QUANTUM CHEMISTRY - THEORY
Introduction:

The classical mechanics includes Newtonian laws of motion of macroscopic bodies, Maxwell’s
theory of eectricity, magnetism and el ectromagnetic radiation, thermodynamics and the kinetic theory of gases.
In the late nineteenth century, it was fdt that this classical mechanics was found not successful to explain the
behaviour of the sub-atomic particles. Such phenomena are black body radiation, photoel ectric effect, Compton
effect, spectrum of H-atom, etc.

In the history, first classical theory fails to explain the observed frequency distribution of radiation energy
emitted by a hot body. To explain the phenomenon, in Dec 14, 1900, Max Planck presented his revolutionary
theory to the Berlin Physical Society. He proposed the quantum nature of eectromagnetic radiation. According
to this theory, radiation is assumed to be composed of bundles of discrete energy packets; each is called
quantum or photon. The energy of the photon,

hc

gphoton =hv =7’

where v isthefrequency of theradiation and h is called Planck’s constant and its value is 6.626 x 107’ erg sec,

cisthevelocity of light in vacuum and its valueis 3x10™ cnvsecand A isits wave length of the light.

If a photon undergoes interaction with matter, either it can be completely absorbed transferring all its energy
(photo electric effect) or it may transfer part of its energy and its frequency is adjusted to a lower value, thereby
maintaining particle character (Compton Effect).

Intensity of the radiation is a measure of number of photons falling per unit time and it has no concerned with
individual photon energy. The energy of the photon is independent of its intensity and is dependent only on its
frequency. This concept is contrary to the classical ideas where radiation is considered purdy as waves and
energy is estimated by the intensity of the wave disturbance, dependent on the physical properties of the
medium.

In 1905, Einstein used this theory to explain successfully the photoel ectric effect in which emission of
electrons from metal surface occurs by irradiation of light. In 1913, Niels Bohr developed his theory of H-atom
assuming the quantization of angular momentum of the electron rotating in a circular path keeping nucleus at
the centre.

In 1924, de Broglie used the idea of quantum theory to explain the wave-particle duality of the radiation.
The development of the subject up to 1925 is based on assumptions and is called ‘quantum theory’.

In 1926, Erwin Schrodinger and Heisenberg independently devel oped quantum mechanics based on rigid
mathematical model. Thus the subject devel oped after 1925, is called quantum mechanics.

Black Body Radiation
What isblack body?

When radiation falls on an object, a part of it isreflected, a part is absorbed and the remaining
part istransmitted. This is dueto the fact that no object is a perfect absorber.
In contrast to this, we may visualize a black body which completely absorbs all
the radiations that incident on it and retain all the radiant energy that strikesiit.

For experimental purposes, a black body is generally a metallic surface with -
cavity blackened inside with atiny hole. Radiation that enters the holeis repeatedly radialicn
reflected within the cavity. At each reflection, a certain fraction of radiation is enbers

absorbed by the cavity walls and the large number of reflections causes virtually
all theincident radiation to be absorbed. Such a material is called a black body
and a nearest approach of a perfect absorber of radiation.

Criteria of the black body radiation:

A black body is not only a perfect absorber, but also is an idealized radiator. When the radiant
energy absorbed by the body is equal to the heat emitted; the system will bein thermal equilibrium. Thus, when
the cavity is heated, its walls emit radiation and a tiny portion of which escapes through the hole. Radiation
emitted by such a body at constant temperature is known as black body radiation. It can be shown that therate
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of radiation emitted per unit surface area of the black body is a function of only its temperature and is
independent of the material of which black body is made up (Kirchhoff in 1859).

Experimental observations: Radiant energy may be analyzed by passing it through a prism and breaking it up
into radiations of various frequencies. The energy associated with different frequencies can be measured.
Theusual practiceisto measure the amount of black body radiant energy emitted in a given narrow frequency
range. The frequency distribution of the emitted radiation is described by
thefunction R(v) , where R(v)dv is the energy with frequency
intherange v to v+dy that isradiated per unit times per unit
surface area of the black body. Some experimentally observed 4
R(v) vs. v curvesat two T are shown by the adjoining figure. . ¢ kY
(1) Distribution function per unit frequency, R(v) is moreat high 7 A
temperature than at low temperature. It is afunction of b, 2 .
temperature and frequency (v). Experimentaly, it isfound !.?{ £ e 1S00K 5
that at any temperature T, R(v) increases withv , reaches a = | b
maximum and then falls off to zero. o R,
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L)
-l--"l

(2) As T increases, the maximum in R(v) shifts to higher 0 1
frequencies.
Aswefind that when a metal rod is heated, it first glows red then
orange-yellow, then white, then blue-white.(White light is a mixture of all colors).
Our bodies are not so hot to emit visible light, but it emitsinfrared radiation.

Raleigh for mulation: In June, 1900, Lord Raleigh attempted to derive the theoretical expression for the
function, R(v) . He used the equipartition of energy theorem (Classical theory) and formulated

R(v) = (27rkT/cz)v2 . Theresult is found absurd as it predicts the amount of
energy emitted would increase without limit as v increases which are contrary to the experimental observations.

Plank’s Radiation Law: Radiation is emitted by any substance at any temperature due to oscillation of its
particles, so each particle acts as an oscillator. These oscillators vibrate with certain

frequency which is also equal to the frequency of the radiation they emit. Planck proposed the following two
postulates relating to quantum nature of radiation emitted by the oscillators present in the black body.
(1) An oscillator absorbs or emits radiation discontinuously, in theform of energy packets, called quanta or

photons. Radiation behaves like a stream of particles, possessing mass, momentum and energy.

The energy of each quantum radiation is given as

e=hv,
where v isthe frequency of radiation emitted by the oscillator and h is called Planck’s constant.

Thevalueof h inSl systemis 6.626x10* Jsand in cgs systemits valueis 6.626x10™** Js,
(2) The oscillator has definite amount of energy in discrete energy levels. The energy of the nth energy level
will beintegral multiple of a quantum. i.e.

gnznhV, n=73 N3 53:3]11/
where N =0, 1, 2, 3, etc, up to very high valuetendingto .
The population of oscillators at different energy levelsis given n=2 N?’—E;, =2hv
in the adjoining figure. The relative population with reference N,

to ground level (N =0) is given by Boltzmann distribution law, g, n=1 —L1 s =hv
N, /N, =™ or, N, =N, e \where As =5, —5,=¢
as £,=0. S0, N, =N,e " and &, =nhv.
Thus, N, =N,e ™/
The average energy of the oscillatorsis€ = E/N, E isthetotal energy and N is the total number of oscillators
in the black body. This can be written as,
Nog, +N,g,+N,e,+N,g; IN, g, EZN,e™  xnhv Yne
= = by /KT =K
No+N;+ N, + N, 2N, Ny € e

n EDZO

nhv/KT
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e MK | e VKT | Zar vk X+2X +3C +... b /KT

o Y e R e e s Vi a ., e e =X
_ X(1-x) X 1 _ h
Now taking the summation, weget & = hv ( )_1 =hv =hv or, & = hv/k—:
(1-x) (1-x) (1_ j e -1
X

[Mathematics: Let S=1+X+X*+ X +.... of, XS=X+X*+ X’ +...., subtracting thetwowe get S(1-x) =1

or, S=(1- x)_l.SimiIarIy, X+ 2% +3x° +.... = x(1+2x+3x2+....).Again, let S=1+2X+3x"+....

or, XS=x+2x*+3x"...., subtracting, weget S=(1- x)_z. Thus, X+ 2X% +3%° +....= X(1- x)_z]
The number of oscillators per unit area of the cavity wall within frequency range v to v+dv isgiven by

27v?

C2

Thus, the energy distribution, R(v)dv within frequency range v to v +dv isequal to the product of the
number of oscillators per unit area (dN ) and the average energy of each oscillator (& ).
27v? hy 27h Ve 27h %

R(v)dv=dNx& = 2 dv x ] = = X R _1dV . Thus, R(v)dv = 2 X kT 1
2zhc? 1

X
15 ehC/lkT -1

dN = dv , where c istheveocity of light in vacuum ,equal to 3 x 108 s.

dv .

Interms of wavelength (1), thedistribution, R(A)dA = da as|dv|=%dﬂ.

Thus, the energy distribution function within unit frequency range of the black body radiation is given by

2r7h v?
R(v) = 2 X R
. 27Z'h . h _ . W . . . 3 1
Taking, el A and Pl A, , we get the distribution function, R(v) = Av X—eAQv/r ok

Thus at lower frequency (v ), the non-exponential term (v*) dominates and R(v) increases with the increase

1
WJ dominates and R(v) decreases with

of v. But at higher frequency, the exponential term (
increase of v. So, R(v) increases with the increase of v passes through maximum and then drops almost to
zero.

The experimental curve, R(v) vs. v is explained by the Planck’s formulation of black body radiation.

It also explainsthat R(v) increases with increase of T so, R(v) isafunctionof v and T .

Thus Planck’s formulation, based on quantum theory, successfully explains the experimental observations of
black body radiation.

Quantum result of Planck isreduced to classical result of Raleigh when h— 0.

Max Planck planned to take h— 0O in hisresult and found that his expression is reduced to
Raleigh’ expression that is based on the energy equipartition theorem.
Expanding the Planck’s distribution function, we get

3 3
R(v)=2ﬂ2h v _2rh V——(Zﬂijxvz.

X = X = ——
c v () ¢ hv c*
1+ —+| —| +——|-1 KT
KT KT

But Raleigh expression fails to explain the experimental observations and so the correct expression can be
obtained only when Planck’s constant, h= 0.
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Photo-dectric Effect
The effect: It is the emission of electrons from a clean surface of some metals (like Na, K, Zn, €c)
when light of suitable frequency falls on the metal plate. The gected electrons are called photo-electrons.
Visiblelight is used for the alkali metal surface, near ultra-violet light for other metals and extreme ultra-viol et
for other substances besides metals.

Experimental set-up: In 1888, Henry and Millikan performed the experiment with a beam of visible
and ultra-violet light which falls on a clean surface of a metal in an almost evacuated vessel. They found that
electrons are emitted from the metal surfaceif radiation of suitable frequency is used.

. M = metal surface on which light is allowed to fall.

light beam P = dectron collector plate and is made anode (+ve) to
o accelerate the release of eectrons.
(o)t ) evacuafed G = galvanometer to record the current (photocurrent) | .
— quartz vessel This i isdirectly proportional to therate of electrons
electrons 'P emitting.

V = potential difference applied across M and P by using a
G a battery.
), (D When M is made (-ve) and Pis (+ve), eectrons are

1|11 accelerated towards P,
v When P is made (—ve) and M is (+ve), electrons are
retarded.

Observations of the experiment:

(1) Thereis no time-lag between the falling of light on the metal plate and ejecting of e ectrons from the plate.
That is, the process is instantaneous.

(2) For monochromatic radiation of fixed frequency, the photocurrent (i ) increases with the intensity (1) of
radiation. WhenV is (+ve) [i.e. P = (+ve) and M = (-ve)], | reaches saturation value and if intensity (1) of
light is doubled, photocurrent strength (i) also becomes doubled.

When V is made (-ve) [i.e. P= (—ve) and M = (+ve)], current strength
i decreases rapidly and becomes zero at a particular value of V, called

stopping potential (Vo).
21 Since Vo potential is required to stop the electrons of having maximum
I speed (V), then Vo is ameasure of KE of electrons, i.e, Vo = % mv?
(—ve) Vg 0 (tve)
V— Stopping potential and KE :
vis fixed but Iis varied This observation helps conclude that for fixed frequency of radiation,

i dependson | of light. Vo and hence KE of the gecting electrons does not
depend on intensity of radiation used.
(3) For fixed intensity of light, the photocurrent strength (i ) remains unchanged but stopping potential (Vo)
increases with increase of radiation frequency (v ).

i As v">v'>v VSV SV
This concludes that the KE of the emitted electrons (Y2 mv?)

I fixed increases with the increase of radiation frequency and
photocurrent strength (i ) remains unaffected.

~ P (4) Again if the frequency of radiation is decreased continuously,
GOV 8_}(%6) it is found that photocurrent (i)
Tis fixed but v is varied stops abruptly when the frequency I
becomes below a certain T . i
value (v, ) for agiven metal surface. This particular frequency is called EF ;.-"
threshold or cut-off frequency below which thereis no emission of electrons  (&¥y) rd
regardiess of intensity of light used. This cut-off frequency isthe r
characteristic property of the metal. 0
€ oy -
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In brief, we may summarize the observations as given below:

(1) The processisinstantaneous i.e. there is no time-lag between irradiation
and gection of electrons from the metal plate.

(2) When frequency (v) of radiation is kept fixed and intensity (1) is increased, photocurrent (i) is also
proportionately increased.

(3) When | iskept fixed and v isincreased, stopping potential (Vo) isincreased linearly and thus KE of the
eectrons (Y2 mv?) is alsoincreased since KE (Y2 mv?) = V.

(4) Thereisthreshold or cut-off frequency (v, ) below which thereis no photoelectric effect of the metal what

ever high the intensity light beam is used. This frequency is the characteristic property of the metal used.

Main features of the classical theory of light:

Main contents of the classical theory of light are asfollows:
(2) Light beam propagates as wave and the system absorbs energy of the light continuously.
(2) Energy of thelight beam depends on its intensity and intensity depends on the amplitude of the light wave.
(3) Energy of thelight beam does not depend on its frequency (). With increase of frequency, light will be

more penetrating due to shorter wave length and it adds to the color of the light beam.
Attractive potential of the electronsin the metal:
Electrons on the surface of the metal are freeto move from atom to atom and that gives riseto dectrical
conductivity to the metal. These electrons, however, can not come out of the metal surface at normal
temperature. Thisis due to the fact that when they try to be gjected outwards, they have (+ve) ions behind
which exert enough Coulombic attraction at the surface. Only when the electrons pick up sufficient energy by
absorption of light and overcome attractive potential, they come out of the metal surface.
[Similar phenomenon also occurs when the metal is sufficiently heated so that the electrons acquire enough
kinetic energy to overcome attractive potential for emission from the metal surface).
Failur e of the classical theory to explain the observations:

Classical theory of light fails to explain the observations of photoel ectric effect.

Observation (1):

When light beam falls on the metal plate, the el ectrons on the surface under exposure absorbs energy
continuougly. It will take time for the dectrons to acquire sufficient energy to overcome the Coulombic
attractive potential. Thus there should have some time-lag and the process should not be instantaneous.

Observation (2):
With fixed frequency (v) of light, when intensity (1) isincreased, it means that higher energy light beam falls
on the electrons. So the KE of the electrons should increase but not the photocurrent (1) strength that depends
on the number of electrons gjecting.
Observation (3):
With fixed intensity (1) of light beam, when frequency (v) isincreased, the energy of the light beam is not
increased and so KE of the electrons should not increase.
Observation (4):
According to classical theory, there should not exist any threshold or cut-off frequency (v, ), since even low

frequency but high intensity should favour the gection of e ectrons from the metal plate under the exposure of
light.
Success of quantum theory:

In 1905, Albert Einstein explained the photoelectric effect very nicely on the basis of Planck’s quantum
theory of light. According to this theory, light is composed of discrete particles, called photons each of having
energy v . When a photon of energy hv isincident on the metal surface, it gives up its entire energy to the
electron on the surface. The entire energy of photon is absorbed by the single el ectron on the metal surface.
Einstein suggested that a portion of the absorbed energy is utilized to liberate the electron from the metal plate
by overcoming the attractive potential, called work function (@). This attractive potential depends on the
nature of the metal from which the electrons are g ecting. Therest part of the absorbed energy of photon
imparts the dectron for its KE (%2 mv®). Thus, Einstein’s famous photoelectric equation is

hv = o+ (y2)mv?

From the experiment it is seen that when v =v_, KE =0, hence hvc = @ and the equation becomes
hv = hv, +(3/2) mv?

This equation explains all the characteristics of the photoelectric effect.
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Observation (1):
This explainsirradiation and g ection of electrons occur instantaneously. The dectronsimmediately gject as
soon as light falls onit.

Observation (2):
According to quantum theory, increase of intensity with no change in frequency increases the number of
photons falling per unit time. As more number of photons falls, more number of electrons are g ected from the
metal plate per unit time. Thus the photocurrent strength (i ) is also increased proportionately.

Observation (3):
When frequency of light is increased with no change of intensity, eectrons absorb photons of higher energy
and so KE of the gected electrons areincreased, i.e. 2mv? = hy —hv, . Thus KE of the emitted electronsis
linearly increased with frequency of light (v), so stopping potential (Vo) is also increased.

Observation (4):
The equation also explains the existence of threshold frequency (v.). When v <v., there will be no gection

of electrons and no phaotoel ectric effect as the energy of the photon ( hvC ) absorbed by the electron is not

sufficient to overcome the attractive potential. Since @ =hv,, so v, isameasure of the attractive
potential of the metal and it is a characteristic property of the metal surface used.

