2

2

0

1A d


    

or,  1 2A   . Thus the normalised eigen function of the system is  ( ) 1 2 ime     .  

Again,  zL m    or,   zL m . The values of m can be obtained from the condition    2      , 

hence  2imimAe Ae   
  = 2im imAe e    or, 2 1ime     

or, cos2 sin2 1m i m   . This equation is satisfied  when 0, 1, 2, 3m     , etc.  

Therefore solving the zL - eigen value equation, we get the eigen function,  ( ) 1 2 ime      and the 

eigen value, zL m , where 0, 1, 2, 3m     , etc. 

For total energy of the system, the eigen value equation is ˆ ( ) ( )H E    , where Ĥ  is the Hamiltonian 

operator of the rigid rotator and 
2 2

2 2
ˆ

2

d
H

mr d
     Using the above normalised function of the system, 

 ( ) 1 2 ime    ,  we can get the energy of the rigid rotator,  
2

2
22

E m
mr

   or,  
2

2

2
E m

I
 , where 

I = moment of inertia of the system = 2mr . 
Other examples: 

(1) Calculate the energy of a particle in 1D box of length L if the wave function is 
2

sin
n x

L L


   . 

(2) A certain system is described by the Hamiltonian operator  
2

2
2

ˆ d
H x

dx
   .  If 

2

2
x

Axe


 , 

      calculate the energy value of the system.                                                                                  [Ans. 3] 
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Problem:   A solution of a free particle Schrodinger equation  
2 2

2 2

( )
( )

8

h d x
E x

m dx





   is 

                   ( ) cos sinikxx e kx i kx    . 

(a) Derive the expression for energy ‘ E ’ and momentum ‘ p ’ of the particle. 

(b) Using the above relations, show that the wave length (  ) is h p .                        [IIT-JAM, 2012] 

 
Solution: Putting the expression of  ( )x  in the Schrodinger equation, we have     

         
 22

2 2
( )

8

ikxd eh
E x

m dx



    or,  

 
   

22 2 2
2 2 2

2 2 2 2
( )

8 8 8

ikx

ikx
d eh h h

i k e k x
m dx m m


  

    . 

          Equating with the Schrodinger equation, we have   
2

2
28

h
E k

m
 . Again, E = KE + PE 

          but for the free particle, PE = 0. So E = KE = 
2

2

p

m
. Thus,   

2 2
2

22 8

p h
k

m m
   or, 

2

h
p k



 
  

 
.  

(b) Condition for  ( )x  is that  ( ) ( )x x     or, ( )ikx ik x ikx ike e e e      or,  1ike   . 

      or, cos sin 1k i k   . This is possible only when 2k    or, 2k 


 . But
2

h
p k



 
  

 
  

     so, putting the expression of k , we have 
2

2

h
p



 

   
    
   

  or, 
h

p


 
  
 

.  

Postulate III 

Introduction: The second postulate states that Â  . However, the eigen value ( ) can not be written as 

Â



 , because 

Â


 is the function of coordinates ( , ,x y z ) of the system so its value varies from point to 

point of the system and it cannot be equated to a constant,  . 

But if the numerator and denominator on the right hand side are multiplied by    and integrated over the entire 

space accessible to the system, then the expression Â d d      

   is no longer a function of coordinates 

(as it is definite integral). It is approximated to the average value of the property  . 
This leads to the third postulate when a great many measurements of any observable represented by the 

operator, Â  are made on a certain system defined by the function,  , the average value obtained as                      

Â d

d

  


  








, the bar over   is used to indicate the average value of the property. 

When    is the eigen value to the operator Â  for the system characterised by the wave function,  ,  

  becomes  . 

                                
   Â d d d

d d d

        
  

        

  

  
   
  

  
. 

Dirac has introduced bracket notation as 
Â 


 

 . Â  is sandwiched between   and  . It may be 

read as bracketed     bar Â bar  . When the wave function is normalised 1    and the postulate is 

written as Â   .   denotes the expectation value of the property represented by the operator Â

when a series of measurements carried  out on the system or a single measurement carried out on some identical 
systems described by the same state function  . 
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When the physical property of the system does not produce exact or precise value, its expectation or average 
value is determined by the use of this postulate. 
Examples: 
(1) Let us take the physical quantity, position ( x ) in a 1D box system. This quantity varies from place  
      to place while moving within the box and we can calculate the average value of the position only. 

      
0

ˆ
L

x x dx   . This function   is normalised and its expression,
2

sin
n x

L L


   . 

       Thus, 2

0 0 0 0

2 1 2 1 1 2
sin 1 cos cos

L L L Ln x n x n x
x x dx x dx xdx x dx

L L L L L L L

   
     

 
     

                         = 
2

0

1
0

2 2

L
x L

L

 
   
 

. That is 2x L .  This show that the expectation location of      

                                                                                             the particle is at the middle point of the box. 

(2) A rotating system is defined by a function,   1 cos2   . Find the average value of the  

     angular momentum, p which is defined by the  operator is ˆ
2

h d
p

i d
 

 . 

     
2

0

ˆp p d


      = 
2

0

1 1
cos 2 cos 2

2

h d
d

i d



  
  

 
 
 

  =  
2

2
0

cos 2 2sin 2
2

h
d

i



  


  

               = 
2

2
0

2sin 2 cos 2
2

h
d

i



  


   = 
22

2 2
00

cos 4
sin 4

2 2 4

ih ih
d




 
 

 
  

 
  

               =  
2

2 0
cos8 cos0 0

8

ih 



   . The average angular momentum of the system, 0p  . 

(3) Find the expectation value of KE (T) of 1D SHO given by the state function  
2

2
x

x Ae





  

      and 1 k  . 

     The expectation value of KE, 
T̂

T
 

 
  and KE operator, 

2 2

2
ˆ

2

d
T

dx
  . 

     First we calculate 
 2 22 2 2 2

1 2
0

1 2
2 2

2
x xA e dx A e dx A A  

 
 

 

 




       . Then    

2 2 2 22 2 2
22 2 2 2

2
ˆ

2 2

x x x xd d d
T Ae Ae dx A e e dx

dx dx dx

   

 
 

 
   

 

         
           

         
   

                 =  
2 2 2 22 2

2 22 2 2 2

2 2

x x x xd d
A e e x dx A e xe dx

dx dx

   


 

 
   

 

        
         

        
                     

      
2 2 2 2 22 2

2 2 22 2 2 2 2

2 2

x x x x x

A e e xe x dx A e dx x e dx
     

 
 

  
    

  

     
         

      
    

      =
   2 2

2 2
2 2 2

1 2 3 2
0 0

1 2 3 2
2 2 2 2

2 2 2 2
x xA e dx x e dx A  

 
   

 

 
       
           

      
   

      =
2 2 2

2 2 21 1

2 2 2 2 4
A A A

      

      

      
         

      
. 

 

         Now, 
T̂

T
 

 
  =

2 22
2 2 1

4 4 4 4

k
A A k

   
    

 
    

 
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                                      = 0

1 1 1

4 2 4

k
h h

 
  .  Hence, 0

1

4
T h . Total energy 0

1

2
E h . 

         Thus the average PE, 0 0 0

1 1 1

2 4 4
V E T h h h       .  

Problem: Calculate the expectation value of the potential energy for a H-atom in the ground state.  
               Show that the average KE is equal to the total energy with the change in sign. 

              [Given,   0
1

3 2
1 0( )

r
a

s H a e 


  ]                                                      [Burdwan Univ. 2012] 

Solution: The average PE,   0 0

2
13 2

1 1 0
ˆ sin

r r
a a

s s

e
V V d a e e r dr d d

r
      

   
   

 
   

                                   =        
 

 
0

221 13 2 3 2
0 0 2

0 0 0 0

2
sin 2 2

2

r
aa e e rdr d d a e

a

 

     


  
        

                                   = 
2 2

2 0
3
0 0

1
4

4

a e
e

a a



      . Thus, expectation value of PE, 

2

0

e
V

a
  . 

                Again, total energy, 
4

22

e m
E   ,     but  

2

0 2
a

e m
 .    

                Putting,   
4 2 2

0 2 22 2

e m e
E a

e m
          so, 

2

02

e
E

a
  .  

                Thus,  
2 2 2

0 0 02 2

e e e
T E V

a a a
      . Hence 

2

02

e
T

a
 . 

                 This proves that average KE is equal to total energy with change in sign. 
Example (4): 
                     The average value of a physical quantity (say, E) of a state obtained by mixing two states defined 
by wave functions 1  and 2  can be calculated by the use of this postulate III. 

The resultant wave function of the mixed up state is obtained by linear combination of  1  and 2 , 

                                                              1 1 2 2c c    ,  

where 1c  and 2c  are the contributing factors of 1  and 2  towards the mixed-up state function  . 

The average energy value of the mixed-up state is     
Ĥ d

E
d

  

 




,  

Let 1E and 2E are the energy eigen values of the two states defined by 1  and 2 ,   

so 1 1 1Ĥ E   and 2 2 2Ĥ E  . Ĥ  is also a Hermitian operator, so 1 2 2 1
ˆ ˆH d H d        

and 1  and 2  are orthonormal so 2
1 1d    and 2

2 1d   , and 1 2 0d    . 

                                  
   

 

1 1 2 2 1 1 2 2

2

1 1 2 2

ˆc c H c c d
E

c c d

    

  

 







 

                                      =

2 2
1 1 1 1 2 1 2 1 2 2 1 2 2 2

2 2 2 2
1 1 1 2 1 2 2 2

ˆ ˆ ˆ ˆ

2

c H d c c H d c c H d c H d

c d c c d c d

           

      

  

 

   

  
 

                                      = 

2 2
1 1 1 1 1 2 1 2 2 2 2 2

2 2
1 2

ˆ2c E d c c H d c E d

c c

         



  
 

= 

2 2
1 1 1 1 1 2 1 2 2 2 2 2 2

2 2
1 2

2c E d c c E d c E d

c c

         



  
 = 

2 2
1 1 1 2 2 1 2 2 2

2 2
1 2

2c E c c E d c E

c c

   




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 This average energy of the mixed-up state, 
2 2
1 2

1 22 2 2 2
1 2 1 2

c c
E E E

c c c c

   
    

    
, where 

2
1

2 2
1 2

c

c c
  and   

2
2

2 2
1 2

c

c c
 are the contributing factors of 1E  and 2E respectively of the energy of the    

                                       resulting mixed-up state. 

(4) Find the expectation value of x  for the state described by 
2

2
x

Axe


 .                        [Ans. 0] 

 Postulate IV 
 Time-dependent Schrodinger equation is considered as one postulate. The equation is, 

                                                  Ĥ i
t








 ,    

where
2

2ˆ ˆ
2

H V
m

       and   is a function of  , ,x y z and t i.e.,  is a function of space coordinate ( q ) 

and time ( t ). The PE (V ) is a function of space coordinate only and assumed to be  
time-independent. However, if the force existing in the system varies with time then V will also vary with time.  
When x is taken the space coordinate and t the time, the time-dependent Schrodinger equation is 

                                        
 2 2

2

,ˆ( ) ,
2

x t
V x x t i

m x t




 
   

  
. 

Schrodinger equation is a quantum mechanical analog of Newton’s 2nd law of motion: 

Time-dependent Schrodinger equation contains the first derivative of   with respect to t ,  t  . 

Thus, single integration with respect to time yields the value of   at another time for the system. 
That is, if one knows the value of   at one time, with also the knowledge of V , he can find the value of   at 
another time for the system. The future state o the system can be predicted from the value of a given state. 
This time-dependent Schrodinger equation is the quantum mechanical analog of the Newton’s second law. 

However quantum mechanics predicts the probable state while classical mechanics predicts the state definitely. 
 
Separation of ( )x and ( )t :  
Time-dependent Schrodinger equation can be resolved into time-dependent and space-dependent Schrodinger 
equation when potential energy (V ) does not vary with time. 

Let the wave function is   , ( ) ( )x t x t    . Putting in the time-dependent Schrodinger equation, and 

differentiating, we get 
 2 2

2

( ) ˆ( ) ( ) ( ) ( ) ( )
2

tx
t V x x t i x

m x t


   


   

 
 

Dividing by ( ) ( )x t  , we have  
 2 2

2

1 ( ) 1ˆ( )
2 ( ) ( )

tx
V x i

m x x t t



 

 
   

  
 = E (say). 

Left hand side is independent of  t  and right hand side is independent of x , hence to satisfy such condition, 
each side of the equation may be equal to constant which does not depend on either x or t .   
The dimension consideration shows that this constant is energy term ( E ) of the system. 
Separating the two equations, we get  

                 
2 2

2

1 ( ) ˆ( )
2 ( )

d x
V x E

m x dx




      or,    

2 2

2
ˆ( ) ( ) ( )

2

d
V x x E x

m dx
 

 
   
 

.  

The other equation is   
 1

( )

d t
i E

t dt




      or,           

 
( )

d t
i E t

dt


 . 

This shows that 
d

i
dt

 is also an energy operator for the eigen value equation, i.e. ˆ d
E i

dt
 . 

Solution of time-dependent equation: On solving the equation, we get the expression of  t . 
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 
( )

d t E
dt

t i




      or, ( )

E
ln t t ln A

i
    (integration constant)  or, ( )

Et
it Ae   . 

Therefore, the wave function,  , ( )
Et

ix t x Ae  . 

Stationary state: A stationary state is defined by wave function,  ,x t which is the product of two  

                             factors – one dependent of space coordinate and other dependent of time i.e.,  

                                                                     , ( ) ( )x t x t    . 

By stationary state we do not mean that particle or particles of the system are at rest but it implies that the 

probability density 
2

  and the energy are independent of time at any point. 

The probability density       
2

, , . ,x t x t x t     =  , ( ) ( )
Et Et

i ix t A x e A x e  
    

                                                          =  ( ) ( )AA x x    and this is time-independent. 

The factor 
Et

ie


  is of no significance and the essential part of the wave function,  ,x t is the  

time-independent wave function, ( )x . 

Problem: Calculate the energy eigen value of the system defined by   , ( )
Et

ix t A x e  . 

Solution:  
 ,ˆ , ( ). ( ).

Et Et
i i

x t d d E
E x t i i A x e i A x e

t dt dt i


  


     


 

                                   =  ( ) ,
Et

iE A x e E x t 
 


  

.  This energy value E is thus time-independent.  

Problem: If 1  and 2  are the eigen functions of the operator, Ĥ  with eigen values 1E  and 2E   

                respectively, then show that  1 1 2 2c c     is not an eigen function of Ĥ  unless  

               1 2E E . 

Solution: Given, 1 1 1Ĥ E    and  2 2 2Ĥ E  . Now,  1 1 2 2
ˆ ˆH H c c    = 1 1 2 2

ˆ ˆc H c H   

               or, Ĥ  = 1 1 1 2 2 2c E c E   constant  1 1 2 2c c   . 

               But, when 1 2E E ,  1 1 2 2 1 1 2 2Ĥ c E c E E c c E           and thus Ĥ E  . 

               Thus, if 1  and 2  are the degenerate eigen functions of Ĥ  then  1 1 2 2c c   is also the  

                eigen function of Ĥ  with same eigen value.  
Problem: If 1  and 2  are solutions of Schrodinger equation, then show that  1 1 2 2c c     is                

                also a solution when 1c  and 2c are constant coefficients. 

Solution: Let us consider time-dependent Schrodinger equation, then 1
1Ĥ i

t








 and 

                2
2Ĥ i

t








 as 1  and 2  are the solutions of the Schrödinger equation.  

                  Now,   1 2
1 1 2 2 1 1 2 2 1 2

ˆ ˆ ˆ ˆH H c c c H c H c i c i
t t

 
    

 
       

 
 

                                     = 
     1 1 2 2 1 1 2 2c c c c

i i i i
t t t t

        
  

   
.  

                    Thus Ĥ i
t








. It proves that   is also a solution of the Schrodinger equation.  
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      Particle in One-dimensional Box 
 

Description of the system:  Let us take a particle of mass m executing  
to-and –fro motion along x -axis in one-dimensional box of length L .  
The potential energy (V )   within the box is zero i.e., no force is acting  
on the particle within the box except during the collision at the walls  
from which it rebounds elastically.  The potential energy outside the  

box is very high  V  . In other words, the particle is confined to  

move in the length L . The model is also called particle in a potential  
well as is compared with a frog in a deep well.  
Since the potential is discontinuous (suddenly rises) at 0x   and 
x L , it is convenient to consider the Schrodinger equation inside and outside the box separately. 
Schrodinger equation for the particle outside the box: Outside the box potential energy, V  , so the 
Schrodinger equation for the particle is  

                 
2

2 2

2
0

d m
E

dx


    or, 

2

2
0

d

dx


    or,  

2

2

1
.
d

dx


 


   or,  0  . 

This means that the value of  outside the box is always zero. Hence probability density of finding the particle 
2

  is also zero. 

Schrodinger equation for the particle inside the box: Inside the box where 0V  , the Schrodinger equation is 

  
2

2 2

2
0 0

d m
E

dx


     or,  

2

2 2

2
0

d mE

dx


    or, 

2
2

2
0

d
k

dx


  , where 2

2

2mE
k  . 

The general solution of this differential equation is sin cosA kx B kx   , here A and B are arbitrary 

constants. However there are other solutions of the equation are  ikxe , ikxe , etc.  
Now putting the boundary conditions, exact wave function for the system can formulated. 
(i) when 0x  , 0  , then the above general solution reduces to 0 sin0 cos0A B     
                                        or, 0 0 B    or, 0B  . 
Thus putting the 1st boundary condition, we get the expression of sinA kx  . 

(ii) Now when x L , again 0  , hence the solution becomes 0 sinA kL . Two possibilities may be 

considered , either 0A  or, sin 0kL  . But when 0A , 0    at everywhere of the box and this indicates 

the probability density 
2

0  within the box irrespective of the value of x . This is not acceptable and called 

trivial solution. It is rejected. The other possibility is sin 0kL   =sin n ,  
where 0,1,2,3,n  etc, any positive integer including zero. But again n  cannot be zero, because if n were to be 
zero and   would become zero everywhere.   

So we get kL n  or k n L . Putting the value of k , we get the appropriate wave function of the system                                            

sinn

n x
A

L


    . 

Normalised wave function of the system:  The value of A can be obtained from the use of normalisation 

condition,  2

0

1
L

n dx  .  Thus  2 2

0

sin 1
L n x

A dx
L


   or, 

2

0

2
1 cos 1

2

LA n x
dx

L

 
  

 
    

or, 
2 2

0 0

2
cos 1

2 2

L LA A n x
dx dx

L


    or,  

2 2

0
0

2
sin 1

2 2 2

L
LA A n x L

x
L n





 
   

 
   or,  

2

0 1
2

A
L       or, 

2
A

L
 .   The normalised wave function of the system is thus          

2
sinn

n x

L L


     

The value of 1,2,3n  ,etc i.e., any positive integer excluding zero. If n  is taken equal to 0, then 0n    in 

everywhere within the box(independent of position of x ).  But it is not acceptable as in 
that case ( 0n  ), the probability density  becomes zero everywhere within the box.             . 
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Energy of the system  nE :  We have the relation, k n L   or,  
22k n L , 

                                             but  2 22 nk mE . Equating , we get  
222 nmE n L .  

Thus the energy of the system,       
2 2

2
22nE n

mL

 
  

 
     or,      

2
2

28n

h
E n

mL

 
  

 
 . 

We can extract some important information of the system from the above energy expression. 
(1) The energy-value is seen to be independent of x . This means that in a given state ( n  = fixed),  
     nE  will be same for every value of x . It refers that the particle has ‘constant motion’ in a given    

      state. This nE  is KE only and so 2 2n xE p m , so xp is constant and xv  thus is same for any  

      position x for fixed n . 
(2) Again, nE  is independent of time. This means that in a given state ( n  = fixed), the energy of the  

      particle remains constant at any time. This refers ‘conservative motion’ of the particle. 
(3) The expression shows that energy of the system is quantised and the energy levels are not  
      equispaced. 
                                                                           The quantisation is more prominent in the higher  
                                                                           energy levels i.e. for higher value of n . 
                                                                           The energy spacing between two successive levels 

                                                                             
2 2

2 2
1 2 2

1
8 8n n

h h
E E E n n

mL mL

 
       

 
 

                                                                            or,                       
2

2
2 1

8

h
E n

mL
   .      

                                                                            (4) Zero-point energy (ZPE) of the system can be 
                                                                                 obtained by putting 1n  (lowest value of n ),             

                                                                                               
2

int 28Zero po

h
E

mL  .        

                                                                                  
      This concludes that even at absolute zero temperature, the particle will be in motion, though                                                                                                                                                                                    
       in classical mechanics, the particle is at rest at 0K temperature. 
       Non-zero value of ZPE is in conformity with the Heisenberg uncertainty principle, xp x h   . 

       If the particle would have zero energy, then its momentum ( xp ) would be zero as 2 2xE p m . 