Experimental verification:

Difficulty in testing the equation is the need to maintain a very clean surface of the metal. Though Einstein’s
theory of photoelectric effect agrees well with the observations qualitatively, it was R A Millikan in 1916 who
made an accurate quantitative test of the equation. Replacing KE (Y2 mv?) by eVo, we have the equation

hv=hv +eV, o, v=v.+(eh)V,.
Millikan used different frequency of light (V') and determined the stopping
potentials (Vo).
When the frequency of light (V) is plotted against stopping potentials (Vo),
astraight lineis obtained with intercept equal to the cut-off frequency (V)

and slope equal to (e/h) Millikan verified the equation and had shown

that different metals used for experiment show different intercepts but
identical dope. Thisis dueto thefact that different metals have different
cut-off frequencies and hence have the different intercepts. The slopes contain
universal constants and hence have same valuefor al the metals.

Millikan also determined the value of Planck’s constant (h) from the slope as
he already determined the charge of the electron by his famous oil-drop experiment. The value of h, he found

equal to 6.625x10 %’ erg sec.

This proves the correctness of Einstein’s photoelectric equation and incidentally gives a decisive
evidence in support of the particle nature (atomic nature) of light.
I mportance of the effect:

Photoel ectric effect is widdly used in the construction of photoelectric cdll which converts light energy
into electric energy. Thistype of effect is also utilized in photospectrometer to determine the intensity of light.
Work function and lonization energy:

It is seen that work function (@) i.e. work or energy required to

/

-
Ve

" slope:(e,;h)

- —_—

B

Table of @ and IF in &%

remove the eectron from the surface of a metal is less than the ionization Metal | 0 | IP
potential (IP) i.e. work or energy required to remove el ectron from an isolated Ne |25 |52
gaseous atom in its ground state of energy. il I
In the metal, other electrons on the surface repel the electron to be removed E | 2.614.32
and hence @ islessthan IP of the isolated gaseous atom in its lowest energy Cr | L.87(3.08
state. Co |43 [T40
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Problem: Thethreshold frequency (v, ) of photoelectric emission for a certain metal is 10™ Hz.

Calculate the cut-off wavelength and work function. Calculate also KE, velocity and stopping
potential when radiation of 4= 1800 A is incident on the surface.

Answer: 4. =3000 1&, @ =413eV,KE =278¢V, V = 9.6 x 10’ cm/sec, Vo =2.78 V.

Problem: Light of frequency v isfound to gect electrons of velocity V, from a clean potassium surface in

vacuum. Which of the following is true concerning the phenomenon?
(A) Thefrequency v ismost likely in theinfrared region.
(B) This phenomenon is best explained theoretically by using the wave moddl of light.
(C) The minimum energy required to remove the electron from the metal is hy — % mv?
(D) Light of frequency 2v will eject electrons of velocity 2v,.

(E) A more intenselight source of frequency v will gect electrons with avelocity greater than V.
Answer: (C) [GRE sample question]
Problem: When Li is irradiated with light, the KE of the gjected dectronsis 2.935x10°Jfor 4 =300.0 nm

and 1.280x10 * Jfor A =400.0 nm. Calculate (a) Planck’s constant (b) the threshold frequency
and (c) work function of Li.

Answer : (a) h=6.625x10* Js (b) v, =5.564x10" Hz () @ = 3.7x107™"J.

Action small and action large

A dynamic particle may have several variables associated with its motion. Such variables
are position, momentum, angular momentum, azimuthal angle (for rotating system), energy, time, etc. When the
product of two such variables has the dimension of Planck constant (h), the pair of variables are called
conjugate variables, or canonically conjugate variables. These pair of variables areintricately related to each

other. Such pair of variables are linear momentum and position, angular momentum ( p,, ) and azimuthal
angle(¢), energy (&) andtime(t).

The product of the two canonically conjugate variablesis called
‘action’ (or characteristic action of the dynamic particle, Jc). The Planck’s constant ( h) is called ‘action

constant’. When Jc is much larger than h (i.e JC >> h), it is called ‘action-large’ and when Jc =~ h, it iscalled

‘action small’. Jc or h has the dimension, ML?T ™. Motion of electron in the atomic or molecular system exerts
‘action-small’ while motion of a macroscopic body is ‘action-large’. Quantum mechanics could be used to
explain or interpret the motion of action-small while classical mechanics is sufficient to interpret the motion
relating to ‘action-large’.

When a particle is executing periodic maotion i.e. when any one or both of the conjugate
variables will be repeating after certain fixed time or distance interval, the characteristic action integrated over

one period of motion is called action integral or phase integral. It is denoted by [ﬁJC .
Theseare [ﬁpx dx, [ﬁpq)dgo and [ﬁEdt.

Wilson - Sommer feld Quantization rule:
In 1915, W. Wilson and A. Sommerfeld proposed a general rule
independently to predict the energy values of stationary states of a periodic system.

Therule states that m pda, = n.h, where g, isthevariable along the k th degree of freedom which is

repeating after afixed time or distanceinterval and p, isits conjugate variable along that degree of motion.
N, = quantum number along this degree of motion=0, 1, 2, 3, etci.e., any positive integer including zero.
It is stated in detail as

“For system executing periodic motion, the phase integral of the conjugated pair of variables
in each degree of freedom will be integral multiple of Planck’s constant i.e. [ﬁ pkqu =nh. p, and q, are
some periodic functions of time, or any case p, remains constant, ¢, will have the periodicity but not
necessarily with respect to time.
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When an election is moving in an eliptical path keeping the nucleus at any of foci of H-atom
then according to the Sommerfeld model, both distance (r) of the electron from the nucleus and azimuthal angle
(@) vary periodically with time and so,

[ﬁ pdr=nh and [[j p,dp=nh,
where  n, =radial quantum number and n, = azimuthal quantum number.

Applications:

This quantization ruleis used to predict the expression of the discrete values of certain properties of the
dynamic particles executing periodic motion. Such cases may happen to Bohr model of eectron-mationin H-
atom, therigid free-axis rotation, particle in one-dimensional box, simple harmonic oscillation, etc.

(1) Bohr H-atom:
According to Bohr’s concept of H-atom, electron isrotating in a circular path with nucleus at the centre.
Radial distance (r) remains constant while azimuthal angle (¢ ) varies periodically with range0to 2 .

The conjugate variable of azimuthal angle is angular momentum ( p,, ) which remains
constant for the mation. Thus, Wilson- Sommerfeld quantization rule for the motion of eectronis

27
m p,de =nhor, p, -([ dp =nh o, p,= n%ﬂ :

Thisis one most important postulate of Bohr for H-atom.
It means that angular momentum of the election in H-atom takes
only certain discrete values and it does not change continuously.
It will be h/ 2z , 2h/ 27, 3n/ 27, ec, but no value between
h/2zand2h/ 27 or 2h/27 and 3n/ 27z

This quantum condition of P, leads to the expression of discrete energy values of H-atom. The velocity (v)
and radius (r) of the circular orbits also take certain discrete values.
But p, =mvr,so mvr = ”%ﬂ 0, V=nh/2znr or,V* = n°h®/4z*nr?.

Again when the election moves, the centrifugal force(m\/2 /r ) balances the centripetal force (262 /r 2) of the
election, and so mVv?/r = Z&?/r? or,v® = Z&’/nr . Equating V*, we haver = n°h?/4z*mze’ . Putting the
2w 7€’

nh
Thus, both r and v are quantized, certain discreet circular paths are allowed. The total energy of the eectronin

1
H-atom, E=KE+PE. KE=>=mv* but . =% o, and KE =22
2 r r r 2r

value of r in the expression of v, we get v:nh/[Zﬂm(n2h2/47r2mZe2)] or,V=

r 2 r r
The PE =—j (—Z—i)dr 2 Zez_[d—z = Z¢€? {—:—L} :—287 . Putting the expression of KE and PE, we get
o or Il r
2 2 2 2112 2 2.4
E:Ze Ze_ zZe but [ = r;h  hence En=_27zr2nzze
2r r 2r A mZe n°h
For H-atom, Z =1 and mis replaced by reduced mass of H-atom  , where u = MM whichisvery closeto
m, +m

M, . Thus it is seen that the energy of H-atom is quantized and it takes certain discreet values. (—ve) sign of the

energy signifies that the éectron is bound within the atom and energy is required to remove e ectron from the
atom.

(2) Rigid rotator

A rigid rotator is a dumb-bell shaped body in which two spheres are connected by rod of very thin breadth.
The system rotates about an axis passing through the centre of mass and perpendicular to the line joining the
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two masses m, andm, . Axis of rotation is assumed to befreg, i.e. it may attain any rotation in space.

The moment of inertia of therigid rotator, | = mr,” +m,r;” but according to the Centre
of mass

figure, mr, = myr, (condition of centre of mass) or, mr, +m,r, =myr, +mjr, m; 4 m;

m, o m 1
I Similarly, r, = .
ml+mzr milarly, r, ml+mzr er_ﬁ’_g

r -

2 2

I =ml( il r] +m{LrJ _ MM o = ur?, where y:ﬂ, called reguced mass o
m+m m+m, m+m, m+m,

therotator. The reduced mass of the system is not the total mass of the system; it measures the contribution of

rotating ability of the spheres.

or, [(M+m,) =my(r,+1r,) =myr so, I, =

Putting thisvaluesof r, and r,inl , we get,

Let m,[J m then gl MM m,, it ismore close to the smaller mass of the sphere. It means that lighter
m,

body contributes mainly to the rotational processi.e. lighter body moving and heavier body remains almost
stationary. If m =m, =m, then z=mny2 i.e both spheres contribute equally to the process of rotation.

For this system, the angle of rotation (¢ ) changes periodically within therange O to 2r .
The conjugate variable corresponding to¢ is p, which remains constant during the rotation.

2z
The Wilson-Sommerfeld quantization rule for the systemiis, m p,dg=nh or, j p,dp =nh
0

27
h
or, p, I de =nh or, P, = n(gj . The angular momentum is thus quantized.
0

The energy of the rotator, E = KE + PE but for thisrigid rotator, PE = 0 as no forceis acting on the system.
Thus, E=KE =% uV* but, V= or , where @ isangular velocity. Thus, E =1 puw’r? = %(,urz)a)z

1, , (lw) P2 _
or, E= Ela) = 51+ butlo=p, thus E="%, . TAEB—QEI
h 2p.2 M n=2 g -4F
Putting the expression, P, =n(2—j,wehaveenergy of therotator, E = 8.7 n=l g _plery
4 7~ =0 g _o

This system is anal ogous to the rotation of diatomic molecule and the connecting
thin rod is compared to the chemical bond binding the two atoms in the molecule.

However, energy of therotator can be formulated in another way by using the quantum condition of P, -

2 2
1 1 1 2 1 2_ 1 1 (lo)” p
E=KE==mV +=mV; = =m (o) +=m,(or,)” = Zo’(mr>+mr?) = Zle’*=—~2=-2,
oMY+ Sy = Sm(en) +om (er)” = Se(my s mr?) = T
h . n’h?
but P, =N 5= |- Thus putting the value of p,, , we have energy of the rotator, E = —-—.
2 87°l
Problem: The bond length for H *°F is 91.68 x102 m, Where does the axis of rotation intersect the molecular
axis? [Ans. 87.096 x10™"* m away from H-atom] [Burdwan Univ. 2015]
(3) Particlein one-dimensional box
Let us consider a particle of mass m which is constrained to move in one M= PE_
dimensional rectangular box of length L. It is assumed that no forceis acting on EE =
the particle except during collision at the wall it rebounds elastically.
The position ( X) of the particleis periodically within thelength O to 2L. # .
The conjugate variable of X is X- component linear momentum( p, ).
The Wilson-Summerfield quantization rule when applied to the system becomes 0 L
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2L

I p,dx =nh but p, remains constant since velocity of the particle remains constant
0

2L
asno forceis acting oniit, thus, p, j dx=nhor, p,x2L=nh or, p, = ”%L,
0
where n =1, 2, 3, etc excluding zero.

This states that certain X - component momentum values are allowed for the particle
executing periodic motion in a box. The energy of the particle, E = KE + PE

but PE=0. (Asnoforceisacting on the system). T LE4:16EI
2 2 2
nv, nh/2L ’h? =
S0, EZ%TTN)%:—( X) Z&Z—( / ) or, En=nh2. EHLEE:QEH
2m 2m 2m 8mL n_? Eo—an
This shows that the total energy of the particleis quantized and it takes certain n=1 E2 ~ h2/18m 2
R

discrete values only, though in classical theory it is assumed that energy of
the system changes continuously.

This energy difference between two successive energy levels (i.e. n—>n+1) is

2 h* n’h? (2n+1)h?
AE =B~ =(n+1) 8mL? 8ml? AE= e
This shows that for macroscopic body of large mass (m), AE — Oand energy then changes continuously.
Conjugated polyenes could be viewed as one dimensional box in which 7 - electrons are moving to and fro
motions periodically within the chainlength L. For example, in CH, = CH — CH = CH,, L = endto end chain
length of the molecule. m = mass of the el ectron.

(4) Simple har monic Oscillator:
One dimensional oscillation is viewed as a particle of mass moscillating along

X - axis through an equilibrium position (x = O) with restoring force F, .

For simple harmonic oscillator, this restoring force Fx is proportional to the
displacement ( x) from the mean positioni.e. F, ocx or, F, =k X, wherekis
restoring force constant, (—) sign is added to indicate that restoring force is acting

in opposition to the displacement of the particle. ' ()
The potential energy ( PE) :—'[ F dx= —I(—kx)dx or, (PE)=1k¢. =0
0 0 —

This indicates that the PE follows parabolic curve with X. Wilson-Sommerfeld

guantization rule can be applied to the motion of simple harmonic oscillator (SHO) as m p.dx=nh,
where N =0, 1, 2, 3, &c.

Inthissystemboth X and p, arevaryingwithtime. p, ismaximum, when X =0and p, =0when X is

maximum. The value of the phase integral [ﬁ p, dx can be obtained by graphical method or by direct
integration.

2 2 2
(a) Graphical method: The energy of the system, E = KE + PE = Z&-Fikxz or, +& =1.
2m 2 (2E/k) 2mE
»,

Thisis an equation of ellipse with coordinate axes, X and p, . /“—\
The semi major axis (@), = 4/(2E/k) and semi minor axis (b) = v2mE . W *
The displacement ( X) and the momentum ( p, ) of the oscillator at any instant

arerepresented by the coordinates of a particular point on this elipse. During one A=
complete oscillation, the above point describes a complete cycle on the dlipse in the phase plane. It should be
noted that the dlipse, we are talking about, does not represent the orbit of any real particle. The positions of
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the different points on the ellipse are the pictorial representation of the mathematical relationship between the
position ( X) and momentum ( p, ) of the oscillator at different instant of time. That is, the points are the
phase path for the linear oscillator.

The area of the éllipse = rab = 7 x /Ex\/erE =27rE\/E o, E 1\/? :E ,sincei\/E
Kk k 2z \m) v, 27.\m

is v,, thefrequency of the oscillator.

Again, the area of the stripe in the phase diagram = p, dx and is called unit action. 2

When the oscillator completes one motion, the stripe covers the whole dlipse. T

Thus thetotal area of the ellipse can also be represented as . e
[ﬁ p, dx, thus [ﬁ p, dx = E/v, by comparing the area of the ellipse in both the R e
Cases.

But Wilson-Sommerfeld quantization rule states that [ﬁ p,dx=nh.
So, E/v,=nh or, E,=nhy,

H=14

PE
= iy, T 'E, = 3hv,

E W= B =2, By i E,=2hv,
" B = h"n
-1 E|_‘I"'|.l E -0
n-0 g =n x=0 07
Enet iy lalck

The energy of SHO is quantized and the energy levels are equispaced. Thisis also called energy ladder.
Quantum condition also asserts that the phase path of the harmonic oscillator can only be discrete set of
dlipses which encloses the areas h, 2h, 3h, etc. The dlipse in between the two is not allowed.

(b) Mathematical method (Direct integration): The quantum condition for the system is [ﬁ p.dx=nh.
We havetotal energy, E = KE + PE = p?/2m+1kx’. At the two extreme points of the displacement (, ),

E =PE =1kx” sinceat these points, KE=0 or, X, :1/2E /K . Thus the displacement of SHO ranges
from —X,to +x, and so from —,/2% to +‘/2% in one direction of the motion. The action integral

+254
for one complete motion of the oscillator is 2 j p, dx=nh.
N
But E=pZ/2m+1k<¢ so, p, :«/(E—%kxz)Zm. Putting the value in action integral, we get
N 5

2 J. JZm(E—%kXZ)dX:nh.Theintegration, | =2x2 J. 2m(E—lkx2) dx ,
0

[Since F(X) = F(—X) soF(X) = evenfunction and hence _[ F(X)dx=2x '[ F(x)dx.]
-a 0

k

Nt A
. . _ 2 _ 2
Now the integration, | =4+/2m J. 1/(E—%kx ) dx = 4v/2mx > ! (——x jdx

-4J_ Jl_ (——x)dx.
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2
[Using standard integral rule of by parts, we get J-\/a2 -x? dx:%(\/a2 —x? +%Sinl(§j+C].
a

Applying it in the integration, we get

X |[ 2E 2E X g’ E E ~»
| =4dmk | 2 || == —x? | +=—=gin?| —=—= = 4Jmk | 0+ —sin?1] = 4Jmk x —x =
{2 ( K j+2k L/zE/kHO { Tk } K2

= 27E\nyK . Quantization rule states, 27zE‘/'?/ =nhor, E= nhx%w/k/m.

1 .
But, P k/m = v,, thefrequency of the oscillator. Thus the energy of the oscillator, E =nhv,.
T

(3) Another method using ener gy-time conjugate variables:

The oscillator comes to a definite position after certain timeinterval ( 7, , time period), where the frequency,

v, =1/7,. So, the phase integral involving energy and time variables is mEdt =nh.

T
Time of the SHO ranges from 0 to 7z, (time period). Thus, actionintegral, | Edt =nh.
0
0

.
But E remains constant during the oscillation, so E'[ dt=nhor, E= n% or, E=nhv,.
0 0
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Wave-Particle Duality

Wave aspect and particle aspect of radiation:

With the development of various experiments, it is conclusively proved that € ectromagnetic radiation
has both wave aspects and particle aspects. Interference and diffraction of X-raysin Bragg experiment proves
the wave nature while photoel ectric effect, black body radiation can only be explained by the particle nature of
radiation.

Electromagnetic radiation

e T

wave property particle propetty
(diffraction of X -rays) | (photoelectric effect)

Thus light seems to exhibit dual nature behaving like waves in some situations and particle in other situations.
Particles arelocalized in space while waves spread over space. These two aspects are contradictory. However,
This condition is hidden in Planck’s theory itself.

=hv =hc/ , the quantity &0
length (A ) is awave concept. So the equation itself shows dual behaviour of light.

In Planck’s equation & is a particle concept but the wave

photon

Particle aspect and wave aspect of electron:

Microscopic particles also behave a particle and wave both. For example, particle character of a sub-
atomic particle like electron is evidenced by the experiment of charge determination of electron by Millikan and
(e/ m) of electron in Thomson experiment. The mass and momentum are the characteristics of the particle

nature of electron.

Davission and Germer in 1927 showed the wave nature of eectron by their famous dectron diffraction
experiment. A beam of electrons are made to impinge upon a Ni-crystal and diffraction maximum is obtained.
They also were able to determine the wavelength ( 4 ) of the el ectron-beam.

Eleciion

particle paope ry wave property
{determination of charge and mass) | (diffraction of electron beam)

This shows a break-down of particle character in the micro world.

De- Broglie Relation:

In 1924, de-Broglie combined the wave aspect and particle aspect of light and formulated an important
relation between the two conflicting aspects.

He utilized Planck’s quantum theory and Einstein’s theory of relativity. The energy of the smallest unit
of light, called photon is given by Planck’s theory as

Eppoton =V, Ut V=C/A,%0 ¢ =hc/A.
Again, when mass of the photon is converted into energy according to Einstein’s theory of relativity
& gy = MC>.

photon

photon
. . hc h
Combining the two relations, we have = =mc® or, A= o but, mc = momentum of the photon ( p).

S0, 2=l

Y
Thisis the famous de-Broglie relation that connects the wave nature ( A ) and particle nature ( p) of light.
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De-Broglie extended the relation for matter wave also. He suggested that every particlein motion is also
associated with wave, like photon. Thus de-Broglie made a hypothesis that for sub-atomic particles in motion,

therelation A= % also holds, where A = wave length associated with the particle of momentum p .

It is obvious that wave character (A ) and particle character ( p) areinversely rdated. If ina
phenomenon, particle character becomes prominent, then wave character remains subdued. De-Broglie concept
does not mean that matter behaves like particle at one time and wave at another time in the same experiment.
Rather, wave nature is an inherent property of each dynamic particle. If in an experiment, the particle character
is revealed then wave character remains conceal ed. Both aspects do not appear simultaneously in any one
experiment. This aspects are complimentary to each other and mutually exclusive.

This relation also shows that for macroscopic bodies, p islargeand so A isso small that wave

character becomes negligible. Only for sub-atomic particles like e ectron, proton, etc. wave character becomes
important as P issmall.

Davisson and Ger mer electron diffraction experiment:

Davisson and Germer verified therelation in 1927 by their famous e ectron diffraction
experiment. They used Ni crystal as diffraction grating for mono energetic el ectron beam. The surface of the
crystal contains parallel rows of atoms with spacing of 2.15A. Waves falling on the surface gets diffracted at an
angle @, the angle between the direction of incident and diffracted beam.

Inthefigure, | and D aretheincident and diffracted beams. 1 2 P ;D'
AC = the path difference between the diffracted beams g SF
AB cos (90— @) =ABsin @ =dsin 8 = nA for constructive interference. £ Q‘fa"r

Thus, dsin @ = nA is analogous to Bragg’s relation of X-rays of light.

A B

Experimental set-up:
Davisson and Germer found that diffraction of €ectron beam
e o = wiaysd  OCCUrred at @ = 50° and 55° for electrons when accelerated

|-a.e|¢1.; e 1A= by 54 volts and 181 volts respectively.
flament " dates The wave length (1) of the electron beam when accelerated
i by 54 volts is predicted by de-Broglie relation as
: K 2
}L:E,but}rn\/’l:i:ev or, p>=2meV
s.:?’ P p 2 2m

dlecon - [ scale

e o, p=+2meV . Thus A=

6.625x10* Js

\/2>< 9.1x10>'kg x1.6x10 °Cx 54V

The experimental value of A from Davisson and Germer experiment is calculated as given below:
ni=dsing, but n =1 when 6 =50°, d =2.15A.

So, A=215A xsin50° or, A =1.65A. ,

Thus de Broglie predictionof 1 =1.67 A is in good agreement with the experimental value of 1 =1.65 A.

h
2mev

=1.67x10°m = 1.67A.

Putting the values, we get A =

Comparison between photon and electron:
Intherelation & o = mc?, m is the relativistic mass of the photon. A photon has a zero rest

mass, but photons always move at speed ¢ in vacuum and are never at rest. At speed C, the photon has non-
Zero mass.

Similar to photon, an electron is neither a particle nor a wave. It is something that can not be
adequately described interms of a suitable model.

The significant differences between light and el ectrons can be made though they both show
wave-particle duality. Light travels at a speed € in vacuum and photon has zero-rest mass. Electrons always
travel at speed less than cand have always a non-zero rest mass.
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Application of de Broglie Relation
Introduction: Imposition of wave character in the moving particle brings out the quantum condition of the
system. We can cite by two examples given below.

(1) Quantization of Bohr H-Atom:

: o h_ h . , N
DeBroglierdationis, 1 = —= — suggests that waves are associated with the electron moving in H-atom.
p mv

The wave in the stationary Bohr orbit forms standing wave whaose paosition of maxima and minima do not
change with time. A stationary wave produces a stationary pattern, its profile being fixed within the space
alowed to it and it does not travel beyond the allowed space.
Thus to form standing wave, the circumference of the Bohr circular orbit ( 271 ) must accommodate the
integral multiple of wavelength (nA)i.e. 2zr =nAt. J—
The wave length ( 1) associated with the moving el ectron T
in the Bohr orbit is equated with h/mv. ; i A
Thus, 2xr = n[Lj or, mvr= n(Lj I'; = 4
mv 2r /
de Broglie relation thus imposes quantum condition of the “m {
angular momentum ( mvr ) for the eectron moving in Bohr orbit A, f 4
of H-atom. ;™ ™ }
Using the above relation, mwr =n(h/2x), itispossibleto N A
derive the quantized value of energy of Bohr H-atom. M

2 4
E, :i(_ZE HE j,where,u - reduced mass of H-atom= — e _

2 h2 rm_’_rne

n

(2) Quantization of Energy of a Particlein a Box . niles

When a particle is executing to-and-fro-motion in one dimensional box, LT ,-f'* R
it produces standing waves. il
The nodes must be at the two sides of the box and distance between the walls must

beintegral multiple of half wave length (/1/ 2) . Standing wave produces stationary ’ "x‘__

energy state of the system. P
Thus, L=n(4/2) or, 2L=nA . But de Broglierelation gives 2 =h/p, . =1 1"
Putting, we get 2L=nh/p, or, p,=n(h/2L). ' L

That is x- component linear momentum of the particle in the box is quantized. Thetotal energy of the particlein
thebox is, E=KE+ PE, but for this system, PE=0, so E=KE = ( pf/Zm) . Now putting the quantum

(nh/2L)’
2m

h2
8mL?

condition of p,, we havethetotal energy of the particlein thebox, E, =

o, E = (nz)
This shows that energy of the particle in the box takes discrete values only.
The number of nodes where the amplitude of the wave is zero (except the two ends of thebox) = n—1.
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Heisenberg Uncertainty (I ndeter minacy) Principle
Principle:
The principle states that it is not possible to design an experiment with the help of which one can
determine simultaneously the precise values of a pair of conjugate variables like position and momentum,
angular momentum and azimuthal angle, energy and time, etc.

Mathematical form of the principle:
The uncertainty in position (Ax) and uncertainty in momentum (Ap, ) is given by the principle
AXxAp, =(1/2) 7, where i = h/4r , called reduced Planck’s constant.
Approximately, we can write AXx Ap, = h (Plank’s constant).
Other conjugate variablesfollow Ap,xAg~h and AgxAt=~h.
In general, the principleis ApxAq=(1/2)-+ , where p and q are conjugate variables in the same direction

in space. Momentum ( p ) paralld to X and position () along Xare complimentary and therefore can not be
specified simultaneously with precision greater than allowed by the principle.

Critical comment:

However, the value of any one conjugate quantity can be determined accurately at any time though
simultaneous determination of two conjugate quantities induces inaccuracy with the limit given by the
principle.

Momentum perpendicular to X and position along X are not conjugate variables and for this, the principle does
not holdi.e. Ap, xAX=0.

Approximate formulation and illustration of the principle

lenz
This principle can be approximately formulated as given below: t__}
L et the position of the electron is detected by a microscope using light of n, i
wavelength A . The position of the electron remains uncertain within the "-ﬂ?‘f'
length A (approximately) i.e. AX=A1. L _.fe-émm

Again, when the photon of the light strikes the electron it can impart momentur
The momentum of the electron remains uncertain within thelimit p, i.e. Ap, = p= 72 (According to de

Broglierdation).
Thus the product of the uncertainty of position ( Ax) and momentum ( Ap, ) of the electronis

AprAXz(%)x(i)zh.

Thisisthe lowest value of the uncertainty of momentum and position. If onetries to reduce the uncertainty in
position ( AX) to a negligible extent, then the principle suggests to use short A4 value of light. Thisimproves
the position measurement i.e.  Ax will be small but the e ectron recoil effect will induce large uncertainty in

momentum (Ap, = P~ % ) in the measurement.

Breaking of Newtonian mechanics:

The principle breaks the Newtonian mechanics in which both pasition and vel ocity (hence momentum) can be
determined very accurately and simultaneously for macro objects. Due to association of wave aspect in micro
particles, Newtonian mechanics fails and uncertainty develops.

The principle does not arise due to imperfection of the experimental technique but it is the result of the
interaction of the system with the measuring instrument. This uncertainty is thus a fundamental limit of nature.

Micro particles have no definite trajectory and re ection of Bohr orbit):

Since microscopic particles have no definite position and momentum, we can not draw any definite
trajectory of amicro particle. Thus the principle at once invalidates Bohr-Sommerfeld theory. Sincein this
theory, electrons are assigned to definite orbits (tracks) with precise velocity (and hence momentum) and
position. Thisregection of Bohr model of having a definite trajectory (orbit) can be explained as follows:
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Let the electron moving in Bohr orbit in H-atom with velocity, v=2x10%cm/sec and momentum,
p=nmv=9.1x10"*gmx 2x10°cm/ sec = 1.81x10 " gmcm/ sec.. Even we can determine momentum with

error within 0.1 % (0.001), then Ap =1.81x10"° gmem/ secx 0.001=1.81x10*gmcm/ sec.
Thus uncertainty in position according to the principle,

h 6.626x10 %' ergsec
Arx-- or, Ar= 9% 366x10°cm=3660A.
Ap 1.81x10“gmem/ sec
While the radius of the first Bohr orbit is 0.5A, the uncertainty in radius lies 3660A. That is, it seems that it is
not even known at a given instant whether the electron is within the atom or not.
The principle thus demonstrates the inadequacy of the Bohr orbit.

Energy time uncertainty and unstable state:

h
For energy-time uncertainty, the principle states that Ag x At > e where At should not be
TT

regarded as the uncertainty in the measurement of time, rather it should be treated as the duration of the
measurement or lifeperiod. If At isvery large, A¢ will be very small which means that the energy is
determined with great accuracy. That is, if the energy of a system in a given state has a precise value, the life-
time of the system in that state is infinite and we can say that the systemisin a stationary state.
This is in agreement with Bohr’s concept of discrete energy levels associated with stationary (infinitely long-
lived) states.

For unstable system (for dissociating molecule or atoms in excited state) whose life-timeis short say, At,

the energy levels areimprecisdly defined at the extent h/At .

Uncertainty of the conjugate variablesistheir RM S deviation:

o h [ 2 2| [(/2 2
IntheprmmplaApxxAXZE, Ap, = ((px)—(px> ) and AX= ((x y—{(X) )andso Ap,and AX

are root-mean-square deviation of momentum, p, and position, Xof a micro particle respectively.

Simple view of the uncertainty principle:

If two spots are viewed under a microscope (given in the sketch), there is limitation on the proximity of
two spots in order that these two can be detected as distinct spots. The physical principle of distance restriction
is AX>A/sna or, AXx> A (approximately). The photon of wave length A has momentum h/A .

Ax
Assuming that this momentum of photon is transferred to the electron which is then having momentum
uncertainty Ap =~ h/A and hencethe principleisthus Ap, x Ax~ h.

h h
Problem: Making use of the expression, Ap, x AX > e show that for afree particle Ae x At > = where
T T

Ae and At are the minimum uncertainty in energy and duration of measurement of energy and
duration of measurement of velocity, respectively.

2
Solution: For freeparticle, PE=0, s0 ¢ = KE = p2/2m or, Ag = (Z—pxj Ap, or, Ap, :[Zz—mjAg
m X
A h
Again, p, =NV, = m—X or, AX=&XAt .Itisgiventhat Ap, x AX>—,
At m Az

h
now putting the above, we get @xAg X &xAt zi o, AexAt>—.
2p, m A Ar
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Bohr’s correspondence principle:

Theory of micro particlesis in some sense finer than those of macro particles.
But in some situations, however, it is possible that some behavior in microscopic domain resembles the
classical interpretation. Thus, one finds a correspondence between classical and quantum results. Bohr’s
principlerefersto the N — oo isthelimit to bridge the results. The principle thus states that quantum results of
an event must go over to classical results when the quantum number describing the system becomes very large,
i.e. when N —> oo both theories merge. This is Bohr’s correspondence principle.

(1) Bohr’s correspondence principle and Bohr H-atom:
, 27°me’ A 2r°me’
Let us take the Bohr’s H-atom, whose energy of the nth state, E, = R where A= 7
n n

Thus AE=E,,~E,=—~ _+A_ AL 1 | o ap-a 200
(n+1) n n (n+1) nZ(n+1)
Thisis energy difference between the two successive energy-levels.

2nA 2A
o, AE=—.

n®xn? n®
Thus for thetransition of the atom from n to n+Jlenergy state, it absorbs one photon of energy hv .

2A 2A
Thus hv = AE = — o, v= h So the frequency of radiation absorbed by H-atom is predicted by quantum
n n

But when n—> o0, 2n+1[] 2n andn+1[] n, AE =

calculation. This frequency of radiation is called perturbation frequency as it disturbs the equilibrium of H-atom
by promoting the energy statefrom n ton +1.

But classical theory states that resonance absorption or emission of radiation would occur only when
the perturbation frequency matches the system frequency. In this example, the system frequency is the
frequency of the electron with which it is revolving round the nucleus of the H-atom.

v
Thus the system frequency, vgq = P for the nth state of H-atom.
r

7€’ and - n’h’ o\ v 47°me’ 2A _
nh Az’me’ ¥ 2zr  n*h®  nth P
Therefore, when n—» oo the quantum results merge with the classical results.