       With xp having zero, 0xp  and so xx h p    . But the particle must be somewhere  

       within the box of length L. 
                                                              
Uncertainty Principle from ZPE: The particle may remain anywhere within the box. The error  
        involved in a single measurement of position is thus L i.e., x L  .  

        Again, 
22

int 28 2
x

Zero po

ph
E

mL m    or, 
2x

h
p

L
    i.e., xp  can have any value between  

        xp  to xp , so    2x x x xp p p p     = 2
2

h h

L L
  . Thus x

h
p x L h

L
     . 

 ZPE from Uncertainty Principle: Conversely, we can arrive at the ZPE from uncertainty principle.  

         The principle is xp x h   . But 2x xp p   and x L  . So 2 xp L h    or,
2x

h
p

L
 . 

          Thus lowest energy, 
 

22 2

2

2

2 2 8
x

h Lp h
E

m m mL
     or,  ZPE =

2

28

h

mL
.  

(5) Free particle suffers no quantisation of energy. This can be shown as follows:  

      E = Energy-gap for two consecutive energy levels =  
2

2
2 1

8

h
n

mL
 .  

       But for free particle, L , so 0E  . That is energy of the free particle changes  
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      continuously, it can  have all values of energy. But when it is confined within a certain range of  
      space, the energy values are quantised. The greater the localisation, the higher is the energy  
      quantisation.  
(6) The energy of the macroscopic bodies also changes continuously and suffers no quantisation of  

     energy. We have  
2

2
2 1

8

h
E n

mL
   , but for macroscopic body, m is very high and  

    E  becomes very small. Thus quantisation of energy is important only for microscopic particles. 
     So quantum mechanics need not apply for the motion of macroscopic bodies. 
Problem: Calculate the spacing between energy levels for  
                 (i) electron (mass 3010  kg ) in 1D box of 1.0 Å length and 
                (ii) a ball bearing (mass= 1 gm) in a box of 10 cm length.  
                Comment on the energy gaps in the two cases. 

Solution:  (i) 102E ev   and (ii) 4410.2 10E ev   . In case (i) energy-gap is large so  
                 quantisation of energy occurs while in (ii) it is too small for quantisation to be observed. 
(7) The spectra of conjugated polyenes can be explained by this particle in 1D box model.  
     The simplest conjugated polyene is butadiene (1,3but-diene) 
                                        2 2CH CH CH CH     or,  2 2CH CH CH CH   . 

     The   electrons are considered to be delocalised over the almost entire length of the molecule.  
     This is known free electron molecular orbital (FEMO) model.    The electrons will transit from  
     highest molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO). 
                     In the example of butadiene, there are 4   electrons and the length of the molecule is  
     taken the box length. The  electrons are arranged in the molecule as   
                                                         
                                                        The electrons will jump from the energy level, 2 (HOMO) 
                                                        to the level, 3 (LOMO). 
                                                        The energy required for such transition is  

                                                         
2

2
2 1

8

h
E n

mL
   =  

2

2
2 2 1

8

h

mL
   = 

2

2

5

8

h

mL
. 

                                                         The energy is supplied by the absorption of photon of energy h  
                                                         by the molecule. 

        Thus,                                      
2

2

5

8

h
h

mL
      or,    

2

2

5

8

hc h

mL
    or,  

28

5

mL c

h
  . 

      L = chain length of butadiene = 2 double bond distance + 1 single bond distance + end correction 

          =  2 1.34 1 1.54 1.54    Å = 5.76 Å. [One single bond distance is taken as end correction]                                         

      Putting the values, we get     
28 8 2 10 1

7 9
27

8 9.1 10 (5.76 10 ) 3 10 sec
207 10 207 10 207 .

5 6.627 10 sec

gm cm cm
cm m nm

erg


  
 



     
     

 
      This 

is the wavelength of radiation required for transition in butadiene.  
      Experimentally, it is found that the radiation absorbed by the molecule has 217 nm  . 
      Thus this simple model can explain approximately the spectra of butadiene.  
      [Note: Selection rule for the particle in 1D box is 1n  to 2n   or 4 , etc but cannot be from  
                 1n  to 3n   or 5 ] 

Problem: Linear polyenes have general formula,   2 2m
CH CH CH CH CH CH   . 

                  Predict the smallest value of m which should make a polyene coloured, treating the  
                  electrons according to the ‘particle in a box’ model. Assume a value of 0.15 nm for the  
                  C C  bond length and neglect the end correction. (The visible region of the  
                  electromagnetic spectrum extends from 400 – 750 nm).                  [Burdwan Univ, 2007] 
Solution:  For the linear polyenes, when m = 0, the number of bonds = 3,  
                                                        when m = 1, the number of bonds = 5,  
                                                        when m = 2, the number of bonds = 7, 
                                                        when m = 3, the number of bonds = 9, etc. 

 



 

45 
                                                            Quantum Chemistry  – Dr N C Dey  

                 Thus the general expression of the number of bonds in the molecule = 2 m + 3. 
                The length of the molecule = (2 3) 0.15m nm  . For the lowest value of m ,  
                 the molecular chain length will be minimum and this gives the least value of   in the  
                 visible range 400 to 750 nm. So   = 400 nm. 

                 We have the relation of the wave length absorbed by the molecule is 
 

28

2 1

mL c

n h
 


. 

                 Number of double bonds = 2m , so the electron shifts from 2m  to 3m .  

                 Thus  2n m   and  2 1 2 2 1 2 5n m m      .  

                 Now putting the values, 
   
 

2228 7 10

7
27

8 9.1 10 2 3 0.15 10 3 10
400 10

2 5 6.627 10

m

m

 





      
 

  
 

                 or, 
 

   

2 7 27

228 7 10

2 3 400 10 6.627 10

2 5 8 9.1 10 0.15 10 3 10

m

m

 

 

   


      
 = 

 
2

4 6.627

8 9.1 0.15 3



  
 = 5.4 . 

                 Now, when m  = 1,  
 

 

2 22 3 5
3.57

2 5 7

m

m


 


, when 2m , 

 

 

2 22 3 7
5.44

2 5 9

m

m


 


, 

                                     3m  , 
 

 

2 22 3 9
9

2 5 11

m

m


 


. So the value matches the result when 2m .   

Problem: Calculate the energy levels of the  -network in octatetraene, C8H10 , using particle in a  
                 1- d box model. To calculate the box length, assume that the molecule is linear and use the 
                 values 135 pm and 154 pm for C = C and C – C bonds. What is the wavelength of the light  
                 required to induce a transition from the ground state to first excited state?    
                                                                                                                             [Burdwan Univ. 2015]  
Solution: The formula of octatetraene is 2 2CH CH CH CH CH CH CH CH       . 

                 The number of  electrons = 4 2 8  . The energy levels of the molecule are given as: 
                 The transition occurs from 4n  (ground level) 
                 to  5n   (first excited level). 

                
2

5 4 1 1 1 2

9
25 16 9

8

h
E E E E E E

mL
       . 

                 This energy is supplied by the absorption of one 

                 photon of energy of 
hc

h


 . Thus, 
2

2

9

8

hc h

mL
  

                 or,  
28

9

mcL

h
  . The length of the molecule is 

                 4 135 3 154 165L      (end correction)  

                      = 1156pm = 121156 10 m. 
                 Putting the values, we get  

         
 

231 12 8 12

34

8 9.1 10 1156 10 3 108

9 9 6.627 10

kg m msmcL

h Js


 



     
 

 
= 78.895 10 489.5m nm  . 

Wave Function of the System  n : The normalised wave function of the particle in 1-d box is   

                                                                                   
2

sinn

n x

L L


  . 

It is supposed that all the possible properties of the system could be obtained from the use of the wave function. 
That is, all the information of the system remain hidden within the expression of n . 

(1) Non-degenerate system: Each quantum state of the system as a specific energy value and a specific  
      wave function. It means that this system is non-degenerate and wave function is non-degenerate  
     one.  
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(2) Orthogonal wave function: The wave functions of the different quantum states of the system are  
      orthogonal and so the states they represent are not interacting and independent of each other. 

          
0 0 0 0

2 1
sin sin cos cos

L L L L
ji

i j i j i j

n xn x x x
dx dx n n dx n n dx

L L L L L L

  


 
     

 
     

                        =    
0 0

1 1 1 1
sin sin

L L

i j i j
i j i j

L x L x
n n n n

L n n L L n n L

 

 

      
                    

 

                        =     
1 1 1 1

0 0 0 0 0
i j i jn n n n 

   
             

.  i.e., i  and j  are orthogonal.  

(3) Wave function ( n ) varies with x  as sine function.  n  vs. x  can be plotted for the different        

                                                                                                               quantum states of the system. 
                                                                              (a) For the quantum state, 1n  ,  the wave function 

                                                                                                 1

2
sin

x

L L


  . 

                                                                                    When 0x  , 1 0  , 
2

L
x  , 1

2

L
   (maxm.)  

                                                                                     and  x L ,  1 0  . Thus, 1  starts from zero, 

                                                                                     attains maximum and again drops to zero.  

                                                                              (b) For state, 2n  ,  2

2 2
sin

x

L L


  .      

                                                                                   When 0x  , 2 0  ; 
4

L
x  , 2

2

L
   (maxm.);  

                                                                                   
2

L
x  , 2 0  ; it is called nodal point.  

   
3

4

L
x  , 2

2

L
    (minimum).  (c) For state  3n  ,  3

2 3
sin

x

L L


  . 

    When 0x  ,  3 0  ; 
6

L
x  , 3

2

L
   (maxim.); 

3

L
x  ,  3 0  ;  

2

L
x  , 3

2

L
  

   
   (minimum); x L , 3 0  .  

     From the schematic diagram of n  vs. x , it is seen that 1  ,  3  or wave functions of odd    

     quantum states are symmetrical. If a mirror is placed at the middle point of the box, one half of the  
     wave function is mirror image of the other half. 
     2 , 4 ..  or wave functions of even quantum states are antisymmetrical. 

(4) Probability density  2
n  of the particle in the box is 2 22

sinn

n x

L L


  .  

      2
n  can also be plotted   vs. x  for different quantum states. 

    (a) For the quantum state,  1n  , 2 2
1

2
sin

x

L L


  . When 0x   and L , 

          2
1 0   (probability  density zero); 

2

L
x  , 2

1

2

L
  , maximum  

           probability density. 

    (b) For the quantum state, 2n  , 2 2
2

2 2
sin

x

L L


  . When 0x   and L , 2

2 0  ; 

          
4

L
x   and 

3

4

L
, 2

2

2

L
  , maximum probability density; 

2

L
x  ,  2

2 0  , no chance of  
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           finding the particle at the middle point of the box. This is the nodal point. 