2
But v=

h 2 2
[NOTE: v and r can have the expressions from the two equations, (1) mvr = n(z—j and (I1) mw =e—2]
T r r

(2) Bohr’s correspondence principle and rigid rotator:

For rigid rotator, E = n°h?/87°1 . The energy difference between two consecutive energy levelsis
AE = (n+1)2 h2/87z2| —n’h?/87°l or, AE= (2n+1) h2/87r2I . If the transition is made by
absorption of ragiation of frequency, v, then hv = AE =(2n+1)h* /87l or, v =(2n+1)h/87 .
But when N—> o0, 2n+1~2n andso v = nh/47z2I . Thus the quantum result for the frequency of radiation
absorbed, called perturbation frequency (v, urbetion) = nh/47°1 .
Classical theory assumes that this perturbation frequency is equal to the frequency with which the rotator
o 1 n°h? n°h?
rotates (v whichisequal to — . But for rigid rotator, E==1@* =—— or, 0° =——
(Vo) R o J 87l 47712
w nh
s Vmem = — = >
27 Ar°l
This is Bohr’s correspondence.

or

. Thus quantum result and classical result merge each other when n— oo.
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(3) Bohr’s correspondence principle and particle in 1-D box:

% = (2n+1)h/8mL? , but when n—> o0, 2n+1~2n and v, paen = N/ 4ML.
=v/2L.But p=nh/2L or mv=nh/2L or, v=nh/2mL.

Thus, Ve, = V/2L =nhy/ 4ml? . Classical result corresponds to the quantum result when n— oo and

purturbation

Ontheother hand, v gq,

this is Bohr’s correspondence principle.

Problem(1): An eectron with an effective mass 9x10?° gm is free to move in a crystal |attice with interionic
separation 10~ cm. Find the various energy levels of the electron. Calculate the wave length
of the absorbed photons during the transition of the eectron fromthelevel n = 1totheleve
n=2.

Solution: we have the expression, E, = (n*)h?/8mL” . Putting the values, we get
E, = (n°)(6.627 x10 " erg sec)’ /(8x9x10** gm (10°cm)® ) =n*x6.1x10 "erg .

Thevarious energy levels could befound by putting n =1, 2, 3 etc.

Thus, E, =6.1x10 "erg, E, =4x6.1x10 erg, E, =9x6.1x10 " erg, dc.

The energy of the photons absorbed for transition n=1ton =2, hwv=E,-E,

or, hc/A = (4-1)x6.1x10 " erg . Thus, the wave length of radiation absorbed for the above
transition is 1 =(6.627x10" erg secx 3x10°cmsec ) /(3x 6.1x10 "erg) =1.08 cm.

Problem (2): Thedifferencein the ground state energies (kJ/mol) of an electron in one dimensional boxes of

lengths 0.2 nm and 2 nm is ----------===- : [GATE, 2015]
212
Answer. The energy of the electronin 1-D box isgiven as E = B Foe ground state of the electron, n=1.
h? h?
WhenlL =02nm, E =————— andwhenL =2nm, E,=——.
8m(0.2) 8m(2)

. . : h? 1 1
The difference of energies of the electroninthetwo boxesare AE=E, -E,=—| ——-—|.

8m| (0.2 (2

Putting the values of h=6.625x10*Js, m=9.1x10"kg, weget AE =1.48x107"%J .
The energy per mole, we have AE =1.48x107%J x 6.02x10% x10°% = 891 k¥/mol.
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QUANTUM CHEMISTRY - MECHANICS

Introduction
Wave-particle dual nature of microscopic particles: De Broglie’s suggestion of matter wave and its confirmation
by Davisson and Germer’s electron diffraction experiment conclusively proves that electron is not an ordinary

particle. It has both the particle nature [as evidenced by the experiment of determination of mass (m) and e/m

] and wave nature [as evidenced by Davisson and Germer’s electron diffraction experiment]. All sub-atomic
particles are found to possess both the particle and wave nature i.e, they play dual nature.
Thetwo natures of the electron are contradictory as a particleis highly localised i.e., it could not be found more
than one point at atime while waveis akind of disturbance which varies from point to point and cannot be
localised.

Necessity of quantum mechanical model: Therefore to describe the finer details of microscopic

(sub-atomic) particles like electron, it is necessary to create a mathematical model which can reconcile both the
particle nature and wave nature of the substance. Quantum mechanics is such a mathematical model.

Function used to define quantum mechanical state: In classical mechanics, position and momentum of a dynamic
particle are definite and so its state is defined by position and momentum coordinates which are expressed by
number only. But if the state of a microscopic particle is described by numbers, then it violates Heisenberg
uncertainty principle as it states that position and momentum of a sub-atomic particle could not be known
accuratdy and simultaneously. Therefore to incorporate the uncertainty principle, the state of sub-atomic
particle should be described not by numbers but by a function. A function is more generalised way of describing
astate. A continuous function refers to infinitude of numbers. These are usually functions of space coordinates
(Schrodinger representation). In one dimension ( X), a quantum mechanical state is thus defined by some
function of X only.

M easur able properties of a quantum mechanical system: The observable properties of a dynamical particle like
mass, position, velocity, momentum, energy, €tc, are obtained by treating the function with an appropriate
guantum mechanical operator. Each observable property has a definite quantum mechanical operator which on
operation with the function gives the value of the property. Though the uncertainty in the variables are
considered in quantum mechanics, the values of the observable properties of the system are obtained very
accurate. Thisis the triumph this new mode.

Classical Wave and Wave Equation

Classical wave and SHM isthesimplest one:  All waves originate from some kind of vibratory (oscillatory)
motion. The simplest of these is simple harmonic motion (SHM). A SHM is onein which some physical
quantity assumes definite value after a definite period of time. In a water wave, this quantity is the height of
water and in vibration of string; it is the vertical displacement of the string from its mean position. Thisis
sometimes called amplitude function (¢ ). This quantity is afunction of space coordinate (x in one dimension)

andtime(t)i.e, o= f(xt).

o : % direction of pregagation
Fal ™ il af veso

] i
e radmelr] ——— = dontr{fz -0y

T Ert

Definition of A4, T,v and v : This amplitude ¢(X,t) assumes the definite value as the waveisin
progress after the distance Axand it isthewavelength(ﬂ) of thewave. Thetimeinterval At at which it takes

same definite valueis called time period (T). Hence the velocity of thewave, c=4/T . But YT =v, the

frequency of the wave which is the number of waves passed at a point in unit time. Again, /2 =v , thewave

number i.e, it isthe number of wavesin unit length. The periodic nature of the certain property suggests that
the analytical expression is either a sine or cosine function of X and t. Such expression of ¢ isabtained by the

general differential wave equation,
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Fp_13%
ottt
The equation is derived from Newton’s 2™ law of motion and also considering that each wave propagates along

the medium continuously. The wave equation is a differential equation with a constant coefficient (C). Hence
this equation has a number of solutions. Let us consider a solution in terms of sine function, as

. X
=AsSn2r| ——vt |,
v (4 j

Gener al Differentia Equation:

where ¢ isaamplitude function, A isamplitude, Xisdisplacement of thewaveattime t. A and v arethe

wave length and frequency of the wave respectively. This wave equation represents a plane wave travelling
from left to right starting from the origin of the wave. An equivalent wave travelling in the opposite direction is

givenas ¢@= ASiI’]Z?Z’(%+Vt)

Formulation of Standing Wave Function: When the two waves of the above form travel with equal velocity but
in opposite directions, the resultant amplitude function is obtained by the principle of superposition of waves, as

o= Asinzﬂe—vtj+ Asin 272'(%+Vt) - ZAQn%.COSZm/t

This resultant wave neither move forward nor backward directions and it is called standing wave or stationary
wave. Mathematically, all waves whose amplitude function can be product of two functions — one dependent of
space coordinate (say, X) and the other dependent of time (t) are standing wave or stationary wave.
Characterigtics of Standing Wave Function: The standing wave equation shows that ¢ vanishes irrespective of

thevalue of t for the points at which Sin(27zx//1)= Oi.e, atthepoints, x=0,1/2,21/2,———nl/2. These

points are known as nodes (minimum amplitude). The distance between two successive nodesis 4/2. The

mid-point between two nodes is antinode (maximum amplitude)
Formulation of Differential Equation of Standing Wave: The amplitude function for standing waveis

@=2Asn2z(x/A).cos2mvt =y (X).f () ,
Where w(X) =2Asn2z(x/4) and f(t)=cos2zvt or, wewritesmplyas ¢ =y.f .

These two functions are independent of each other.

2 2 2 2
Therefore, a(f:fxa!'/z/ or,a(f:cosZm/tal/zl.
OX oX OX OX
; *p 2.2 , C
Again, YA =YX [—47[ 14 COSZm/t] =—A4r ?1// x COS27vt .
. A . \). . . . 0p 10%
Putting these expression in the generalised differential wave equation, 5 = peipn we get
X~ C
Py 1 , C . .
cos2zvt x > =5 X 47 —V cos2zvt . Now cancelling the like terms, we have
ox~ ¢ A
d’w 2142 L . . . .
o :—(47z //I )1//. Thisis differential equation of the standing wave where t is absent.
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The Schrodinger Time-independent Equation for Matter Waves:

Using the de Broglie’s wave particle duality, E. Schrodinger in 1926,
argued that microscopic particles such as el ectrons behave like standing wave in atoms and molecules.
Therefore, he proposed a wave equation analogous to that used to describe the standing wave system such as the
vibrating string tied at both the ends.
[Vibration of string isgiven as: The analytical expression
of amplitude functionis ¢ = Asin(2zx/4). ‘ ‘
For matter wave, it is y = Asin(2zx/1). 0 0
Double differentiation of i with respect to X givesthe (P ‘
differential form of the standing wave,

d%y
v _(4”2//12)‘/’ 1
The equation proposes probable distribution of the eectron instead of the well defined trajectory.

2
Schrodinger used the time-independent wave equation (jj—'// = —(47;2 /A2 ) v,
X

2

where ¥ = (X) , represents the quantity anal ogous to the amplitude function in classical wave.

2
Introducing the de Broglie relation, 1 =h/p, , C:j l';/ =—(4x° pxz/hz)t// :
X

where p, isthe X—component momentum .
Thekinetic energy, T = p,?/2m =E-V ,s0 p?=2m(E-V), where E = total energy of the system and V
= time-independent potential energy. Now replacing px2 in the wave equation, we get X - directional
2 2 2 2
Schrédinger equation, C:j 1,/2/ = —47[ XZ:;(E V) v oor, C:j 1/2/ = —8” mr(]ZE V) w . Wemay use i=h/2r,
X X

called reduced Planck’s constant in the equation and then it is

(211'/2/ ilrzn(E —V)y =0. Itisinonedimension time-independent Schrodinger equation.
2 2
However, in three-dimensions, the equation is 0 l/,:+ o l/2/+ 0 1/2/ 2T(E -V)y =0.
X~ oy° 0z h
G
But, Fer ? =V? (del squared), Laplacian operator. So the Schrodinger equation in 3-D
X

. , 2m o, -
is Vwy+—(E-V)y=0 o, —Vy+Vy=Eyor, |-——V°+V |y =Ey
7 2m 2m

2

or, I—]yx = Ey , where H= —:—'VZ +V andis called Hamiltonian operator is an energy operator.
m

Schrodinger equation is an energy eigen value equation. It is, in fact, the quantum mechanical analogue of the
classical standing wave equation. It describes the finer details of the particle in motion in atoms and molecules.
Predictions of this equation have been confirmed without exception.

Schrodinger Equation for different systems: The Schrodinger equation

(1) For particlein one dimensional box: For system, the potential energy (V) = 0, hence

w  2mE
(jj‘/2/+ pe; w =0 , wherem = mass of the particle moving in the box.
X ]
2 2 2
(2) For particlein three dimensional box: V2 + er;E w =0, where V> = a—2+a—2+a—2.
h ox~ oy® oz
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2
(3) For simple harmonic oscillator in 1D motion: C:j ‘/2/+i—';n[E_(]/2)k>(2](/, =0 ,asV =%kx2
X :
2
(4) For H — atom: Vzl//+il—/;l(E+e2/r)a//=O JasV =—= and r isdistance of the dlectron
r

from the nucleus and 2 = reduced mass of the atom. Laplacian operator in polar coordinates is

2
szizg rZE + 2% 9 sin¢9i +%a—2,where 0= zenith angleand
reor or) rcsnédoe 00) r<an“6op
¢ = azimuthal angle. Thus the Schrodinger equation for H — atom in polar coordinatesis
2 2
%E(rza—l//j+ 2? i(sin@a—w}+ . _12 8y£+2_/21 E+S w=0.
reor or r-sné oé 00 ) r°sn“8op- h r
(5) For rigid rotator: The particle of mass misrotating on the XY plane along the Z axisand V = 0.

o> 0 2mE
—+— |w +———w =0. For thesystemin polar coordinates, r is constant, &= 90" and
ox~ oy h

@ isvaryingfromOto2z . Whenit ischanged in polar coordinates, siné’zlaizo and
r

2 2y 2(ur?)E
dl//+2ﬂEz//=Oor, dlZJr ('u )

0 .1
— =0, sotheequationis — =0.
o0 = r’de® # do o
2
But ur® =1, moment of inertia of the system. So the equation is (:I ”Z+% =0

(6) For He atom: The atom contains two electrons and one nucleus of charge +2e.
2 2 2
(V12+V22)1//+2—él g+, % & w=0
h r.1 I’.2 r12
2 2 2 2 2 2
82+ 82+ 62 and V.2 = 82+ 62+ 82.
X~ oy 0z X~ 0y, 0z,
One electron has the coordinates (X, ¥;, z ) and the other electron

where, V,° =

has the coordinate (X,,Y,,2,). Thisisshown pictorialy as:

I nter pretation of Wave Function (v )

Introduction: The Schrodinger time-independent wave equation is the best mathematical model to describe the
motions of the particles in an isolated atom or molecule. The acting forces among the charged particles depend
on the space coordinates only and do not depend on time. The potential energy (V ) coming out from these
forces is also time-independent. For one particle in 3D motions, the Schrodinger equation is

2m
Vzl//'i‘?(E—V)l// =0.
Here, v is called quantum mechanical wave function and it is the function of space coordinatesonly i.e.
w="Ff(xy.2).
Interpretation of ¥ : (1) The wave function in quantum mechanics is the analogue of amplitude functionin

classical wave mechanics. However, amplitude function in wave mechanics can be determined experimentally
and hence a physical quantity. But wave function () is not to be thought of a physical wave but an abstract

mathematical entity and has no experimental bearing.
(2) It is supposed that all the information of a state of the system is mysterically hidden within the expression of
v and soit is often called state function of the system. Any observable property of the system can be obtained

by the mathematical treatment of the wave function of that system. If any property or information could not be
obtained from v, it is believed that this property or information is not at all present in the system.

(3) Though ¥ has no physical meaning as such, 1//2 bears a meaningful physical concept.
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Max Born in 1926, postulated that 1//2 gives probability density for finding the particle at a point in space,
henceit must beareal quantity. When  isacomplex function, y " is used as ameasure of probability of

finding the particle at the point in space. In general it is written asly/|” (modulus square of ). Thus classical

mechanics is a deter ministic theory but quantum mechanics fails to give exact trajectory or path of the particle
like classical mechanics. It gives probable positions of the particle at different locations in space, henceit is
probabilistic theory.

(4) Let Pisthe probability of finding the particle at the

point, A in space within range Xto x+dx, yto y+dy
and zto z+dz, thenit isthe probability of finding F
the particle in atiny rectangular box-shaped region
located at point (XY, z)in space having edgesdx, dy A dx
and dz. Born’s postulates is then probability

P = |v(xy, z)‘zdxdydz = |y dr, ; X
where dz isinfinitesimal volume element equal to y /
dxdydz in space at the point (X,y, z).

dz

|1//|2 is called probability density of finding the particle

at the point (x,y,z)and ||* d is called probability of
finding the particle within the volume element dz .
Similarly, if the wave function of a particle has avalue of y at some point A located at X within range dx, the
probability ( P ) of finding the particle between thisinfinitesimal distance range is
P= |1//|2 dx

(5) Probability idea also imposes that total probability of finding the particle in all available range must be
unity. i.e, I |’ dr=1.

all space
(6) If the particle is smeared into cloud, then often |1// |2 denotes the particle density. If the particleis charged,

then it denotes the charge density at the given point. This concept arises for the particle like e ectron due to
their wave character and are del ocalised.
Conditions of Accepted (Well-behaved) Wave Function

The Schrodinger wave eguation is a double differential equation and so it
produces a number of solutions of i . But all the expressions of 7 are not quantum mechanically accepted. The

guantum mechanical restrictionsfor 7 being well-behaved originate from the following two considerations.
(@ The Schrodinger equation must be finite at every point within the system and

(b) |1//|2 measures the probability density at a point and hence it must befinite
These above conditions put some restrictions of  for being quantum mechanically accepted.

(1) The accepted wave function must be single-valued.

-

V=de
=4 smi_I T
I ) w(x)
iy
x.)
x — 0 r
T
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w(X) assumes single-valued at a given point. But it is possiblefor  to have same value at

different values of X asfor the function y = Asin? viz. (X) = (X+ A1)
or at different value of @ for thefunction y(6) =y (27n+6) But this function is not acceptable as it

assumes morethan onevalue at x= X

(2) The accepteble wave function must be finite.
These functions, i (X) are

=4 sinﬁ . .
T i acceptable since at any point X
¥(x) the function is finite including
iy Zero.
xr — X

But these functions given below are not acceptable.
This also arises from the

Wix) = 25 vix) =x vix)=g= probability idea that [y/|
: never beinfinity and in that
case probability density
(R would beinfinity which is
- - not possible.
X—

(3) The acceptable wave function must be continuous.
This v isacceptable since it varies continuously with

Y =dsn—= the change of X. The probability of finding the
particle must be continuous. It means that the
probability density at X must not differ to large extent
at apoint X+ dx. For example, if the probability at
X were 90%, and that at the adjacent point X+ dx
only 10%, it would be highly absurd situation

. . oy 0O . .
Not only y is continuous, —l//,—l// v must also be continuous, otherwise double

ox oy oz

differentiation of w, V?w must beinfinite. But the Schrodinger equation is finite at every point

of the system.
In(a) and (b), ¥ functionsare

not acceptable since they
T = assume sudden change with X.
Lt & [T . .
¥ix) L,r In(c), ¥ iscontinuous but the

dy . ,
0 y_ X g slope d—l/l IS not continuous.
X

(4) w must be quadratically integrable. Otherwise the probability idk I
becomes untenable as

Il//zdl' isfinite. For example, I x*dx is equal to infinity hence
2 L . _.x =% 0 =
X~ function is not quadratically integrable. X —=
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Problem: Indicate which of the functions are acceptable as wave functions?

) w=x, (i)y=x> (ii)y=9nx (v)y=€ (vV)w=€* (Vi 1,//=e‘X2
(vil) ¥ =tanXx. [Ans. (iii) and (vi) are acceptable]

Problem: Show whether the following functions belong to the well-behaved class in the range given:
@ w=e"(0,x) (b)y=e*(—oc,+x) (c) w=sin"x(-1+1)

@ y=e"(-c+x) (@Qy=€(0x) () cosx (@ y=¢e"(02r) h)y=¢"
[Ans. (@), (d), (9)]

llustration: (a) y = e *(0, ) acceptable.  (b) not acceptableas when X=—oc, € —oc,
(c) not acceptable, asit leads to multi-valued. (d) acceptable  (€) not acceptable as
when X=oc, € —oc (f) not acceptable, i is continuous but (jj—l’// is not continuous.
X

(g) acceptableas = €’ = cos@ +ising.

Some I mportant Properties of Wave Function
(1) Nor malised Wave Function: If |y/|2 dr is the probability of finding a particle in the

volume element dz , then the sum of such probabilities over the entire space must be unity. Mathematically, it is
expressed as

I |l//|2 dr =1
all space
When a wave function satisfies this condition, it is said to be a nor malised wave function.

If awave function is not normalised, then it can be normalised by multiplying the function by a constant A,
called normalised constant so that

_[ |Ay| dr=1. Thevalueof Acanbecalculated by AZZ;Z.
all space J. |l//| dZ’
all space
If v isasolution of the Schrodinger equation, it could be shown that A/ is also a solution of the equation.

L
For aparticlein one dimensional box, the normalisation condition is I|z//|2 dx =1, if the particle is constraint
0
to move within adistance L .
This condition of normalisation arises from the fact that total probability of finding the particle within the all
available space must be unity.

Mathematically, we can write the normalisation condition as, Iwiwjdr =1, wheni=].

—oC

Exercise:
(1) The wave function of a particle moving within abox of length L isgivenby v, = As n*>—= nzx
Find the normalisation constant A.
Answer: Putting the normalisation condition, jwnzdx 1 or, AzjsnT dx=1
7}[25m2 X dx=1 or, —_[(1— ZMXJ dx=1 or, 7}[dx—%2:cosznﬂxdx:l

2 L
or, i><L:1, since jcosznﬁXdX:O, hence A= E .
2 5 L \/L
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(2) Thewave function for the ground state of H-atom is proportional to eﬁA0 , Where a, = constant.

_r
Find the normalisation constant, N such that y/(r) = Ne T is normalised to unity.

Answer: Using normalisation condition, we have I |1//(r)|2 dr =1, butdzr = dxdydz
all space

=r’dr sinfdéde .

o T 2 27 27 3 _
Therefore, J-(Neé"j r’dr J. sim9d6'.[ dp=1 or, NZX%XZXZﬂ':l o, N :(nag) d
r=o 0=0 9=0

. . . 1 Nz X
(3) Normalise the wave function cosnil_X over theintegral —L < x<L. [Answer: —COSL]

JL L

(4) A system is defined by the wave function, ¥ = Axe A . Calculate the value of Aif the wave

function is normalised. [Ans A= ( A )%‘ ]
(2) Orthogonal Wave Functions:
Thefunctions f and g are said to be orthogonal if I f*g dzr=0.
In quantum mechanics, there may be many acceptable wave functions to Schrodinger equation
Hy =By for a particular system.
Each wave function  has a corresponding energy value E . For any two wave functions y; and v/,
corresponding to the energy values E; and E; respectively, they are orthogonal to each other.

That is, [ v de=0,wheni=j.

all space
It means that two wave functions that correspond to different energy values of a quantum mechanical system
are orthogonal. [ In geometry, orthogonal means perpendicular to each other.]
Orthogonal wave functions are completely independent functions and one can not be expressed in terms of
other. It implies also that the energy levels corresponding to the orthogonal functions are not overlapping or
interacting each other.

Exercise: Check whether the wave functions of a particle in one-dimensional box, v, = Asi nnLLX

within box length L are orthogonal.

L
Answer: We have to show Iwi y,; dx=0. Now for the system,
0

© n. X 2 5 n.zx 2k —n, ) zXx +n, )X
Azjgnwgn’—dx:ijzgnwgnj—dx:i'[ cos(n J) —cos(n J) dx
0 L L 29 L L 29

(n _nj)ﬂxdx—iﬂcos(ni +n;) X
L 2 L

L L
ALl 1 )L (nen)ax] oA L1 )L (n+ny)ax
= —X— sin ——Xx— sn———~2
2 z\n-n L . 2 rz\n+n, L

2 2
AL L do-0)-2E L J0-0)-o0.
2z \ n—n; 2z \ N+,

This shows that wave functions of the system are orthogonal to each other.
(3) Orthonor mal wave functions: Two wave functions are said to be Orthonormal when the following
two conditions are simultaneously satisfied.

2 L
:ijcos dx
2 0
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I wiw,dr =1, wheni=j and I wiy,dr =0, wheni# j.
all space all space
Theintegration is known as Kronecker delta, &;; and for orthonormal conditions,

6;=1,wheni=j and &;=0,wheni=j.

. L , . 2 .
Example: Show that the wave functions of a particle in one-dimensional box, v, = \/E sSn— are

orthonormal.

(4) Degener ate Wave Functions: When two wave functions ; and y/; correspond to the same energy

E , the wave functions are said to be in a degenerate state.
However, the degenerate wave functions will not necessarily be orthogonal. The p - orbitals are
three-fold degenerate since they have same energy.
Operators
Formal treatment of quantum mechanics requires the idea of the operator algebra, eigen values,
eigen functions and a set of postulates called quantum mechanical laws. Let us start with quantum mechanical
operators.
An operator is a mathematical instruction to be applied to a function or a number to give a new

function or number. For example, \/_ is an operator which itself does not mean anything, but if a quantity is

put under it, it transforms that quantity into square root, another quantity i.e. \/4_1 =2.
d cosx

X

—sinx.

Similarly, % is an operator which operates on(cosx) gives(—sinx) i.e,
Ingeneral, Af (x)=g(x), where A is an operator operating on the function f (x)

_ _ d(5x°
giving anew function g(x). Let Azi and f (x)=5x*, then Af (X)=%:10x: g(x).

A list of mathematical operatorsis given below:

Operation Operator Result of operation on X
taking square () x°
taking square root \/_ x%
multiplication by a constant k k kx®
differential with respect to X di 3%
X
integration with respect to X jdx % x*+c

Algebra of Operator:
Although the operators do not have any physical meaning, they can be added, subtracted,
multiplied and have some other properties.
Addition and Subtraction:
The addition or subtraction of operators yields new operators. As for example,

(A£B) f (x)=Af (x)£Bf (x).

If A= log,, B= di , then sum or difference yields new operators, (Ioge_ dij . When operated on the
X X

L4(¢)

function X°, we get (Ioge_ij x* =log, X + ——2~ =2log, X+ 2X.
dx dx
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2 2 2 2,2 2
Problem: | — hz d 5+ h O{ZX o’ _ ch—ze""xz, where h, 7 and mare constants.
(87r m) dx (27[ m) (47r )
. 2 2
Then c is (A) % (B) %m ) % (D) & /n [GATE, 2014]

Ans. (C).

Multiplication: Multiplication of two operators means operations by two operators one after the other, the order
of operation being from right to left. For example, AB f (x) means that the function f (x) isfirst operated on

by B toyield a new function g(x) whichis then operated on by Arto yield function h(x).
ie ABT (x) = A| Bf (x) | = Ag(x)=h(x).
Let A=a¢, B= 2 and f (x)=ax’ then ABf (x):4x2.i(ax3)=4x2.3ax2 =12ax"*.
dx dx

If the order of operation is changed, the result of operation may be or may not be different.
The square of an operator means that the same operator is applied successively twice

ie A1 (x)= Al Af (x)|= Ag(x)=h(x).

- d . . dy . dfd . d :
Let A= — andf(x)zsmx,then A*f(x)=| — | sinx=—| —sinx |=—(cosx)=—sinx.
dx dx dx| dx dx

Rules for Quantum M echanical Operators:
(1) Linear Operators: An operator is said to be linear if its application on the sum of two functions gives the
result which is equal to the sum of operations of the two functions separately.

i.e Al f(x)+g(x)]=Af(x)+Ag(x) and Acf (x)=CAf (x), where C isconstart.
. d . . - d m n d m d n
Examples: (i) ™ isalinear operator since &(ax + bx )=&(ax )+&(bx )
(i) Square root («/_) operator is not linear operator, as \/f (x)+9(x) ;t\/f (x) +\/g(x)

log, Sin, CoS, etc are not linear operators.
All guantum mechanical operators are linear operators.

Commutator Operator: For two operators A and B , the difference (Aé - BA) is called “commutator operator”
. This commutator operator of f A and B is simply denoted by [A, I_%] .

If AandB commute, then ] 0, where Ois called zero operator which means multiplying a function

with zero. For example, A=

di B=3x? and f (X) =sinx, the commutator operator is obtained as:

[AB]T(x)=(AB-BA) f (x)= (3 sinx) -3¢ < (sinx)
= (6x.sin X+3x cosx) —3x° cosx=6xsinx=(6x) f(x).

d . :
The commutator operator of ™ and 3x* is 6x. Thevalue of commutator of two operatorsis same
X

irrespective of function. If we consider thefunction €, then the commutator of the above two operators will be
thesamei.e. 6x.

Commutative property: If [A, B] = 0 then the operators A and B are commuting and
when [A, L%] # 0, then the operators A and I.ss are not commuting.
Example: [, P, | Oi.e Xand p, arenot commuting but [y, p,]=0i.e y and p, arecommuting.
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Every physical property of a system has its quantum mechanical operator. If the two operators are not
commuting, and in these cases, physical properties (such as Xand p, ) they represent, cannot be determined
accuratdy and simultaneously beyond a certain limit.

If the two operators are commuting, then their corresponding physical properties (such asy and p, )

can be determined accurately and simultaneously.

Two physical properties position ( X) and X-component momentum ( p, ) have operators X andLi

271 dx

These operators are not commuting i.e. [)A( 2_d_} # 0, hence X and p, of asystem cannot
7l dx

be determined accuratdly at the sametime. It isto be noted that operators representing physical quantities must
belinear.

To show that Xand p, arenot commuting. Let the function is taken asy/ (), then

apl=|gx L9 [y hd hd o hdy(x) h d
[xp.]= [ 27 dx}”(x)_(xzm ox 27 dx X)‘/’(X)‘Xzﬂi o o<V ()]
h d h h dy(x h
w(x) _ LI v()__h
27r| dx 27 27 dx 27i

w(x) =0.
: h :
Hence the commutator operator is — o and the operators are not commuting.
7

Eigen Values and Eigen Functions: If an operator Aoperates on awell-behaved (i.e, finite, continuous and
single-valued) function f to give the same function but multiplied by a constant, then the function f is called

the ‘eigen function’ and the constant is called ‘eigen value’. The equation is called ‘eigen value equation’.
[Eigen means characteristic, a German word].

For example, if thefunction f =& isacted upon by the operator di theresult is
X
d —ax —ax
&(e )=-a(e™).

Therefore, (e’a") is the eigen function of the operator di with eigen value (—a) . An eigen function does not
X

have any absolute meaning, it always refersto an operator.
2
Example: (1) Show that sin2xis not an eigen function of the operator di but of % ;
X X

What is the eigen value?
Answer: %(sin 2x) = 2(cos2x) , hence sin 2xis not eigen function of the % operator.
d* . : d?
Again, y(sn 2X) =—4(sin2x), hence sin2xis an eigen function of the v operator
and the eigen valueis (—4).
Example: (2) Show that if i isan eigen function of alinear operator A with an eigenvaue A,
then cy , where C is constant, is aso an eigen function of A with same eigen value A .

Answer: Ay = Ay, but Aislinear, so Aoy )=chy =ciy = A(ay), here Cand A arejust the
numbers.

n

, . : d : .
Example: (3) Show that € isan eigen function of the operator o What isthe eigen value? Answer: When
X

(;i;n (eax)zan(eax)’ so € isan eigen function of i

and the eigen valueis a".

€™ is operated N times,
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The Schrodinger wave equation H v = Ey isalso an eigen value equation. i isthe eigen function

A

of the Hamiltonian operator H with eigen value E.
2

Both coskx and sinkx are the eigen functions of the operator % with same eigen value (—kz).
X

Such eigen functions are called degenerate functions. The 3 p -orbitals are also three-fold degenerate wave
functions.

Operator algebra differs from ordinary algebra. From I:Iz// = Ey , one cannot conclude that H=EH isan

operator and E isaproperty and two are not equal. Thus, i(e’zx) = Z(e’zx) , but d # 2
dx dx
2

Exercise: (1) Which of thefunctionssin3x, 6cos4x, 5x%, E 3e™* aredgen functions of %?For each
X X

eigen function, state the eigen value. (2) Show the function f (y) = y(6— y)e ¥ is an eigen function of the

operator A= —(d—iJ—g(ij—[zj+(%j Find the eigen value. {—E} :
dy”) yldy) \y) \y 3

Hermitian Operator: If alinear operator, A hastwo eigen functions ¥ and ¢ with eigen value, and if it

satisfies the following condition, then A is called Hermitian operator. The condition is,
It//(ﬁ(p)dr:.[go(,&//)dr, when y and ¢ arerea and

_[y/*(A(o)dr=Igo(A//)* dz, wheny and ¢ arecomplex, " isthe complex

conjugate of y . dr istheinfinitesmal volume element of spacein which the functions are defined.
2

Example: Check % as Hermitian operator of the eigen functions y = €*and ¢ =sinx.
X

ol A W d* . . _
_[1// (A(p)dr:J‘e"X —Sinx dx:—fe"xsnxdx and Thetwo integrals are same,
dx 2
hence — is Hermitian

ol a=fan e facfoamo g

There are three important properties of the Hermitian operator.
(1) Theeigen values of the Hermitian operator arereal.

It can be easily proved. Let A isHermitian operator for the eigen function with eigen value A .
Then jw*(/&//)dr:jl//* (/Iw)dr:/ljl//*wdr ,since Ay = Ay .
And jl//(A//) dr = Il//(ﬂ*l//*)df =Z*Jw*wdr, since (A//) =(/11//)* =y,

But AisHermitian operator, hence jw*(Aﬂ)drzjw(lw)* dr,s0oA=A1",ie, A isred.

(2) Eigen functions of a Hermitian operator corresponding to different eigen values are orthogonal.
Let w, and y, arethetwo eigen functions of a Hermitian operator Awith different eigen values

A, and 4, , then A//l =Ay, and ,54//2 = A, . If complex conjugate of v, isused,
Then Ay = Ly, = Ay, since A, isaways real.

Now, [vi(Am)dr=4[wpde and [y, (Ay,) dr=4[vpdr .

From these two equations, it follows that _ft//z (Ayl)dr —jl//l(/&/lz ) dr=(4, —ﬂz)jy/;yxldr

But left hand side is zero since A is Hermitian operator, hence (4, —ﬂz)jw;wldr =0,
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but 4, — A4, # 0, hence Il//;l/lldl' =0i.e, y, and y, areorthogonal.

(3) Theeigen functions ¢, of a Hermitian operator form a complete set of functionsif it ispossible to
expand any function, i that obeys the same boundary conditions as the eigen function.

YV =C@ +Cp, +Cpy; +—— i.e, l//:ZCI(pI or,
Thisis an important method of expanding a function in terms of a set of eigen functions.