    (c) For the quantum state, 3n  ,  2 2
3

2 3
sin

x

L L


  .  When 0x   and L , 2

3 0   these are end 

         points; when 
6

L
x  , 

2

L
 and 

5

6

L
, 2

3

2

L
   maximum probability densities and these positions 

         are antinodes. When 
3

L
x   and  

2

3

L
, 2

3 0  , these points are nodal points. 

[The wave functions besides being zero at the walls of the box, also have zero at various points within      
  the box. These points are called nodes of the wave function. The number of nodes = ( 1n ) ]. 

 2
n spreads out but measurement gives definite location:   Wave function ( ) and probability density ( 2 )  are 

spread out over the length of the box, much like a wave. However, quantum mechanics does not assert that the 
particle itself is spread out like a wave. A measurement of position will give a definite location for the particle. 
It is the probability function ( ) that spread out in space and obeys a wave equation. (Measurement paradox). 

Special comment on 2
2  vs. x plot: In the quantum state, 2n  , there is finite probability (though varying) of 

finding the particle at all points on either side of the middle point of the box, but there is no chance at all to find 
the particle at the middle point. Does it mean that the particle can move to and fro from one end to the other end 
without even touching the middle point? Though it is not realisable, but it happens in quantum mechanical 
calculation. 
It can be explained if we consider the particle is smeared into dust forming cloud of varying density. There is 
zero density at the idle an maximum on either side of it. The behaviour of microscopic particle cannot be 
realised in terms of visualizable model. 
Quantum mechanical result corresponds to the classical result when n  is large:  The probability density is not 
uniform at all positions of the box. It is more pronounced when n  is small. But the distribution becomes more 
and more uniform as n  increases. This becomes completely uniform for the very large value of n .  
The result attains the predictions of classical mechanics which states  that all locations of the particle is equally 
likely. This fact is in agreement with Bohr correspondence principle.  

           Further,                
2

2
28

h
E n

mL

 
  

 
  or, 

2
2

2

8mL E
n

h
 . 

For macroscopic bodies, m , L  and E  are large and h  is small so n  is  
very large for macroscopic bodies in classical mechanics and the  
probability of finding the particle becomes uniform within the box. 
 
Problem(1): Using particle in a box model, find the positions of maximum  
                 electron density in the molecule of butadiene, giving that the  
                 average C – C distance is 0.140 nm.  
                 Show graphically the variation of electron density in the molecule. 
Solution:  For the molecule, 1 2 3 4C C C C   , 4 0.140 0.560L nm    

                 (taking C C bond length as end correction). In the ground state, the four  electrons are  
                 accommodated in the first two energy levels, 1n  and 2n  . 

                The corresponding wave functions are 1

2
sin

x

L L


    and 2

2 2
sin

x

L L


  . 

                 At 2x L i.e. between 2C and 3C , 2
1  = 2 L , maxm.  and 2

2 0  . 

                 On the other hand, at 4L  and 3 4L , 2
2 2 L  , maxm. but 2

1  is not zero. 

                Therefore  electron density, 2 2 2
1 2     is maximum in 1 2C C  and 3 4C C bonds 

                 but minimum in   2 3C C bond. 

                 Graphical variation of the electron density of the molecule  
                 is shown here. 
Problem(2): For a particle in the state 1n   of a 1 – d box of length L,  
                 find the probability that the particle is in the region  0 4x L  . 
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Solution: The wave function for the state 1n   of a 1 – d box is  1

2
sin

x

L L


  . 

                 The probability of the particle to be found within the range 0 4x L   

                    P =  
4 4 4 4 4

2 2
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0 0 0 0 0

2 1 2 1 1 2
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                        =     
4

4

0
0

1 1 2 1 1 1 1
sin sin sin 0 1 0

2 4 2 2 4 2

L
L L x L

x
L L L L

 

  

   
            

   
 

                     or, probability, P = 
1 1

0.0908
4 2
  . 

Problem(3): A particle of mass 262.00 10 g is in 1 – d box of length 4.00 nm. Find the frequency  
                    and wave length of the photon emitted when the particle goes from 3n   to 2n   level. 

                                                                                        [Ans. 12 11.29 10 s   , 42.32 10 m    ]. 
Calculation of Physical Properties of the System 

(1) Energy eigen value: 
2

sinn

n x

L L


   and 

2 2

2 2
ˆ

8

h d
H

m dx
   are the wave function and the  

                                         energy operator of the system since the potential energy of the system is zero. 

                                     The energy eigen value equation is ˆ
n n nH E  .   

      Thus, 
2 2

2 2
sin

8

h d n x
A

m dx L





 
  

 
= 

2 2 2

2 2
sin

8

h n n x
A

m L L

 



 
   

 
 = 

2 2

28 n

n h

mL


 
 
 

 = n nE . 

      Hence the energy of the particle in 1 – d box for the n th state is       
2

2
28n

h
E n

mL

 
  

 
. 

      Since the eigen value equation is satisfied, it is possible to find nE  of the system very precisely.  

(2) Square of linear momentum eigen value ( 2
xp ):  The corresponding quantum mechanical operator  

                                                                                for the property is 
2 2 2

2
2 2

ˆ
2 4x

h d h d
p

i dx dx 

 
   
 

.                                                                                  

      Now the x -component linear momentum square eigen value equation is   2 2ˆ x n x np p  . 

      Thus, 
2 2 2 2 2

2 2 2 2
sin sin

4 4

h d n x h n n x
A A

dx L L L

  

 

    
       

    
= 

2 2

24 n

n h

L
   or,  

2 2
2

24x

n h
p

L
 . 

      This x -component linear momentum square of the system is quantised and takes discrete values.  
 

(3) x -component linear momentum ( xp ): The corresponding operator   ˆ xp  =  
2

h d

i dx
.  

      The wave function sinn

n x
A

L


    is not an eigen function of the operator ˆ xp . It means that  

      this value is not a characteristic property of the system and it can not produce precise value, rather  
      the value of xp spreads over the different observations. Hence we can find out the average value  

      of xp  of the system. That is, 
0

ˆ
L

x n x np p dx   , where 
2

sinn

n x

L L


  , normalised wave  

      function of the particle in 1 – d box system. 

     So,  
0 0

2 2
sin sin sin cos

2 2

L L

x

n x h d n x n x h n n x
p dx dx

L L i dx L L L i L L

    

 

   
     

   
    
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                      = 
2

0 0

2 2
sin cos sin

2 2

L Lh n n x n x nh n x
dx dx

L i L L L L i L

   


      

                      = 
2

0

2
cos

2 2

L
nh n x L

L i L n





 
  
 

=    cos 2 cos0 1 1 0
4 4

h h
n

L i L i


 
      . 

       The zero value of xp  signifies that the value of xp  oscillate within the value 2
nh

L  

        
2 2

2
24x

n h
as p

L

 
 

 
. The average value of the property is thus equal to zero. 

2x

nh
p

L
   when the  

        particle moves from left  to right and 
2x

nh
p

L
   when it moves from right to left, so for one  

        complete oscillation of the particle, 0xp  . 

(4) Average position of the particle, x :  Position of the particle varies within the box from 0  to L . 

                   So it has no precise value. The average position can be calculated by using postulate III. 

    2

0 0 0

2 1 2
ˆ sin 1 cos

L L L

n n

n x n x
x x dx x dx x dx

L L L L

 
 

 
    

 
     

           = 
0 0

1 1 2
cos

L L n x
xdx x dx

L L L


  =

2

0 0

1 2 1 2
sin cos

2 2 2

L L
L L n x L n x

x
L n L L n L

 

 

     
        

     
 

            =  
 

 2

1
sin 2 0sin 0 cos 2 cos0

2 2 2

L L
L n n

n n
 

 
     

            =  
 

 2

1
0 0 1 1

2 2 2

L L

n n 
    = 

2

L
. The expected location of the particle 

2

L
x   .                              

(5) Average square position of the particle 2x :  We have  2 2

0

ˆ
L

n nx x dx        

     or,  2 2 2 2 2 2

0 0 0 0

2 1 2 1 1 2
sin 1 cos cos

L L L Ln x n x n x
x x dx x dx x dx x dx

L L L L L L L

   
     

 
      

                     =  
2

2

0 0

1 2 2
cos 2 sin

3 2

L LL n x n x L
x dx x dx

L L L n

 



    
      

    
   

                     = 
2

2

0 0

1 2 2 2
sin sin

3 2 2

L LL L n x L n x
x x dx

L n L L n L

 

 

   
      

   
  

                     =  
2

2

0

1 1 2
sin 2 0sin 0 sin

3 2

LL n x
L n x dx

n n L




 
       

                     =   
2

0 0

1 1 2 2
0 0 sin cos

3 2 2

L LL n x n x L
x dx dx

n n L L n

 

  

  
      

  
   

                     =  
22

00

1 2 1 2
cos sin

3 2 2

L L
L L n x L n x

x
n n L n n L

 

   

      
        

      
 

                     =     
2 2

2 2 3 3
cos 2 0 cos0 sin 2 sin 0

3 2 4

L L L
L n n

n n
 

 
      

                       =  
2

2 2
0

3 2

L L
L

n 
  = 

2 2

2 23 2

L L

n 
 .  Thus, 

2 2
2

2 23 2

L L
x

n 
  . 
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Related Problems:  

(1) Using particle in 1 – d box, verify Heisenberg Uncertainty Principle, 
1

2xp x   , 

      where       xp = root mean square momentum uncertainty =   
1

2 22
x xp p  

                       x = root mean square position uncertainty     =    
1

2 22x x                                                                 

        and        
2 2

2
24x

n h
p

L
 ,  0xp  ,   

2 2
2

2 23 2

L L
x

n 
   and  

2

L
x  . 

      Solution: Using the above data, we have  

1 1
2 2 2 2 22 2

2 2 2
0

4 3 2 4x

n h L L L
p x

L n 

   
        

   
 

                       or, 

1
2

2 2

1 1 1

2 3 4 2x

nh
p x L

L n 

 
      

 
= 

1
2

2 2

1 1

2 12 2

nh

n 

 
 

 
 

                                             = 

1
2 2 2

2
4 3

h n 



 
 

 
,  but n = 1, 2, 3, etc, so  

4x

h
p x


    

                                                 or,  
1

2xp x   .     

(2) By use of expression, 4x
hp x


   , show that for particle in 1 – d box, 4
hE t


   . 

      Solution: For particle in 1 – d box, E = KE + PE = KE =
2

2
xp

m
, so 

2

2
x

x

p
E p

m
   = x

x

p
p

m
 , 

      or, x
x

m
p E

p
   . Again, x xp mv = 

x
m

t




 or, . x

t
x p

m


  .  