Basic Postulates of Quantum Mechanical
Introduction:

Quantum mechanical calculations of observable properties are based on four postulates.
These postulates cannot be derived or proved rather these are taken as axioms. However, these postulates form
the basic format of quantum mechanics.
Postulate |: (Construction of quantum mechanical operators)
Examples of Physical Properties: Every physical property (observable) of a system has a corresponding quantum
mechanical operator. These operators are linear and Her mitian. The physically measurable properties of a
system are position ( (), momentum ( p ), kinetic energy (T ), potential energy (V ), total energy ( E ), angular

momentum ( L), etc.
Rulesfor Setting Quantum M echanical Operators: Rules for setting up a quantum mechanical operator for a
physical property are given below:
(2) First, the physical property isto be expressed as a function of Cartesian coordinates and
corresponding momentai.e., the property is expressed in terms of position coordinates ( X, Y, Z)
and corresponding momenta ( p,, P, P, ).

(2) These position coordinates and momenta are then replaced by corresponding operators.
(3) Operator for a position coordinate (say, () is multiplied by that variableitself i.e., §=qQ.
d .. d

(4) Operator for a momentum p,, say f)q =——=—-1h—. i in the operator is the 1%
271 dg dg dq
derivative with respect to (.
Formulation of qu : Theformulation of qu operator can be obtained from the differential equation of standing

wave along (- axis (asfor example, (- axis can betakenas X- axis).

2 2
The wave equation isd (;'”EX) =—AZTZ w(X) . But de Broglierelationis, 4 :LZ,
X Px
2 2.2 12 2 2 2
, d (;'/;EX) :_47;sz v (X) :%w(x) or, %%w(x) = plw(X) . Thisshowsthat p’ istheeigen
2 2

value of the operatorTF for the eigen function /(X) . Thus the operator of p,is Edi But (-) =i?, sothe
i© dx i dx

operator, P, =—ihdi inthe (+ve) direction.
X

Other linear momentum operatorsare P, = —ihdiy and p, = —ihdi :
z
(1) Construction of Hamiltonian operator (energy operator)
[The Hamiltonian reflects the contribution made by Sir William Rowan Hamilton to the
formulation of mechanics during the nineteenth century (1805 — 1865)] can be made by using the
aboverules.
2
Energy of the system, E = KE + PE = 2p—X+V(X) , When the system acts along X - axis.
m
. 1 1 2 d 2 A n K? d? n
Replacing by operators, H = %(—Ih %jx) +V(X) o, H-= Tom G +V(X) .
2 2 2
8_2+8_2+6_2 +V(X,Y,2)
ox- oy- oz

— I R &
In three dimensions, the Hamiltonian operator is H = —2—(
m
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2
o, H=_l"vy2 +V(x,Y,2)
2m

2 2
(a) For one-dimensional box, V(X) =0, so H ——h—d—
2m dx?
n d* 1
(b) For one-dimensional simple harmonic oscillator, \Y, ——kx o H =————+= Kx.
2 2max® 2
~ hz e2 . e2
(c) For H-atom, H =—2—'V2——,where,u is reduced mass of H-atomand PE, V = —— .
H r r
2 2
In polar coordinates, H_—— ig(r gj+ 1 9 (aniJ+ > .12 82 _e_.
2u|reor or) r?siné o0 00) r<sn“6 op r
o* 0
(d) For rigid rotator (PE = 0), H——— —t—|
2u\ ox* oy

hz 2 hz 2 . .
d _ & hee = ur?, moment of inertia.

In polar coordinates, H=-—— — = _ ,
P 2ur® do? 21 dg?

2 2 2 2
(e) For He-atom (two-€el ectron system), H :—h—'[V2+V2]—2i—2i+e_,
2,u S R A ¢
1 2 12
h? W1 .
(f) For asystem of n particles, H =——— %~ V2 +V(x,Y,2) = —=Z=V2+V(x,Y,2),
87° m 2 m

where m isthe mass and Viz the Laplacian operator of the i th particle.
(2) Construction of kinetic energy operator in one dimensionis given as

p2 A 1. d 2 A n* d?
T=-—" s, T=—|-iR o, T=———.
2m 2m( AX) 2m dx?
(3) Construction of Angular momentum operators (LX, . LZ)

Angular momentum (L) is very important physical quantity for rotating system.
Classically, it is obtained by the cross vector product of position ( ) and linear momentum( p) .

—rxp If T] Raretheunitvectorsalong X,yand z respectively, then we have

F +]y+kz, p=ip+]jp,+kp, and L=iL +]L,+kL,.
R T ¢
So, L=iL,+]L,+kL =(Tx+]y+Rz)x(Tpx+fpy+RpZ).Thus L=|x y z
Py Py P,

= i(yp,—z0,)+] (20, —xp,)+k(xp, - yp,).
Equating, we get the formulation of the angular momentum in classical coordinates, as
L, =yp,—20,, L, =20, —xp, and L, =xp, — yp, .
Replacing by the corresponding operators of position and momentum, we have
the angular momentum operators as

~ h 0 o r h 0 0 ~ h 0 0 h o
Li=—|Y—-z2—| L=—|2——X—|adL =——|X—-y—|=
27\~ 0z oy 2ri\ Ox 0z 21\ oy ~ oOX T 2xi a(p

or, L =—in yg—zg I:y:—ih(z.i—x.éj and [, =—in x.i—y.i _ind
oz oy

Commutator of angular momenta is given as
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O s N ()

. 0 _0 o 0 0 _0 0 0 o 0 0 _0 0 0 0 _0
—ihl|y—z—-y—X——2—.Z—+Z— . X— |-| Z—y——2—.Z——X—.Yy—+ X—.Z—
0z ox "oz oz oy ox oy oz X"z ox oy oz o0z oz oy
2 2 2 2 2 2 2 2
=—ih yg+yz o __ —xya——O— O 0exed -0-yz O o+ +0+xy8—2—xﬁ—xz 0
OX 020X Oyox 0yoz oxoz oxoy 0z oy 0z0X

=ih xﬁ—yﬁ =inl,.
oy ~ox

list of operatorscorresponding to the physical propertiesof the system isgiven here.

Physical properties QM operators
Physical ti M t R
ysi A properties QM operators potential energy (V) v
Position(x) X 2
— 2 7
X—comp. momentum( p, ) —ihdi total energy (E) 2mV tV(xy.2)
X
momentum( p) —inv or, fih%
. h2
Kinetic energy (T) 2m X—comp. angular momentum-—iz (yaa - Zaayj
z
2 2
x—component KE (T,) —h—d—z 0 0
2m dx y—comp. angular momentum —i# za——xa
X z

0 0
z—comp. angular momentum —|h(x—y J
oy ~ox

Expressions of Some Operators:

2
(1) Expansion of the operator, (Xdij . Let the wave function be w(X) . Then
X

( j () = ( jdw(X) XP {xdvl(x)}}:x{xdzng)+d"//(x)}
dx dx dx dx dx dx

24w dy() [, d  d ( d T ,d> d
= — .Th X— X —+X—.
v x| S ae Kax [P0 TS [ Xy o dx

2
(2) Expansion of the operator, [di .Xj . Let the wave function be ¥ (X) .
X

d Y . (d d (d \d{xw(x®)} (d dy (X)
Then (&X) w(x)_(&.xj(&.xjyx(x)_(d—.ij_[&.xj{x o +z//(x)}

= :%({xz dl/;)((x) + xz//(x)} L dl/;gx) 2X dl/;)((x) + xdl/:b((x) +w(X)
2 2 2
{x ;X—+3x:%(+1} (X). Thus, (%xj —x2§7+3x%+1.

d 2
(3) Expansion of the operator(xd—j . Let thefunction be y that depends on X.
X

d Y d d d dy d (dy ) dy
Then| — =l — — == — =07 v
m(dxﬂjw (dxﬂj[dxﬂ}y [dxﬂj(dij dx[dxm,, Wy
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2 2
_d W+xd—l/l+w+xd—w+xzt// ={d—+2xi+x2+1jy/.

dx? dx dx dx? dx
2 2
So, Thus [i+xj :—2+2xi+x2+1.
dx dx dx

Non-commuting Oper ators: When a physical quantity contains a product of a Cartesian coordinate and its
conjugate momentum (such as xp, ), we face the problem of non-commutativity in constructing the correct

guantum mechanical operator. Several different rules have been proposed to solve this problem.
Construction of quantum mechanical operator is difficult for the physical property that contains non-Cartesian
coordinates.
Postulatell:

The exact or precise value of physical quantities (like energy, momentum, angular momentum,
etc) of a given state of the system is obtained by the eigen value of the operator equation.
Thisis called eigen value equation and it is

Ay =Ly,
where A isthe operator of the physical quantity A, . For the quantum mechanical system, the operator A

must be linear and Hermitian and the wave function is well-behaved.
A . isthe eigen value of the physical property of the i th state of the system.

I
When the eigen value equation is satisfied, the physical quantity obtained is exact and precise. The
eigen function and the operator may bereal or imaginary but the eigen valueis always real since the operator is
Hermitian in nature. The eigen value represents the magnitude of the physical property.
If the eigen value equation is not satisfied for a physical quantity, then we get a spread jin the
measured values of the property. In that case, we remain satisfied with the average value of the property.
Example: The wave function of the ground state of 1D simple harmonic oscillator (SHO) is given by

_pe
v (x)=Ae 7 and f=h"Juk.
Show that the KE of the system does not satisfy the eigen value equation. But the total energy (E) satisfies the
2 2

uation. The operator of KE T is —————, hence
eq p () %

0 Tw(¥ =—;i2d—2(Ae-’“% jz—h—'zi{Ae_ﬁX% (_%ﬂz np {i(m—ﬂ% ﬂ

1 dX® 24 dx 2 2u | dx
2 7ﬂx2 7/3)(2 ’2 _,8x2
B 6" xpe 4(——2@(] =M(l—ﬁX2)Ae %
2u 2 24
] ) . o -
= 5 (1—,BX )(//(x)¢constantxt//(x).Theegenvalueequatlon|snotsatlsf|ed.
1
2 2
(i) The energy operator, H :—id—2+ékx2,
2udxs 2
A 5 n? d*y(x) (1 j
0 Hy (X)=| ———+=kX® |y (X)=———=2+| =kx® | (x
v~ S bioe o0 =2 SE Zioe (9

- E{h1m_h2(ﬂk)x2}+%kx2}w(x)

= h:xh’l k—h—'thfz( k)x2+}kx2 (x)
oy NHETS 2 Y
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=|= —Zkx*+=kx X)=|=—.[— |w(x) =| =hv, X).
[2\/#2 2 }/’(){227;#"”() 2o v (X)
This shows that the total energy of 1D SHO is constant and the eigen value equation is satisfied.

Itsvalueinthe ground stateis E, = % hv, . But the KE (T) of the system does not yield constant value. Its value

varieswith X.

One example of solving eigen value equation: When the eigen
value equation is constructed for a given property of the
system, the eigen function and eigen value can be obtained
by solving the eigen value equation.

Asfor example, let us consider arotating system. A particle
isrotating in the Xy plane along thefixed z - axis. L&t us

consider L, (Z- component angular momentum),
the property of the system.
The eigen value equation if the property is L /() = Ly ().

Y

But the operator of L, is[Z = —ihdi. ¢ istheazimuthal angle which is changing with the rotation of the

®
. e . : . dy(p) _
particleand itslimit is Oto 27 . Thus the eigen value equation for L, is |h—d =Ly(p) or,
®»
M:—!_—ngo. Integrating, we get IM:—F—ZJ‘dwzﬁjdw
w(p)  inh w(p)  inh h

or, Iny(p)=(iL,/n)p+InA (integration constant) or, y(¢) = A"
Let (L,/7)=mso, (@)= A€™ . Thevalueof A isobtained from the normalisation condition,

2n 2r 2r 2n
j|1//(go)|2dgo:1 or, _[z//((p)z//(go)*dgozl or, AZJ'eim"’xe’im“’dgozl or, Azjd¢:1

0 0 0 0
or, A= (]/\/E) . Thus the normalised eigen function of the system is /(@) = (]/\/Z)eim“’ .
Again, (L,/a)=m or, L,=n.Thevaluesof mcan be obtained from the conditiony (@) =y (27 +¢),
hence A6™ = AE™?™?) = AdM? x ™ o, @M =1
or, cos2zm+isn2zm=21. This equation is satisfied when m=0,+1, +2, £ 3, etc.
Therefore solving the L, - eigen value equation, we get the eigen function, y(¢) = (]/@) €™’ and the
eigenvalue, L, =nvi, where m=0,+1,£2 +3, ec.
For total energy of the system, the eigen value equation is H v (@) = Ey (@) , where H isthe Hamiltonian

n? d?

operator of therigid rotator and H=e— —

Using the above normalised function of the system,
2mr? do?

2 2
or, E:(mz)ﬁ , Where

v(p)= (]/\/Z)eim“’ , We can get the energy of therigid rotator, E = (mz) P

| = moment of inertia of the system= mr?.
Other examples:

2 . nxx
(1) Calculate the energy of a particlein 1D box of length L if the wave functionis y = \/Esmi :

L

2 2
(2) A certain system is described by the Hamiltonian operator H = —%+ X°. If = Axe 72 :
X
calculate the energy value of the system. [Ans. 3]
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h d2w(x)

Problem: A solution of a free particle Schrodinger equation —— >—=Ew(X) is
87°m dx
w(X) = € = coskx+isinkx.
(a) Derive the expression for energy ¢ E > and momentum * p * of the particle.
(b) Using the above relations, show that the wave length (A ) is h/p. [11T-JAM, 2012]

Solution: Putting the expression of 7(X) in the Schrodinger equation, we have

h2 d2 ékx h2 dZ eikx h2
_8ﬂ2m%:El/l(x) or, _872-2m d(XZ ):_8ﬂ2m( 2k2) ( )

v ().

Equating with the Schrodinger equation, we have E = (kz)

8r m
2 2 h
but for the free particle, PE = 0. SOE = KE = °— . Thus, P (k) hz o, p= k(—j .
2m 2m 87r°m 2r
ik(A+x) _

(b) Conditionfor w(X) isthat w(X)=w(1+X) or, € =¢

=d*xe“ o, €4 =1.

or, coskA+isinkA =1. Thisispossibleonly when kA =27 or, kzz%. Butpzk(Lj
2r

so, putting the expression of k, wehave p = (zlj X [lj or, 1= {Dj .
A 2 p

Postulate 1
Introduction: The second postulate states that Al// = Ay . However, the eigen value ( A ) can not be written as

A= a4 , because A
4 4
point of the system and it cannot be equated to a constant, A .

But if the numerator and denominator on the right hand side are multiplied by " and integrated over the entire

is the function of coordinates (X, Y, Z) of the system so its value varies from point to

space accessible to the system, then the expression Il//* Al//dl’/.[ v wdr isno longer afunction of coordinates

(asitisdefiniteintegral). It is approximated to the average value of the property A .
This leads to the third postulate when a great many measurements of any observable represented by the

operator, A are made on a certain system defined by the function, , the average value obtained as

I v Aydr
Jwpdr
When A isthe eigen valueto the operator A for the system characterised by the wave function, v ,

, thebar over A isused to indicate the average value of the property.

A becomes A .
jw ( )dr I(// Ay)dzr /Ifl//*l//dr

Il// ydzr Il// ydr It//*wdf

(v14v)
{wly)

read as bracketed " bar A bar v . When the wave function is normalised <1//|1//> =1 and the postulate is

=A.

Dirac has introduced bracket notation as (4) = A is sandwiched between * and . It may be

written as (1) = <1//| ﬁ{t//> .(A) denotes the expectation value of the property represented by the operator A

when a series of measurements carried out on the system or a single measurement carried out on some identical
systems described by the same state function i .
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When the physical property of the system does not produce exact or precise value, its expectation or average

valueis determined by the use of this postulate.
Examples:

(1) Let ustakethe physical quantity, position ( X) ina 1D box system. This quantity varies from place

to place while moving within the box and we can calculate the average value of the position only.

L
:jl,//f(y/dx.Thisfunction v isnormalised and itsexpression,l//=\/gsin? :

Thus :—jxs 2rdex——jx(l osznijdx——dex——jxcosznljrxd

2
= E{X?} —0=%.Thatis (X)=L/2. This show that the expectation location of
0

the particleis at the middle point of the box.

(2) A rotating system is defined by a function, y = (J/ N ) cos2¢ . Find the average value of the

angular momentum, P, which is defined by the operator is :Li

2771 dop
j d j cos?2 h d icosZ d —LTCOSZ (-2sin2¢p)d
yp,wde = Sy ¢2z|d¢J; pdp = 57 | cos2p p)de

ih { cos4¢T”
27° 4

———[cos87z — COSO]E’r = 0. The average angular momentum of the system, < p¢> =0.
Y3

A

_pe
(3) Find the expectation value of KE (T) of 1D SHO given by the state function  (x) = Ae %
and f=h"Juk.
<l// Tw} n d?
and KE operator, T

Th tation value of KE, (T
e expectation value 0 (T)= <l//|l//> A

FirstecaIcuIate(z//|1//> J.A2 X i = AZXZIeﬂXdX 2A% x %:AZ\/E.Then

—0oC

B e R )

oC

A e g 2o 2 o

iy ’%jfeﬂﬁ {eﬂ% +xeﬂx%(—,6’x)} dx:Az[hz—’B]“e %dx—ﬁj' e /dx}
= A? i—ﬂ]_ZxTeﬁxzdx—ZﬂT xzeﬂxzdx}zAZLh;ﬁ ][2 2(;/5) 23 2(;’@)}
{2618} ()1

A

Ty

o S0 -2 4
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1 1 [k 1 1 1
=—hx— |[—==hv,. Hence, (T)==hv,.Total enerlgy E==hv, .
4 2z\u 4 °° ") 4 ° » 2 °

Thusthe average PE, V = E—(T) Z%h‘/o—%h‘/o =%hv0.

Problem: Calculate the expectation value of the potential energy for a H-atom in the ground state.
Show that the average KE is equal to the total energy with the changein sign.

[Given, y, (H) = (;za§ )_}/2 (-:'7%0 ] [Burdwan Univ. 2012]

_r 2 I
Solution: The average PE, (V) = J-y/lsvl//lsdz' =(7ra§)71Ie J (_eT] e z r’dr sin@d@de

% r T 2 -
= (ﬂag)fl(_ez)je—zéo rdrIand@I d@:(ﬂ.ag) 1(_e2) F(Z)z %< 2% 271
0 0 0 (2/a,)
2 2 )
- ‘iaxezxi><4ﬂ=—e— . Thus, expectation value of PE, (v>:_e__
Tay 4 a, a,
Again, total ener E__e“_m but a, = i
gan, ay, E= 2 ao_ezm'
e'm h? e? e?
Putting, Exay=-—5x——=-— s0, E=——.
utting X 8, 2 X 2 > 2a0
e & ¢ &
Thus, (T)=E—(V)=-——+—=>—.Hence (T)=—.
28, a, 2a 2a,

This proves that average KE is equal to total energy with changein sign.
Example (4):

The average value of a physical quantity (say, E) of a state obtained by mixing two states defined

by wave functions y, and y, can be calculated by the use of this postulate I11.
The resultant wave function of the mixed up state is obtained by linear combination of y, and y/,,

Y=QuntGy,,
where ¢, and c, arethe contributing factors of v, and y, towards the mixed-up state function v .

_ Hydr
The average energy value of the mixed-up stateis E = W—W
[yydr

Let E and E,arethe energy eigen values of the two states defined by v, and y,,

A

) I—Ah//l =Ey, and I—Ah//2 =E,. H isalso aHermitian operator, so jwﬁ w,dr = jl//ZHl/lldT
and v, and , are orthonormal so Il//fdr =1 and Il//zzd’[ =1, and Il//ll/lzdf =0.
=_Jlemrew)H(arrey.)dr
[(ayi+cp,) dr
_ ijwlﬁ wldr+qczjwll:| t//zdr+clczjt//2|:| l//ldr+C§jl//2|:| w,dr
) ¢! [yidr+2cc, [y, p,dr +¢ [ylde
_ Cf_ft//lEll//ldr+ 20102le|3| l//sz+sz'[l//2E21//2dT
G+
_ GE [Jyndr + 206, [y Ep,dr +GE, [y,dr fE +200E, [y y,dr + GE,
G +C G+
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2 2
This average energy of the mixed-up state, E:( 2q 2]E1+( G ]Ez where
C+G ¢+

2 2
c <
and B

¢ +G ¢ +G

arethe contributing factors of E; and E, respectively of the energy of the

resulting mixed-up state.

(4) Find the expectation value of X for the state described by y = Axef% : [Ans. O]
Postulate IV
Time-dependent Schrodinger equation is considered as one postulate. The equation is,

|:|l// Ihaw
2

whereH =—;_Z—V2 +V  and y isafunctionof (X,y,zand t)i.e, v isafunction of space coordinate ()
m

andtime (t). The PE (V) isafunction of space coordinate only and assumed to be
time-independent. However, if the force existing in the system varies with timethen V will also vary with time.
When Xis taken the space coordinate and t the time, the time-dependent Schrodinger equation is

2 2
{—;’—m% +V(x)}u(x,t) _ ih% |
Schrodinger equation is a quantum mechanical analog of Newton’s 2™ law of motion:

Time-dependent Schrodinger equation contains the first derivative of 7 with respectto t, (61/// at)
Thus, singleintegration with respect to time yields the value of y at another timefor the system.

That is, if one knowsthevalue of ¥ at onetime, with also the knowledge of V , he can find thevalue of v at

another time for the system. The future state o the system can be predicted from the value of a given state.
This time-dependent Schrodinger equation is the quantum mechanical analog of the Newton’s second law.
However quantum mechanics predicts the probable state while classical mechanics predicts the state definitely.

Separation of ¥(X)and w(t):
Time-dependent Schrodinger equation can be resolved into time-dependent and space-dependent Schrodinger
equation when potential energy (V ) does not vary with time.

Let thewavefunctionis (x t) =(X)xy(t) . Putting in the time-dependent Schrodinger equation, and

differentiating, we get — (t) W( )+V(x)1//(x)><z//(t) |h¢//(x)aWT(t)
Dividing by w(X)x (), we have {—h—z (1x) Gzé//x(zx) +V( )} 1’) al/gt( ) = E (say).

Left hand sideis independent of t and right hand side is independent of X, hence to satisfy such condition,
each side of the equation may be equal to constant which does not depend on either Xor t.

The dimension consideration shows that this constant is energy term ( E ) of the system.
Separating the two equations, we get

1 dw(X) n* d?
S +V(X)=E or, ———+V X X) = Ew (X
e o VO — 5V [p (9 = B (9.
d dy (t
The other equationis im: E o ih v )= Ey(t).
l//() dt dt
This shows that ih% is also an energy operator for the eéigen value equation, i.e. ézih%.

Solution of time-dependent equation: On solving the equation, we get the expression of 1/ (t).
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w(t)
| et/
Therefore, thewave function, w (X,t) =y /(x)Ae /"

Et
:%J‘dt or, Iny(t) =%t+InA (integration constant) or, w(t) = Ae/" :
iz [

Stationary state: A stationary stateis defined by wave function, y(x,t)which is the product of two
factors— one dependent of space coordinate and other dependent of timei.e,,
y (xt) =y ()= (t).
By stationary state we do not mean that particle or particles of the system are at rest but it implies that the
probability density |1//|2 and the energy areindependent of time at any point.
Et
The probability dersity |y (1) =y (xt) 4" (x.1) = p (%) = Ap(x)e 1 x Ay (e /"
= AAw (X" (X) and thisistime-independent.
Et
Thefactor e 7 is of no significance and the essential part of the wave function, y(x,t)isthe

time-independent wave function, w(X) .

Problem: Calculate the energy eigen value of the system defined by y(x,t) = Ay (X) eE%' .
Solution: Ew(x,t) = ihw =ihx A@//(X).%GE%T' =ihx Ay/(x).%eE%f Xi_i
= E[A//(x) eE%f’} = Ew(xt). Thisenergy value E is thus time-independent.
Problem: If y, and v, arethe eigen functions of the operator, H with eigenvalues E, and E,
respectively, then show that = C v, +C, w, isnot an eigen function of H unless
E =E,
Solution: Given, Hy, =Ey, and Hy, = E,. Now, Hy = H (q v, +¢,v,) = gHy, + ¢, Hy,
or, Hy = GEw, +C,Ew, # constant x(¢ y;, + G, ).
But, when E, = E,, Hy = ¢ Ey, +C,Ew, = E(c .y, +C,,) = Ey andthus Hy = Ey .
Thus, if w, and y, arethe degenerate eigen functionsof H then (Qy,+Cy,) isadsothe

eigen function of H with same eigen value.
Problem: If y, and i, aresolutions of Schrodinger equation, then show that w =c v, +C, i, is

also asolution when ¢, and c,are constant coefficients.

Solution: Let us consider time-dependent Schrodinger equation, then HWl in agl/t/l and

.h@l//2

Hy, =i as y, and v, arethe solutions of the Schrodinger equation.

Now, Hy =H (qy, +¢,w,) =cHy, +c,Hy, = Clxlha(;/:l xih%

:iha(cll//l) ( ) (Cﬂ//l""cz'//z):iha_l//

+ih

Thus Ht// = ih%’” . It provesthat y isalso a solution of the Schrodinger equation.

Quantum Chemistry — Dr N C Dey

41



Particle in One-dimensional Box
Tz ¥ b

Description of the system: Let us take a particle of mass mexecuting
to-and —fro motion along X -axisin one-dimensional box of length L .
The potential energy (V) withinthebox iszeroi.e, noforceis acting V=i
on the particle within the box except during the collision at the walls
from which it rebounds eastically. The potential energy outside the L e

box is very high(V — oc). In other words, the particle is confined to

move in thelength L . The model is also called particle in a potential L T—s L
well asis compared with afrog in a degp well. Sketch of the system
Since the potential is discontinuous (suddenly rises) at x=0 and

x= L, itisconvenient to consider the Schrodinger equation inside and outside the box separately.
Schrodinger equation for the particle outside the box: Outside the box potential energy, V —oc, so the
Schrodinger equation for the particle is

dw 2m d’y 1 d’w
+—(E—oc)y =0 or, —ocy =0 or, y=—. or, =0,

ax®  n® ( Jv dx? v oc dx? 4
This means that the value of y outside the box is always zero. Hence probability density of finding the particle

lw[* isalso zero.
Schrodinger equation for the particleinside the box: Inside the box where V =0, the Schrodinger equation is
dw 2m dy 2mE d’y 2mE
+—(E-0)w =0 o, —+—— :
ax*  #? ( v ax* A ax? n*
The general solution of this differential equationis 7 = ASinkx+ Bcoskx, here A and B are arbitrary

+k%w =0, where k* =

w =0 or,

constants. However there are other solutions of the equation are e, e™ ec.
Now putting the boundary conditions, exact wave function for the system can formulated.
(i) when x=0, y =0, then the above general solution reducesto 0= AsinO+ Bcos0
o, 0=0+B or, B=0.
Thus putting the 1% boundary condition, we get the expression of & = Asinkx.
(i) Now when x= L, again i = 0, hence the solution becomes 0= AsinkL . Two possibilities may be
considered , either A=0 or, SnkL =0. But when A=0, ¥ =0 at everywhere of the box and this indicates

the probability density |l//|2 = Owithin the box irrespective of the value of X. Thisis not acceptable and called

trivial solution. It isrejected. The other possibility is SnkL =0 =sinnr,
where N= 0,1 2,3, etc, any positive integer including zero. But again N cannot be zero, becauseif Nwereto be
zero and v would become zero everywhere.
Soweget KL =n7 or k=nz/L. Putting thevalue of k, we get the appropriate wave function of the system
. NzX
=Asin— .
Y L

Nor malised wave function of the system: The value of A can be obtained from the use of normalisation

L L 2L
condition, jl//nzdx:l. Thus Az_[sin2 nﬁxdx:l or, %I(l—wsznijdx:l
0 0 0

L
2L 2L 2 2 L 2
or,i dX—i Cosznﬁxdx:l or,i[x]L—i[sinznﬁx} XL:]_ or, i><L—0=1 or,
29 2 L 2% 2 L |, 27 2
Az\/%. The normalised wave function of the systemis thus W, = %Sin%(

Thevalueof N=1,2,3 eci.e, any positiveinteger excluding zero. If N istaken equal to 0, then w,, =0 in

everywhere within the box(independent of position of X). But it is not acceptable asin
that case (n=0), the probability density becomes zero everywhere within the box.
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2
)

Energy of thesystem (E,): Wehavetherelation, k=nz/L or, k» =(nz/L)
but k?=2mE, /h? . Equating , we get 2mE, /7? = (nz/L)’.

2h2 h2
Thus the energy of the system, =n? il or, =n° )
ottesysen, & -r¥( 20| a £ -n[l]

We can extract some important information of the system from the above energy expression.
(1) The energy-valueis seen to be independent of X. This meansthat in a given state (N = fixed),
E, will besamefor every value of X. It refers that the particle has ‘constant motion’ in a given

date. This E, isKEonly andso E, = p?/2m, so p, is constant and v, thusis samefor any

position Xfor fixedn.

(2) Again, E, isindependent of time. This meansthat in agiven state (N = fixed), the energy of the
particle remains constant at any time. This refers ‘conservative motion’ of the particle.

(3) The expression shows that energy of the system is quantised and the energy levels are not

equispaced.
The quantisation is more prominent in the higher

energy levelsi.e for higher value of n.
n=4 - The energy spacing between two successive levels
Fie 1 h2 h2
AE=E, , —E =(n+1)° —n?
= B=(n+1) 8ml? [8mL2]
n=3 h?
= or, AE=(2n+1 :
E, =%E, ( )8mL2
. (4) Zero-paint energy (ZPE) of the system can be
n=2 E,=4EF obtained by putting n =1(lowest valueof n),
n= ]. .E._ = k:}rsmli E o h2
_E . Zero— point 8m|_2 '

This concludes that even at absolute zero temperature, the particle will be in mation, though
in classical mechanics, the particleis at rest at OK temperature.
Non-zero value of ZPE isin conformity with the Heisenberg uncertainty principle, Ap, x AX~ h.

If the particle would have zero energy, then its momentum ( p, ) would be zero as E = pf / 2m.
With p, having zero, Ap, =0and so Ax=h/Ap, —oc . But the particle must be somewhere
within the box of length L.

Uncertainty Principle from ZPE: The particle may remain anywhere within the box. The error
involved in a single measurement of position isthusL i.e, Ax=L.

. h* _pl
Agal n, EZero— point ~ 8mL2 | om

+p, to —p,, 0 Ap, = p,—(—p,)=2p,= 2><2—hL=%.Thus AprAx:%xL:h.

or, pxziz—r:_ i.e, p, canhaveany value between

ZPE from Uncertainty Principle: Conversely, we can arrive at the ZPE from uncertainty principle.

Theprincipleis Ap, xAx=h. But Ap, =2p, and Ax=L.So 2p,xL=h or, pxzz_r:_'
2 (h2L)y  m ?
Thus lowest energy, E:&:( / ) = h > or, ZPE= h 5
2m 2m 8mL 8mL

(5) Free particle suffers no quantisation of energy. This can be shown as follows:
2

8mL*
But for free particle, L —oc, s0 AE — 0. That is energy of the free particle changes

AE = Energy-gap for two consecutive energy levels = (2n+1)

Quantum Chemistry — Dr N C Dey



continuously, it can haveall values of energy. But when it is confined within a certain range of
space, the energy values are quantised. The greater the localisation, the higher is the energy
quantisation.

(6) The energy of the macr oscopic bodies also changes continuously and suffers no quantisation of
2

energy. We have AE = (2n+1)& , but for macroscopic body, mis very high and
m

AE becomes very small. Thus quantisation of energy isimportant only for microscopic particles.
So quantum mechanics need not apply for the motion of macroscopic bodies.
Problem: Calculate the spacing between energy levels for
(i) electron (mass ~ 10 kg) in 1D box of 1.0 A length and
(i1) aball bearing (mass= 1 gm) in a box of 10 cm length.
Comment on the energy gaps in the two cases.
Solution: (i) AE =102ev and (ii) AE =10.2x10*ev. In case (i) energy-gap is large so
quantisation of energy occurs whilein (ii) it istoo small for quantisation to be observed.
(7) The spectra of conjugated polyenes can be explained by this particle in 1D box mode.
The simplest conjugated polyene is butadiene (1,3but-diene)
CH,=CH-CH =CH, or, CH,-CH -CH -CH,.
The 7 eectrons are considered to be delocalised over the almost entire length of the molecule.
Thisis known free electron molecular orbital (FEMO) moddl. The dectrons will transit from
highest molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO).
In the example of butadiene, thereare4 7 el ectrons and the length of the molecule is
taken the box length. The 7 electrons are arranged in the molecule as

n=23 The eectrons will jump from the energy level, 2 (HOMO)
tothelevel, 3 (LOMO).
The energy required for such transition is

4 n=2 2 2 2
I AE=(2n+1) 1 = (2x241) 1 = N
E 4 n=1 8mL 8mL° 8mL
I! The energy is supplied by the absorption of photon of energy hv
by the molecule.
2 2 2
Thus, hy = Sh s o, he = S > o, A= 8mlc .
8mL A 8mL 5h

L = chain length of butadiene = 2 double bond distance + 1 single bond distance + end correction
= (2x1.34+1x1.54+1.54) A = 5.76 A. [One single bond distance iis taken as end correction]

Putting the values, we get

8% 9.1x10 ® gmx (5.76x10 ¥ cm)* x3x 10" cmsec™

5% 6.627x10 ' erg sec
is the wavelength of radiation required for transition in butadiene.
Experimentally, it is found that the radiation absorbed by the molecule has 4 =217nm.
Thus this simple modd can explain approximately the spectra of butadiene.
[Note: Selection rule for the particlein 1D box isn=1ton=2 or 4, etc but cannot be from
n=1to n=3 or 5]
Problem: Linear polyenes have general formula, CH, =CH (CH =CH )m CH =CH,.