      Thus .x x
x

m t
p x E p E t

p m


        , but 4x

hp x


   , so 4
hE t


   . 

      This shows that making use of 4x
hp x


   , it is possible to show that 4
hE t


   . 

(3) A particle of mass m is confined to a 1 – d box with origin at the centre of the box. The box  
     extends from 2L  to 2L .  

     The potential energy is   0; 2 2V x L x L      and   ; 2V x x L  . 

   (a) Write the Schrodinger equation for the system showing separate equations for the inside and  
        outside of the box. 

   (b) Assume a solution (inside the box) of the form,   sin cosx A kx B kx   , find out the correct  

        form by making use of boundary conditions. (c) Derive the energy expression of the particle. 

Solution:    (a) Schrodinger equation is  
2 2

2 2

8
0

d m
E V

dx h

 
   . 

  (i) Outside the box, V  , hence the equation is  
2 2

2 2

8
0

d m
E

dx h

 
    or, 

2

2
0

d

dx


  . 

   (ii) Inside the box, 0V  , hence the equation is  
2 2

2 2

8
0

d mE

dx h

 
    or,  

2
2

2
0

d
k

dx


  .  

(b) General solution of the equation inside the box is given as    sin cosx A kx B kx   . 

    The boundary conditions are: when 2x L  , 0  , so    0 sin 2 cos 2A kL B kL   ---(i) 

                                             and when 2x L , 0  , so    0 sin 2 cos 2A kL B kL  -------(ii) 

     Adding (i) and (ii),  0 2 cos 2B kL , but 0B  , so    cos 2 0 cos 2kL n  ,  
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    when n  = odd values, 1, 3, 5, etc. . Again subtracting (i) from (ii),  0 2 sin 2A kL , but 0A , 

    so    sin 2 0 sin 2kL n   for even values of n  = 2, 4, 6, etc. So,    2 2kL n    

    or,  k n L  Thus for the same value of k , both sine and cosine functions cannot be zero.  

    Thus we obtain two sets of solutions  

                  sinA n x L   , when n  = even    and    cosB n x L  , when n  = odd. 

[ Extra comments: With respect to x  = 0, at the middle point of the box, the cosine functions are  
  symmetrical and sine functions are antisymmetrical]. 

(c) The energy expression can be obtained from energy eigen value equation,  Ĥ E    or, 

     
2 22 2 2

2 2 2
sin cos sin cos

8 8

h d n x n x h n n x n n x
A B A B

m dx L L m L L L L

     

 

      
           

       

 

                                                                       =
2 2

2
sin cos

8

n h n x n x
A B

mL L L

  
 

 
  . Thus, 

2 2

28

n h
E

mL
 . 

(4) A particle of mass 610  kg is rolling on a smooth floor of a 41 10  m wide box with a speed  

     33.3313 10 ms-1. Applying particle in a box problem, calculate the quantum number ( n )  
     corresponding to the translational energy of a ball. Will you consider the energy to be quantised in  
     a practical sense?  

Solution:  KE , T = nE  since PE = 0 in the box. So 
2 2

2
2

1

2 8x

n h
T mv

mL
   or,  

2 2
2 2

2

4
x

m L
n v

h
 , 

               or,  
2

x

mL
n v

h
 . Putting values, 

   
 

 
6 4

3 1 21

34

2 10 1 10
3.3313 10 10

6.626 10

kg m
n ms

Js

 

 



  
  


. 

                 Large value of n  indicates that translational energy of the ball changes continuously and  
                 not quantised according to Bohr correspondence principle.  

                 Again, 321.098 10E    J and this confirms the conclusion.   
Particle in Three- Dimensional (3 – d) Box 
                Let a particle of mass m is confined to move within a cube of edge length L . The potential energy (
V ) is zero within the box and infinity out-side the  
box. The particle can move without any restriction along  
X -axis, Y -axis and Z -axis. It is sometimes called 3 – d  
potential well. 

         Schrodinger equation of the particle inside the box     
2 2 2 2

2 2 2 2

8
0 0

m
E

x y z h


 

   
     

   
, since 

PE = 0. 
           Here,  is a function of , ,x y z .  

Let  , , ( ) ( ) ( )x y z X x Y y Z z      or, simply, XYZ  , where X  is a function of x , Y  is a function of 

y  and Z  is a function of z . Putting the value of XYZ   in the Schrodinger equation, we have 

 
2 2 2 2

2 2 2 2

8
0x y z

X Y Z m
YZ XZ XY E E E XYZ

x y z h

  
     

  
. Dividing by XYZ  and separating the 

variables, we get   
22 22 2 2

2 2 2 2 2 2

88 81 1 1
0yx z

mEmE mEd X d Y d Z

X dx h Y dy h Z dz h

     
          

    
. 

The sum of three independent terms is zero, hence each term is then separately equal to zero. Thus, 

                              
22

2 2

81
0xmEd X

X dx h


       or,     

22

2 2

8
0xmEd X

X
dx h

 
  
 

.  

Similarly, the other equatio are given as 
22

2 2

8
0ymEd Y

Y
dy h

 
   
 

  and 
22

2 2

8
0zmEd Z

Z
dz h

 
  
 

. 
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Each of the equations has a form similar to the Schrodinger equation for a particle in 1 – d box with similar 
boundary conditions. This is equivalent to one of three particles in three separate 1 – d  boxes  
of lengths xL , yL  and zL . But for cubical box,  x y zL L L L   . 

Solving the equations, 
2

sin xn x
X

L L


 , 

2
sin yn y

Y
L L


   and 

2
sin zn z

Z
L L


 , 

here xn , yn  and zn  are the quantum numbers along ,x y and z directional motion of the particle. 

They have values 1, 2, 3, etc any positive integer excluding zero. Total wave function is given as 

                                            

3
22

sin sin sinyx z
n yn x n z

L L L L

 


 
  
 

     and 

 the total energy of the system,  
2 2 2

2 2 2
2 2 28 8 8x y z

h h h
E n n n

mL mL mL

     
       

     
=  

2
2 2 2

28x y z

h
n n n

mL
   

The total energy and wave function of the particle depends on the value of xn , yn  and zn . 

                Zero-point energy is 
2

111 2

3

8

h
E

mL
   and   

3
2

111

2
sin sin sin

x y z

L L L L

  


 
  
 

. 

 
Energy levels and corresponding wave functions are shown below. Some levels are degenerate and some are 
non-degenerate. 
In some cases, there are degenerate levels, each is defined by a particular wave function but all the wave 
functions have same energy value. The degeneracy is developed when the quantum numbers are  
are not equal, i.e., x y zn n n  . The degeneracy can be lifted by slight distortion of edge of the box, i.e.,   the 

edges of the box are not equal, x y zL L L  . 

Problem(1): Calculate the number of degeneracy of the energy level 2 214 8h mL  for a particle  
                      moving in a cube with zero potential energy.  
Solution: Six-fold degeneracy. 
Problem(2): Determine the degree of degeneracy of the level 2 238 8h mL  
                      of a particle in a cubical box with PE = 0. 
Solution:   9 – fold degeneracy. [1,1,6  3 – fold and 2, 3, 5  6 – fold]. 
Problem(3): If benzene is regarded as square box of side 0.4 nm containing 
                      6  electrons, then calculate the wave length of light to  
                      promote a  electron to the first excited state. 
Solution:   The energy of the benzene in the ground state  

                     2 2 2 2 2 22 2 8 4 5 8 24 8GSE h mL h mL h mL     , since  2 2 2 28x yE n n h mL  . 

                   The energy in the excited state,  
 

                         2 2 2 2 2 2 2 22 2 8 3 5 8 1 8 8 27 8ESE h mL h mL h mL h mL       .   

                    The difference of energy levels is equal to the energy  
                    of the photon absorbed to promote the electron to the  
                    excited state. That is,  ES GSh hc E E     

                    or, 2 2 2 2 2 227 8 24 8 3 8hc h mL h mL h mL       
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                    or, 28 3mL c h  . Putting the values,                     

                                             
 

228 7 10 1

7
27

8 9.1 10 0.4 10 3 10 sec
175.8 10 175

3 6.626 10 sec

g cm cm
nm

erg


  





     
   

 
. 

 
Hydrogen-atom Problem 
                       H-atom is the simplest of all chemical elements. Solution of non – relativistic and time – 
independent Schrodinger equation of H – atom produces the expression of wave functions which are called 
atomic orbitals. These are labelled as 1s, 2s, 2p, etc. The atomic orbitals are the building blocks for the 
construction of molecular orbitals, which, in turn, play a very important role in the understanding of chemical 
bonding, electronic structure and spectrum of molecules. 
Thus, the quantum mechanical study of H-atom constitutes the most important problem in quantum chemistry.  
H-atom is composed of one electron and one nucleus. The nucleus again contains only one proton. We may 
consider two types of motion of H-atom. 
(1) Translatory motion of the atom as a whole in 3-d space. This motion is like that of free particle  
      and energy for this motion changes continuously. Therefore, this motion need not require quantum  
      mechanical treatment.  
(2) Internal motion of the electron and nucleus within the H-atom. But nucleus is about 1836 times  
     heavier than the electron. So, we may consider the nucleus is at rest (fixed nucleus  
     approximation or infinite nuclear mass approximation). 
The spatial rotation of an electron around the nucleus in the H-atom can be described in terms of electron’s two 

angular variables,  (zenith angle) and (azimuthal angle), and its radial distance r  from the nucleus. The 
nucleus is at rest at the origin of the co-ordinate system.  Schrodinger equation for electron’s 3-d motion within 

the H-atom is         2
2

2
0E V


      , where 

2 = Laplacian operator = 
2 2 2

2 2 2x y z

  
 

  
and    = reduced mass of H-atom = n e

e
n e

m m
m

m m





. 

Since mass of the nucleus is much greater than that of electron so em  . But we shall continue to write   

instead of em . 

V is the potential energy of the electron in the atom. This energy originates due to Coulombic force of attraction  
( 2 2e r ) of the electron from the nucleus. Thus potential energy, 

                       
r

V Fdr


      but,    
2

2

e
F

r
        so,     

2 2

2

r e e
V dr

r r


 
     

 
 . 

This shows that the PE  of the electron is spherically symmetrical  and V  is inversely proportional to r  and it 

is known as central field problem (the force 2 2e r  acts towards the centre). The electron experiences the 
same potential energy due to nucleus at any point on the surface of sphere of radius r . 
Hence the name is spherically symmetrical.  
Schrodinger equation in polar co-ordinates:  
Since the Schrodinger equation of H-atom contains radial distance ( r ), it is better to write the equation in polar 
co-ordinates.  In polar co-ordinates   

                        
2

2 2
2 2 2 2 2

1 1 1
sin

sin sin
r

r r r r r


    

       
      

       
. 

Thus the Schrodinger equation is given as     

              
2 2

2
2 2 2 2 2 2

1 1 1 2
sin 0

sin sin

e
r E

r r r r r r


  

    

          
         

          
 . 

The wave function,   depends on  ,r   and   . Thus we can write        r R r P F       , where  

R, P and F are the functions of ,r  and   respectively . 

In brief, we can write RPF   and the functions  R, P, F are independent of each other. 
Separation into three equations – each containing one variable:  
Now replacing  in the Schrodinger equation and differentiating, we get 
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2 2

2
2 2 2 2 2 2

2
sin 0

sin sin

PF R RF P RP F e
r E RPF

r r r r r r




    

        
        

         
 . 

Dividing by RPF and multiplying by 2r  and rearranging, we have  

              
2 2 2

2
2 2 2

1 1 1 2
sin 0

sin sin

R P F r e
r E

R r r P F r




    

        
        

         
 

or, 
2 2 2

2
2 2 2

1 2 1 1
sin

sin sin

R r e P F
r E

R r r r P F




    

          
         

          
 = ( 1)l l  . 

Each side of the equation must be a constant, as LHS depends on r while RHS depends on and  .  

l  is constant and called azimuthal quantum number, having values 0, 1, 2, 3, etc. 
Now Schrodinger equation is separated into radial part that depends on r and angular part that depends on 
angles   and  . 

Radial part is            
2 2

2
2

2
( 1) 0

d dR r e
r E l l R

dr dr r

   
       

    
 

and angular part is 
2

2 2

1 1
sin ( 1) 0

sin sin

P F
l l

P F


    

   
    

   
. 

Again the angular part could be separated into two – one depending on   and other depending on . 

Multiplying by 2sin   and separating into two sides depending on    and  , we have 

                        
2

2 2
2

sin 1
sin ( 1)sin

d dP d F
l l m

P d d F d


 

  

 
     

 
 (say). 

Each part is constant and m  is called magnetic quantum number that depends on the value of l . 
Thus, three separate equations are given here: 

(1) r - dependent equation,       
2 2

2
2

2
( 1) 0

d dR r e
r E l l R

dr dr r

   
       

    
 

(2)   - dependent equation,      2 2sin sin ( 1)sin 0
d dP

l l m P
d d

  
 

 
       

 
   and  

(3)   - dependent equation,  
2

2
2

0
d F

m F
d

  . 

Energy eigen value ( nE ): Solving the radial part equation (1), the expression of the energy of the  

                                         system is obtained.  
4

2 2

1

2n

e
E

n

 
  

 
  or,   

2 4

2 2

1 2
n

e
E

n h

  
  

 
. 

The energy is found to be identical with the value calculated from the Bohr model of H-atom. Thus, this 
expression of energy can explain the spectrum of H-atom successfully. 

The potential energy, 
2eV r   and it is (-ve) always. E = KE + PE and KE is always (+ve).  

As the total energy (E) is (-ve), hence numerical value of PE is greater than the KE of the electron. 
The electron is thus remains bound within the atom and energy is required to separate it from nucleus.  
Quantum numbers ( ,n l  and m ): When the three differential equations of the Schrodinger equation are  
                                                      solved, the solutions contain three quantum numbers – principle 
quantum number ( n ), azimuthal quantum number ( l ) and magnetic quantum number ( m ). 
The radial function, R contains n  and l , angular function, P  contains l and m , and F contains m only. Thus 
the wave functions of the H-atom is  

                                                          nlm nl lm mr R r P F      . 

This wave function of the electron in atom constitutes what we call atomic orbital.  

Principal quantum number ( n ):  We have   
2 4

2 2

1 2
n

e
E

n h

  
  

 
.  
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Thus, this quantum number ( n ) determines the energy of the electron in the atom. Higher the value of n , 
higher will be its energy value. The value of n  = 1, 2. 3, ...., any (+ve) integer excluding zero.  
It also determines the distance of the electron from the nucleus. For state n = 2, the electron is at higher distance 
from the nucleus than for state n  = 1.   

Azimuthal quantum number  l   : The angular momentum (L) eigen value equation is,     

           ˆ 1
2

h
LP l l P



 
  
 

 and the angular momentum of the  electron is  1
2

h
L l l


  . 

Thus this quantum number ( l ) determines the quantised value of angular momentum (L) of the electron. The 
value of l  depends on n  and it is 0, 1, 2, 3, ...( n  - 1). l  specifies the orbitals. 
These are usually expressed by the symbols        ( 0), ( 1), ( 2), ( 3).s l p l d l f l     

The degeneracy of the of the orbitals is given by  2 1l  . Thus  s - orbital is non-degenerate,  

p - orbitals are 3-fold degenerate, d - orbitals are 5-fold degenerate and f - orbitals are 7-fold degenerate.     

Magnetic quantum number ( m ): It determines the spatial orientation of the angular momentum, zL .  

 z - component angular momentum eigen value equation is ˆ
2z

h
L F m F



 
  
 

, where ˆ
2z

h
L

i 





. 

 On solving the equation, it possible to find the function, 
1

2
imF e 



  and magnitude of the property, 

2z

h
L m


  . The value of m depends on the value of l . It is , ( 1)....0....( 1),l l l l    . The value of m is  

(2 1)l  . It means that there are (2 1)l   orientations of angular momentum vector in space with respect to Z- 

axis. For l  = 1, 1, 0, 1m     and total orientations of p - orbitals are 3. 
Problem: Calculate the magnitude of ground state orbital angular momentum of the electron in a  
                 H-atom , according to the (a) quantum mechanics and (b) Bohr theory. 

Answer:  (a) ( 1)
2

h
L l l


  , but for ground state orbital, 0l  ( s - orbital) and so, 0L  . 

                  (b) 
2

h
L n


  and for ground state of H-atom, 1n  , so 

2

h
L


 . 

Wave function of H-atom and its normalisation  condition: The wave function of H-atom is represented  
                                                as ( )nlm r  . The normalisation condition of the function is given as  

                         
2

( ) 1nlm

all space

r d    , but 2 sind r dr d d     (small element of volume)       or,               

2
2 2

0 0 0

( ) sin 1nlm

r

r r dr d d
 

 

    


  

   . The probability density of finding the electron at a point defined by

,r   and  is  ( ) ( )
nlmnlm r r     and the probability of finding the electron within small element of 

volume, d   at ,r   and  is given as 
2

( )nlm r d   . 

Expression of different orbitals: The wave functions of H-atom, nlm  is called atomic orbitals.  

                                                        The expression of different orbitals is given below: 
 

     (1) 0
13 2

100 1 0( ) ( )
r

a
s a e  


  , where 0a = Bohr first orbit radius  = 0.53Å 

      (2)     0
1 2 25

200 2 0 0( ) 32 2
r

a
s a a r e  



   . 

      (3)     0 0
1 2 1 22 25 5

210 2 0 0( ) 32 cos 32
z

r r
a a

p a e r a e z    
  

    

        0 0
1 2 1 22 25 5

211 2 0 0(4) ( ) 32 sin sin 32
y

r r
a a

p a e r a e y     
  

    
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       0 0
1 2 1 22 25 5

2 0 0211(5) ( ) 32 sin cos 32
x

r r
a a

p a e r a e x     
  

    . 

Atomic Orbitals 
                 For hydrogen-like (i.e. one electron) atoms, the wave functions are called ‘atomic orbitals’. 

Is orbital  100 : For this orbital, 1, 0, 0n l m   . The analytical expression of this orbital is obtained from 

the solution of the radial part of the Schrodinger equation of H-atom.  

                  The expression of this orbital, 0
1

r
a

s Ae


 ,   where A  is normalisation constant. 

The value of A  is obtained from the normalisation condition, 
2

1
all space

d   ,  

or,  0

22
2 2

0 0 0

sin 1
r

aA e r dr d d
 

  




     [ since  d = small element of volume = 2 sinr dr d d   ]. 

or,  
 

   
22

2 1 0 0
0

(2 1)
cos 1

2
A

a

 
 



 
          or,    

3
2 0 2 2 1

4

a
A          or,    

1 23
0a



 . 

Thus, the normalised wave function of 1s orbital is     0
1 23

1 0

r
a

s a e 


 .  

This is the ground state of the electron in H-atom. The electron remains in the 1s orbital at this ground state. For 

this state, 1, 0, 0n l m   . So the total energy (zero-point energy), ZPE =
4

22

e
 , the angular momentum, 

( 1) 0L l l    , since 0l   and the z - component of angular momentum, 

0zL m    as m = 0. 0a = Bohr radius = 
2

2e
 = 0.53 Å. 1s  is independent  

of the angular variables ( and  ) and depends on the radial distance (distance of the electron from the 

nucleus), r .   1s  takes shapes of spherical symmetrical. At every point on the surface of a sphere of fixed 

radius ( r ), the value of   is same. 
Calculation of energy value of 1s orbital : The eigen energy value of 1s orbital is obtained by solving  

                                                                 the eigen value equation, 1 1 1
ˆ

s sH E  . 

The energy operator, 
2

2ˆ
2

H V


    .  But 2 2
2

1 d d
r

r dr dr
 

   
 

,  
2e

V
r

    and 0
1

r
a

s Ae


 . 

[ 1s  is independent of   and   so,    and   part of the equation is zero]. Putting in 1 1
ˆ

s sH E  , 

0

0

2 2 2 2
2 2

1 1 12 2
0

1 1ˆ
2 2

r
a r

a
s s s

d dAe e d A e
H r r e

r dr dr r r dr a r
  

 




                                    

 

or, 0 0

2 2
2

1 12 2
0 0

1ˆ 2
2

r r
a a

s s

A A e
H r e r e

r a a r
 



          
             

          

 

                  0 0

2 2

12
0 0

2

2

r r
a a

s

A e
e Ae

a ra r




     
       

    
 = 

2 2 2

12
0 0

2

2 2 s

e

a ra r


 

 
   
 

 

                   =  
   

2 2 2

12 2 22 2

2

22
s

e

rr ee


  

 
   
 
 

          

                    
2 2 4 2 2 2

14 2

2

2 2 s

e e e

r r

 


 

 
       
 

= 
4 2 2

122 s

e e e

r r




 
   
 
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or, 
4

1 12
ˆ

2s s

e
H


 

 
  
 

= 1 1sE . Thus the energy of 1s orbital is  
4

1 22

e
E


   or, 

2 4

1 2

2 e
E

h

 
   . 

The  energy value is independent of t  and r , so the energy remains constant for infinite time of duration at this 

state. Heisenberg uncertainty principle states that  1 2E t   , thus 0E  , 

hence t  . E also remains constant at any point though KE and PE will vary from point to point  within 1s 
state of the H-atom.  
The energy value is (-ve) and hence the electron remains within this state and energy is required to remove the 
electron from the influence of nucleus of the atom. The ionisation potential (IP) of H-atom 

       
   

 

42 31 192 4
19

22 34

2 3.14 9.1 10 1.6 102
21.69 10 13.56

6.626 10 s

kg Ce
IP J eV

h J

 
 





    
    


. 

Shapes of H-like atomic orbitals: There are two fundamentally different ways of depicting orbitals.  
                        Method 1 is to draw graphs of the function and 
                        Method 2 is to draw contour surfaces of constant probability density. 

Shape of 1s orbital: The wave function,   0 03
1 01

r r
a a

s a e Ae 
 

  . 

Method 1: If 1s  is plotted against radial distance ( r ),  

the curve is given as,  
At r = 0 (near the nucleus), 1s = A (maximum) and as  

r  increases, 1s  decreases exponentially, and 1 0s   

at r  . Practically, 1s almost vanishes at 02r a . 

Since 1s  is only dependent of r  and independent of 

  and  , so 3 – d picture of the orbital is obtained by drawing spheres of equal value  1s around the nucleus. 

The shape of the orbital becomes spherically symmetrical. 
 The value of  1s  becomes maximum near the nucleus (which is at the centre of the sphere) and fading away as 

r increases from the nucleus. 1s  extends up to 02r a . 

Method 2: Again the probability density is 0

2
2 2
1

r
a

s A e


 , 

 where  2 3
01A a . 

When 2
1s  is plotted against r , the curve will be steeper than 1s  vs. r . 

 At r = 0, 2
1s = A2 (maximum). This means that probability density of 

 finding the electron is maximum near the nucleus and it decreases very  
rapidly as r  increases.  
We can connect the points of equal probability density and get spherical 
shape of contour within which there is definite probability of finding the  
electron. Thus, the shape of 1s orbital is spherically symmetrical.  
Radial Probability Density, ( )P r : If we consider a spherical shell of radius r and thickness dr , its volume is 

24 r dr  and probability of finding the electron within the  

shell is                        2 2
14 sr dr  = 2 2

14 sr dr  = ( )P r dr .                              

( )P r  is also called radial distribution function. It is obtained also by  

integrating 2d  over all angles of   and   but not over r  and then  
putting dr  = 1. Thus probability of finding the electron within radial  
distance r to r dr  irrespective of   and  ,  

0

2 2 2
2 2 2
1

0 0 0 0

( ) sin
r

a
sP r dr d A e r dr d d

   

   

    


   

      
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                = 0

22
2 2

0 0

sin
r

aA e r dr d d
 

 

  


 

   = 0

2
2 2 2 2

14 4
r

a
sr A e dr r dr  

 
 

 
. 

( )P r dr  is the probability of finding electron within the spherical shell of radius r and thickness dr and nucleus 
is at the centre. 
When ( )P r  is plotted against r , the curve is obtained as  

                      
2 2

2 2 2( ) 4
o

r r
a ao

P r A r e A r e
 

  . 

When r = 0, ( )P r = 0 i.e., though 2
1s  is maximum at r = 0 

but the ( )P r = 0  i.e., there is no probability of finding the  
electron within the spherical shell of radius r near to the nucleus. 

As r  increases, ( )P r increases due to factor 2r , then attains  

maximum at some value of r  and then decreases due to factor 
2

o
r

a

e


. ( ) 0P r   as r  . 
For small value of r , non-exponential factor dominates and at high value of r , exponential factor dominates. 

Calculation of maxr  value: We have 
2

2( )
o

r
a

P r A r e


 , but for extreme value of ( )P r , 
( )P r

dr
= 0. 

so,  
2 2 2

2 2( ) 2
2

o o o
r r r

a a a

o

P r d
A r e A re r e

dr dr a

     
       

    
= 0    or 

2

2 1 0
o

r
a

o

r
A re

a

  
   

 
. 

But for r = 0 and 
2

o
r

a

e


= 0 ( r ),
( )P r

dr
= 0, the curve shows minima, hence at 1

o

r

a
 =0, ( )P r attains 

maximum and so max or a . This means that in the sphere of radius oa  will have the maximum radial 

probability density.  

It seems very interesting to see that the electron density ( 2
1s ) is maximum just near the nucleus while the 

electron is most probable to be found at a distance of 0a from the nucleus. This apparent inconsistency may be 

explained by considering a number of concentric rings of same thickness but different radii and made of 
materials of decreasing density with increasing radius.  
                                                       Mass = volume (dv) × density (𝜌). 
The ring closest to the centre has smallest mass though it has highest density but its volume is smallest. Again, 
the ring of very large radius may not have the highest mass as volume is high but the density is very small.  For 
a certain ring of intermediate value of radius, the mass may be maximum 
although the density of the ring near the centre has maximum value. 
This result is consistent with the Bohr’s calculation of H-atom. But the result differs in the concept. In the 
quantum concept, electron is most likely to be found at a distance of oa  from the nucleus in any direction but 

there is definite chance for the electron to be found beyond the distance, oa .  

But Bohr concept gives the certainty of the position of the electron. It is rotating round the nucleus in a circular 
path of radius oa . 

Calculation of average value of r in 1s orbital: We have 
2

1 1

0 0 0

ˆs sr r d
 

  


    ,  

when 1s  is normalised =  3
01 o

r
aa e



. Thus,   0

2213 3
0

0 0 0

sin
r r

ar a e r dr d d
 

   


     

or, 
 

43

1 3 3
2 2

22
o

o o

r a
a a




     . Thus the average distance of finding the electron is 
3

2 oa . 

This shows that there is definite probability of the electron to be found in the spherical shell of radius greater 
than oa . 
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Calculation of average value of x  in 1s orbital: 

 0

2 2
2

1 1 3
0 0 0

1
ˆ sin cos sin

r
a

s s
o

x x d e r r dr d d
a

 

 

       


 


  

     , [since sin cosx r   ] 

      = 0

22
3 2

3
0 0 0

1
sin cos 0

r
a

o

e r dr d d
a

 

   





   . Since  
2

2

0
0

cos sind



   = sin2 sin0   = 0. 

Because  1s  and 2
1s  are spherically symmetrical, there is equal chances of the electron being found at x  

and x  distances from the nucleus leading to average value of x  equal to zero. 
 
2s orbital ( 200 ): For this 2s orbital, 2, 0n l   and 0m  . Thus it is designated as 200 . 

The total energy of the orbital, 
4

2 2

1

4 2

e
E

 
   

 
 , as 2n  , the angular momentum, 

( 1)L l l  = 0 as 0l   and z - component angular momentum, 0zL m   as 0m  . 

On solving the radial part of the Schrodinger equation, the expression of 2s orbital is obtained as  

                                   2
2 200 2 o

r
a

s oA a r e 


   ,    where A  is normalisation constant. 

Normalisation of 2s  orbital: The value of A  is obtained from the condition, 2
2 1s

all space

d   .  

So,  
2

22 2

0 0 0

2 sin 1o

r
a

oA a r r e dr d d
 

  




      or,   2 2 2 2

0

4 4 2 2o

r
a

o oA a ra r r e dr 




    = 1 

or, 2 2 2 3 4
0

0 0 0

4 4 4o o o

r r r
a a a

oA a r e dr a r e dr r e dr
  

   
  

 
   = 1 

or, 
     

2 2
3 4 5

2 3 4
4 4 4 1

1 1 1
o o

o o o

A a a
a a a


 

     
  

   or,   2 5 5 54 8 24 24 1o o oA a a a       

or, 2 54 8 1oA a    or,   
12 532 oA a


 or,  
1 2532 oA a


  .  

So normalised wave function of the2s orbital is               
1 2 25

2 032 2 o

r
a

s oa a r e 


    . 

This wave function depends only on r hence it is also spherically symmetrical in shape. 

Energy eigen value of 2s  orbital: The energy eigen value equation of 2s orbital is 2 2 2
ˆ

s sH E  . 

Ĥ = 
2 2 2

2 2
2

1

2 2

d d e
V r

r dr dr r 

  
       

  
   and     2

2 2 o

r
a

s oA a r e


  . 

So the energy eigen value equation is 
2 2

2 2
2 2 22

1

2
s

s s

dd e
r E

r dr dr r


 



  
    

  
 . 

Solving the equation, we have the energy eigen value of 2s orbital
4

2 2

1

4 2

e
E

 
   

 
. 

The energy of this orbital is precise value and energy remains conserved for infinite period of time in state. 

[Heisenberg uncertainty principle, 2

1

2
E t    , but 2 0E   and so t  ,  

i.e., duration or life time of the electron at this state is infinite.] 

Shape of 2s orbital: The expression of the function of  2s orbital is    2
2 200 2 o

r
a

s oA a r e 


   . 

The function consists of three terms (i)  
1

5 232 oA a


  (ii) non-exponential term  2 oa r  and  
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(iii) exponential term 2 o

r
ae



. The exponential term ( 2 o

r
ae



) is just the square root of that in  1 ( )o
s

r
ae



. For 

this exponential term,  2s will decreases more slowly with increase of r  than 1s  function. This means that 

this orbital will spread more around the nucleus than 1s  orbital. 

The sign of 2s  depends on the term  2 oa r . 

(i) 2s  (+ve) when 2 or a  i.e., at smaller distance than 2 oa . 

(ii) 2s  = 0, when 2 or a , this is the nodal point of the orbital 2s . 

(iii) 2s  = (-ve), when 2 or a , at large distance from the nucleus. 

Method 1 for depicting 2s : When 2s  is plotted against r  

                                                    the following plot is obtained. 
At r = 0, 2s = 2A oa  (maximum value). Now as r increases,  

2s  sharply decreases due to decreasing value of  2 oa r  

and 2 o

r
ae



.   
The value of 2s  becomes zero at 2 or a (nodal point). 

When 2 or a , 2s  becomes (-ve) and with increase of r , 

 2 oa r is more negative and increases. The value dominates over the decreasing nature of the exponential 

term, 2 o

r
ae



 as at this value of 2 or a ,. 

With further increase of r , 2s  attains minimum value and then becomes zero at large distance 

 i.e., r  , 2 0s  . 

There occurs nodal point at  2 or a . The sphere practically extends up to 8 or a  with (-ve) sign at 2 or a . 

Method 2 for depicting 2s orbital :  We have  
22 2

2 2 o

r
a

s oA a r e


  , where   
12 532 oA a


 . 

                       2
2s  is the probability density of finding the 

 electron in 2s orbital, and it is always (+ve).  
2
2s  decreases from 4A2 2

0a  (when r = 0) more rapidly than  

2s  with increase of r and becomes zero at 2 or a  

and again attains maximum at 4 or a  and then decreases  

to asymptotic at r  . 

Since   
2

2 oa r  = (+ve) always so 2
2s  is also (+ve).  

This nature of variation of 2
2s  with r  can be explained by the values of non-exponential term  

2
2 oa r  and 

exponential term o

r
ae



. When 2 or a  both the terms decreases with increase of r , so 2
2s decreases more 

sharply than 2s . At 02r a , 2
2s  = 0 i.e., there is no probability of finding the electron at this distance (nodal 

point). With further increase of r at 2 ,or a  
2

2 oa r
 increases and o

r
ae



 decreases  but former is 
dominating.  Again for further increase of r , exponential term dominates. So, the curve attains maximum and 
then decreases to 2 0s   as r  . 

Radial distribution function [ ( )P r ]: It is defined as 2 2
2( ) 4 sP r r  ,  but   2

2 2 o

r
a

s oA a r e


  . Thus, 

   
2 22 2 2( ) 4 2 2o o

r r
a a

o oP r r A a r e A r a r e
 

     , where 24A A  . 
2

2
2

0 0

( ) sP r dr d
 

 

 
 

     can also be used to find the expression of  ( )P r .  
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If  ( )P r  is plotted against r , we get the following curve.  

When r = 0, ( )P r = 0. As r  increases, first term ( 2r ) increases, 

 but second factor  
2

2 oa r  and third term o

r
ae



 both decrease.  

For smaller value of r , first term dominates and so ( )P r increases.  
As r  is further increased, second and third terms dominate, and  
so ( )P r  attains maximum at certain value of r and then decreases 

 and finally becomes zero at 2 or a . With further increase of r beyond the value of 2 oa , second term also 

increase. Now first and second terms increase but the third term decreases as usual. So, ( )P r increases and 

attains maximum with greater value than the first maximum value. Again for further increase  of r , ( )P r
decreases and becomes zero when r  . 
The values of r  at which ( )P r attains maxm. : The distance ( r ) from the nucleus, at which ( )P r  
                                                  attains maximum, can be calculated by using the condition of extrema. 

 
22( )

2 o

r
a

o

dP r d
A r a r e

dr dr

  
  

  =  2 2 3 44 4 o

r
a

o o

d
A a r a r r e

dr

   
  

                

                =    2 2 3 2 2 3 4 1
8 12 4 4 4o o

r r
a a

o o o o
o

A a r a r r e a r a r r e
a

   
        

  
  

                = 
4

2 2 38 16 8o

r
a

o o
o

r
A e a r a r r

a

  
    

 
= 

3
2 28 16 8 0o

r
a

o o
o

r
A re a a r r

a

  
     

 
. 

So, (i) 0r   and (ii) 0o

r
ae



   or, r   correspond to the minimal points of ( )P r  in the graph. 

and (iii)  
3

2 28 16 8 0o o
o

r
a a r r

a
    , but 2 or a  is the nodal point so  2 0oa r   is also a factor of the 

equation. Thus,  
3

2 28 16 8o o
o

r
a a r r

a
    = 

3
2 2 28 4 12 6 2 0o o o

o

r
a a r a r r r

a
       

or,      
2

4 2 6 2 2 0o o o o
o

r
a a r r a r a r

a
         or,   

2

2 4 6 0o o
o

r
a r a r

a

 
    

 
 . 

Then 
2

4 6 0o
o

r
a r

a
     or,  2 26 4 0o or a r a   , so 

2 26 36 16

2
o o oa a a

r
 

  = 3 5o oa a  

=  3 5 oa . The values of r , at which ( )P r  attains maximum, are 0.8 or a  and 5.23 or a . 

The shape of 2s orbital is spherical with nucleus at the centre. When a spherical shape orbital rotates, its angular 
momentum ( L ) becomes zero.  
At 0.8 or a , ( )P r  is maximum (1st), at 2 or a , there is nodal point and at 5.23 or a ,  ( )P r  again attains 

maximum (2nd). The orbital contour extends up to 8 or a .  

The number of nodal points = ( 1) 1n   . 
 

Calculation of average distance, r :  Average distance of the electron from the nucleus of H-atom in  

                                                                the 2s state is calculated by the use of the quantum theorem.  

    r  =   22 ˆ
ss

all space

r d  =    
1 25 232 2 sino

r
a

o o

all space

a r a r e r dr d d   


  

            =  
22

15 3
2

0 0 0

4
32 4 sino

r
a

o
o o

e
r r

a r dr d d
a a

 

   



  

  
 

    
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            =    
15 3 2 2

0

32 4 4 2 2o

r
a

o o o ea r a a r r dr 





     

              or, r  =   
15 2 3 4 5

0 0 0

32 4 4 4o o o

r r r
a a a

o o oa a r e dr a r e dr r e dr 
  

    
   

 
    

                     =  
     

15 2
4 5 6

3 4 5
8 4 4

1 1 1
o o o

o o o

a a a
a a a

  
    

  

 = 
15 6 6 68 24 96 120o o o oa a a a


     

                             =   6
158 48 6oo oa aa


  .   

    Thus the average distance of the electron in the 2s state of H-atom is  6 oa = 6 0.53 Å = 3.18 Å. 

Value of x : Using the same quantum theorem, it is possible to calculate the average distance of  
                         the electron along the x - axis. 

21 ˆ
ss

all space

x x d   =    
1 25 232 2 sin cos sino

r
a

o o

all space

a a r e r r dr d d     


   

        =    
2

1 25 3 2

0 0

32 2 sin coso

r
a

o o ea r a r dr d d
 

    





    = 0.  

          [since    
2

0

2

0
cos sin sin 2 sin 0 0 0 0d




         ] 

Because 2s  and 2
2s  are spherically symmetrical, there is equal chances of the electron to be found at x  and 

x  distances from the nucleus leading to the average value of x  equal to zero.  
 
2p-orbitals: For this orbitals, 2n  , 1l   and 1,0, 1m    . Thus 2p-orbitals are of three in number and 

these are degenerate. These p-orbitals are    2 211 2211 ,
x yp p    and  210 2 zp  . 

For H-atom, the state 2n  are four-fold degenerate, 2 ,2 ,2x ys p p and 2 zp  since the number of degeneracy of 

a given state ( n ) in H-atom is 2n .  

The angular momentum of the 2p-orbital is ( 1) 2l l    and z - component angular momentum, 

, 0zL m   and    for 2 , 2x yp p  and 2 zp  orbitals respectively. 

2px orbital: The wave function of 2px orbital is  2 211
2 sin cos

x

o
p

r
aAe r   



  ,  

                       but sin cosx r   , thus 2
2

x

o
p

r
aAe x



 , where A  = normalisation constant. 

Putting the normalisation condition, 
2

2 1
xp

all space

d   , the value of A  can be determined. 

Thus 2 2 2 2 2sin cos sin 1o

all space

r
aA e r r dr d d    



   or, 
2

2 4 3 2

0 0 0

sin cos 1o
r

aA r e dr d d
 

   




    or,  

 
2

5

4 4
1

31 o

A
a

     or, 2 532 1oA a   

or,  
1

5 232 oA a


 . Thus the normalised wave function of 2px orbital is  
1

5 2 232 o
o

r
aa e x



. 

[Integration:      3 2 2 2

0 0 0 0

sin sin sin sin 1 cos 1 cos cosd d d d
   

                    

                                            =    2

0 0

cos cos cosd d
 

     =  3

0 0

1
cos cos

3


       
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                                            =    3 31 1 4
cos cos0 cos cos 0 2 2

3 3 3
            . 

And         
2 2 2 2

22

0
0 0 0 0

1 1 1 1
cos 1 cos 2 cos 2 2

2 2 2 4
d d d d sin

   


                   ]. 

Shape of 2px orbital: We have  2 xp  =  
1

5 2 232 o
o

r
aa e x



, and 2 2 2r x y z    

               but along the x - axis, 0y   and 0z  , thus r x , hence  
1

5 2
2

232
x

o

x

p o
aa e x 



  

                or, 2
2

x

o

x

p
aAe x



 . The plot of 2 xp  vs. x is a Gaussian type in both sides of the origin. 

When x = 0, 2 xp = 0.  As x  increases within the range 

0 to  , 2 xp  increases, attains maximum and then 

decreases to zero at x  . 2 xp  is (+ve) in sign in this  

range of x . 
But when x  increases within the range 0 to  , 2 xp  is  

(-ve) and decreases, attains minimum and then increases to zero at x .  
When the 2 xp is rotated by 360o along the x - axis, two lobes are obtained on the both sides of origin. The 

right lobe is (+ve) in sign while left lobe is (-ve). The shape of 2 xp orbital is of  

dumb-bell shape.  2 xp = 0 at x = 0. Thus the orbital has a nodal plane in the yz - plane.  
2
2 xp  vs.  plot: 2

2 xp  is the probability of finding the electron in the 2px orbital. 

 2 2 2
2

o

x

x
a

p A e x


 ,     where  
12 532 oA a


 .  

When 2
2 xp is plotted against , the curve is given as:   

If 2
2 xp  is rotated by 360o along - axis, we get two lobes 

of equal probability at a given value of  on both sides of  
origin. The probability density extends along the - axis  
only. 
Radial distribution function, ( )P r : 

 
2

2

2

0 0

( )
xpP r dr d

 

 

 
 

   =
2

2 4 3 2

0 0

sin coso

r
aA e r dr d d

 

   


  =  
15 4 4

32
3

o

r
a

oa e r dr 


   

                 =  
15 424 o

r
a

oa e r dr


. Thus radial distribution function,  
15 4( ) 24 o

r
a

oP r a e r


 . 

 4 3 4( )
4 1o o o

r r r
a a a

o

dP r d
A e r A r e r e a

dr dr

               
= 3 44 o o

r r
a a

oA r e r a e
   

  
 

              =  3 4o

r
a

oA r e r a


  = 0. Thus, at r = 0 and  o

r
ae



= 0 or, r   ,  ( )P r attains minimum. 

But for  4 or a  = 0 or,  4 or a , ( )P r  attains maximum. 

Problem: Find the most probable distance from the nucleus of 2p state of H-atom. 

                  Given,  
3 2

2
2,1

1 1

23
o

r
a

o
o

R r a e
a

 
  

 
.    (SKB Univ., 2014)                       [Ans. 4 or a ]. 
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