Predict the smallest value of mwhich should make a polyene coloured, treating the
electrons according to the “particle in a box’ model. Assume avalue of 0.15 nmfor the
C —C bond length and neglect the end correction. (The visible region of the
el ectromagnetic spectrum extends from 400 — 750 nm). [Burdwan Univ, 2007]
Solution: For thelinear polyenes, when m= 0, the number of bonds = 3,

when M= 1, the number of bonds =5,

when M= 2, the number of bonds =7,

when M= 3, the number of bonds = 9, €c.

A= =207x10""cm=207x10°m= 207nm
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Thus the general expression of the number of bondsinthe molecule=2m+ 3.
The length of the molecule = (2m+ 3) x 0.15 nm. For the lowest value of m,

the molecular chain length will be minimum and this gives the least valueof A inthe
visiblerange 400 to 750 nm. So A =400 nm.

8mL’c
(2n+1)h’
Number of double bonds = m+ 2, so the electron shifts from m+ 2 to m+ 3.
Thus n=m-+2 and 2n+1=2(m+2)+1=2m+5.

We have the relation of the wave length absorbed by the moleculeis 4 =

8x9.1x10% (2m+3)° x(0.15x107 ) x 310"

Now putting the values, 400x10™" =

(2m+5)x6.627x10*
o (2m+3)’ _ 400x107 x 6.627x10% _ 4x6e27  _
~(2m+5)  8x9.1x10%x(0.15x107) x3x10°  8x9.1x(0.15) x3
2 2 2 2
Now, when m =1, M:S—:B.S7,Whenm=2, m:l=5.44,
(2m+5) 7 (2m+5) 9
(2m+3)° @
m=3, ~———— =—=9. So thevalue matches the result when m=2.
(2m+5) 11

Problem: Calculate the energy levels of the 7 -network in octatetraene, CsHio , using particlein a
1- d box model. To calculate the box length, assume that the moleculeislinear and use the
values 135 pm and 154 pm for C = C and C — C bonds. What is the wavelength of the light
required to induce a transition from the ground state to first excited state?
[Burdwan Univ. 2015]
Solution: Theformula of octatetraeneis CH, =CH -CH =CH -CH =CH —-CH =CH,.
The number of 7 electrons= 4x2=_8. The energy levels of the molecule are given as:

The transition occurs from n= 4(ground level)
to n=>5 (first excited leve).

=5
AE E, = 25E, ~16E, = 9E, - 2 E = Eg=25E)
= E,~E,=25E,~16E, = 9E, = .

This energy is supplied by the absorption of one 1 n=4 Ef 16]—:1
photon of energy of hv—E Thus, E—g—hz

201 sml — - 0=3 E;=9F,

? n=2 g.=
or, /I:SmCL . The length of the moleculeis _Hi_IEE 4E)
N g n=1 " p

L =4x135+3x154+165(end correction) T

= 1156pm = 1156x10 “ m.
Putting the values, we get

gmcl?  8x9.1x10%kgx (1156x10 2 m) x3x10°ms*

9h 9% 6.627x10*Js
Wave Function of the System (1/,, ) : The normalised wave function of the particle in 1-d box is

_ﬁgnmx
Yn L L

It is supposed that all the possible properties of the system could be obtained from the use of the wave function.
That is, all the information of the system remain hidden within the expression of v/, .
(1) Non-degener ate system: Each quantum state of the system as a specific energy value and a specific

wave function. It means that this system is non-degenerate and wave function is non-degenerate
one.

A= = 8.895x10"m= 489.5 nm.
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(2) Orthogonal wave function: The wave functions of the different quantum states of the system are
orthogonal and so the states they represent are not interacting and independent of each other.

I 2% . nzx_. nzx 1|t X, ¢ X

J;wigyjdx:E!snTsn’de:EHcos(n—nj)de—lcos(r\ +nj)de}
=1x£ 1 [sin(n—n.)”—X}L—le 1 {sin(r;+n.)”—x}L
L z{n-n L) L z(n+n, YL,

_ 1[ 1 ](o— )_%( 1 J(o_o):o, ey, and y, areorthogondl.

T ni—nj r‘H-nj

(3) Wavefunction (y,, ) varieswith X assinefunction. y,, vs. X can be plotted for the different

quantum states of the system.
(&) For the quantum state, n=1, the wave function

S n=13 \/E X
V= L

i TSNS

L 2
When x=0, y, =0, X=E, Wl:\/E (max™.)

n=2 and x=L, y, =0.Thus, y, startsfrom zero,
Lo attains maximum and again drops to zero.
L, (b) For state, n=2, l//2=\/§sin@.
L L
n=1 L 2
L When x=0,y, =0; Xzz,y/zz\/E (max™.);
0 L x=£, w, =0; itis called nodal point.
X— 2
SL < . 2 . 3nx
X=—, =—.[— (minimum). (c) For state n=3, =,/—9n—-.
v ¢ ). © Vs ﬁ :
L 2 L L 2
When x=0, y,=0; X=—, y,=,[— (maxi™); X=—=, v, =0; X=—=, y,=—,[—
Vs 6 Vs \/:( ) 3 Vs > Vs L

(minimum); x=L, w,=0.
From the schematic diagram of /, vs. X, itisseenthat v, , w, or wavefunctions of odd

guantum states are symmetrical. If amirror is placed at the middle point of the box, one half of the
wave function is mirror image of the other half.

v,, ¥,.. or wavefunctions of even quantum states are antisymmetrical.

(4) Probability density (l/ff) of the particle in the box is w2 = %sinznil_x . i v
w? canasobeplotted vs. X for different quantum states. B | s
ra LI ", !I|_:
(@) For the guantum state, n=1, l//f=% 'nzﬂTX.When x=0and L, 2 ) B
2 . . L , 2 . |~ o3
. =0 (probability density zero); X=E, 78 =E, maximum ¥l
probability density. ' .
2 2 . 227TX 2
(b) For the quantum state, N=2, =T n T.When x=0and L,y;=0;
x:% and % 1//5 :%,maximum probability density; x:%, 1//5 =0, no chance of
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finding the particle at the middle point of the box. Thisis the nodal point.

(c) For the quantum state, N =3, 2 :%sinzsil_x. When x=0 and L, w7 =0 theseareend
. L L s, 2 . - " i
points;, when x=€, > and e Vs :E maximum probability densities and these paositions
L 2L

are antinodes. When X = 3 and 3 w? =0, these points are nodal points.

[The wave functions besides being zero at the walls of the box, also have zero at various points within
the box. These points are called nodes of the wave function. The number of nodes=(n-1) ].

l/lf spreads out but measur ement gives definite location: Wave function () and probability density (%) are

spread out over the length of the box, much like a wave. However, quantum mechanics does not assert that the
particle itself is spread out like awave. A measurement of position will give a definite location for the particle.
It is the probability function () that spread out in space and obeys a wave equation. (Measurement paradox).

Special comment on 7 vs. Xplot: Inthe quantum state, n= 2, there s finite probability (though varying) of

finding the particle at all points on either side of the middle point of the box, but there is no chance at all to find
the particle at the middle point. Does it mean that the particle can move to and fro from one end to the other end
without even touching the middle point? Though it is not realisable, but it happens in quantum mechanical
calculation.

It can be explained if we consider the particleis smeared into dust forming cloud of varying density. Thereis
Zero density at theidle an maximum on either side of it. The behaviour of microscopic particle cannot be
realised in terms of visualizable model.

Quantum mechanical result corresponds to the classical result when N islarge: The probability density is not
uniform at all positions of the box. It is more pronounced when N is small. But the distribution becomes more
and more uniform as N increases. This becomes completely uniform for the very large value of n.

Theresult attains the predictions of classical mechanics which states that all locations of the particleis equally
likely. Thisfact isin agreement with Bohr correspondence principle.

2 2
Further, E= nz( L ZJ or, 8mI; , Y
8m|_ h I'“;l '|. "'I l,'\-:l 1l|“|| (NS i"-ll|"l
For macroscopic bodies, m, L and E arelargeand h issmall so n is ] “f.“ AR
very large for macroscopic bodies in classical mechanics and the w3 | 1S very lange

probability of finding the particle becomes uniform within the box.

Problem(1): Using particlein a box model, find the positions of maximum
eectron density in the molecule of butadiene, giving that the .
average C — C distanceis 0.140 nm.

Show graphically the variation of electron density in the molecule.

Solution: For themolecule, C, =C,-C, =C,, L =4x0.140=0.560 nm

(taking C —C bond length as end correction). In the ground state, the four 7 electrons are
accommodated in the first two energy levels, n=1and n=2.

, . 2 . X 2 . 271X
The corresponding wave functions are y/, = L smT and v, = L smT.
At x=L/2i.e between C,and C,, w7 = 2/L, max™. and y? =0.
On the other hand, at L/4 and 3L/4, w2 =2/L, max™ but w; isnot zero.

Therefore 7 electron density, w* = w? +w? ismaximumin C,—C, and C, —C, bonds

but minimumin C, —C;bond. 0
Graphical variation of the electron density of the molecule w?
is shown here.
C,=C,-C,=C,

Problem(2): For aparticleinthestate n=1 of a1-— dbox of length L,
find the probability that the particleisin theregion 0<x<L/4.
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Solution: The wave function for thestate n=1 of al -dboxis y; =\/Esm”—LX
The probability of the particleto be found within therange0< x< L/4
e X 27X b 1% 27x
— 2 2
P= ledx_—fsn dx_—f(l cosTjdx_— I dx——Icos—dx

= E[X]L/A_E L Sn% =£X£_i s'nz_g'no =E_ix(1_0)
L T2 T L, 2 4

or, probability, P = E—i =0.0908.
4 2r

Problem(3): A particle of mass 2.00x10* gisin 1 - d box of length 4.00 nm. Find the frequency
and wave length of the photon emitted when the particle goesfrom n=3 to n=2 levd.
[Ans. v =1.29x10%s™, 1=2.32x10"m ].
Calculation of Physical Properties of the System
2 . nzXx - h* d?
(1) Energy eigen value: y/,, = \/7 smi and H=——F+— d are the wave function and the
L L 872m dx®
energy operator of the system since the potential energy of the system is zero.

The energy eigen value equation is I—Ah//n =Ey,.

2 2 2 2_2 2142
Thus, —h—zd—(ASinnﬂXj= __h x[—n z JASin@ = ( L’ ]l/ln =Ey,.

87°mdx’® L 87°m L2 L 8mL?

2
Hence the energy of the particlein 1 — d box for the nth stateis E, = n (ShLZ J
m

Since the eigen value equation is satisfied, it is possible to find E, of the system very precisely.
(2) Square of linear momentum eigen value ( pf ): The corresponding quantum mechanical operator
h dYy__h o
27 dx 4% dx®
Now the X-component linear momentum square eigen value equation is f)f v, = pfl//n .

h* d? 172 h ( n’z? . nzx)  n°h? , n°h?
Thus, — —| AsIn =— - AsSn—- |= —-y, or, p, = :
472 O ( L 122 L)z /@ Py

This X-component linear momentum square of the system is quantised and takes discrete values.

for the property is p? = (

, . h
(3) X-component linear momentum ( P, ): The corresponding operator P, = Z_dE
i dx
. . nrX . . . .
The wave function v, = Asn2 isnotan eigen function of the operator p, . It means that

this valueis nat a characteristic property of the system and it can not produce precise value, rather
the value of p, spreads over the different observations. Hence we can find out the average value

L
of p, of thesystem. That is, (p,) = jz//n P, dx, where y, = \/% sinn—fx , normalised wave
0

function of the particlein 1 — d box system.

L
So, (px>zgjén@( h d) @dx— j mx( J « 7 cos X x
Lo L \ 27i dx 27i) L L
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2 h nrf. nrx  nzx nh t . 2nzx

= —x——x— [sin—-cos——dx = 2-jSin dx
L 27 Ly L L 2337 L
L
217 L |, 2z ALz T

Thezerovalueof p, signifiesthat thevalueof p, oscillate within the value i”%l_

21K2
(as pf = r;fz J The average value of the property is thus equal to zero. p, = +;—E when the
particle moves from left toright and p, = —g—t when it moves from right to left, so for one

complete oscillation of the particle, { p, )=

(4) Aver age position of the particle, <X> . Position of the particle varies within the box from 0 to L .
So it has no precisevalue The average position can be calculated by using postulate 1.

jwnxv/ndx——jxsmﬂx :_.[){1_ anx)

_ J 2nzx . L 1 L[ . 2nex] 1 (LY 2nzx|
= xdx——J.xcos dx=——=—x——| Xsin +—x| — | | —cos
L o L L |,

2 L 2nx L 2Nz
L 1 L
= ————[Lsin2nz -0sin0]- ~[cos2nz —cos0]
2 2nz (2nr)
%—ﬁ( — )—(2n|;[)2 (1-1)= %.Thee(pectedlocationof the particle <x>=% :
L
(5) Aver age squar e position of the particle <X2>: We have <X2>:J"//n§(2 w,ax
0
_T 2@ :—Ix (1— 2nm()dx:EJL‘xzdx—ij.xzcosznm(dx
0 L 0 L

—-—[ o a2

2 1 ( L j{ b 2n;rx} 2 L . 2n;zx
—— x| — || X*sin = —I
3 L \2m L |, L 2nrg

= ———[Lzsm2n7r—03in0]+i xsinzmxdx
3 2nrx Ny,
2
= L—i(o O)+— xIsnzmxdx I( 2n”ijidx
3 2nr 0 L L 2Nz
2 1 [ L j 2nzx |- 1( L ﬂ Znnx}L
= — 44— |- XCOS +—| —1|sn
3 nx 2nz L |, nz\2nz L |
L2 L L2 . .
= (LcosZn;r 0xc0s0)+——(sin2nz —sin0)
3 2 an°r
L2 L L2 L2 L2 L2
=~ (L-0)= ———— Thus (X’ .
3 2n27r2( ) 3 2n*z?’ S’< > 3 2n’7?
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Related Problems:
(1) Using particlein 1 — d box, verify Heisenberg Uncertainty Principle, Ap, x AX > %h ,

where  Ap, = root mean sguare momentum uncertainty = (< pf> —(p >2)%

X

AX = root mean square position uncertainty = (<x2>—<x>2)y2

2h2
ad (p)=T 0 (p)=0, (¥)== - and (x)==.

nzhz ~ O]% ( L2 L2 L2 ]%

Solution: Using the above data, we have Ap, x AX = [

41° 3 2n’z* 4
b b
or, ApxxAx:n_hx L(}_E_%] = n_h(i_%j
2L 3 4 2nx 2\12 2n°z

2_2 %
=L Nz —-2| , butn=1,2 3 etc, so Apx><Ax>L
4r\ 3 v

or, AprAx>%h.

(2) By useof expression, Ap, x AX > %ﬂ, show that for particlein 1 —d box, AEx At > %ﬂ :

p2
?nl

m .
or, Ap, =—AE. Again, p, =V, = m% or, Ax=§.px.
m

X

Solution: For particlein 1 —d box, E=KE + PE=KE = S0 AE:%Apxz &Apx,
m m

~m At D h h
Thus Ap, x AX=-~AEx"—.p, =AExAt, but AprAXZA”,soAExAtZAE.

X

This shows that making use of Ap, x AX > Aﬂ, it is possible to show that AE x At ZAE.
(3) A particle of mass mis confined to a1 — d box with origin at the centre of the box. The box

extends from —L/2 to+L/2.

The potential energy is V (X)=0; —L/2<x<+L/2 and V (X) =oc; [X>L/2.

(a) Write the Schrodinger equation for the system showing separate equations for theinside and
outside of the box.

(b) Assume a solution (inside the box) of the form, y/(x) = Asnkx+ Booskx, find out the correct
form by making use of boundary conditions. (c) Derive the energy expression of the particle.

2 2
Solution:  (a) Schrodinger equation is (lel'zy + 87rr]2m( E-V)y =0.
2 2 2
(i) Outside the box, V =oc, hence the equation is le/zl +87:]—2m( E—oc)y =0 or, C;Xf —ocy =0.
2 2 2
(ii) Inside the box, V =0, hencethe equation is c(ijTl’/szr Sﬂth =0 or, dTVZ/+ kzl// =0.

(b) General solution of the equation insidethe box is given as y(x) = Asinkx+ Bcoskx.
The boundary conditions are: whenx=—L/2, ¥ =0, so0=—Asin(kL/2)+ Bcos(kL/2)---(i)
andwhen x=L/2, =0, so 0= Asin(kL/2)+ Bcos(kL/2) -------(ii)
Adding (i) and (ii), 0=2Bcos(kL/2), but B0, so cos(kL/2)=0=cos(nz/2),
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when n = odd values, 1, 3, 5, etc. . Again subtracting (i) from (i), 0= 2Asin(kL/2), but A=0,
so0 sin(kL/2) =0=sin(nz/2) for evenvaluesof n =2, 4, 6, etc. So, (kL/2) =(n7z/2)
or, k=(nz/L) Thusfor the samevalue of k, both sine and cosine functions cannot be zero.
Thus we obtain two sets of solutions

w=Asn(nrx/L) ,when n =even and y =Bcos(nrx/L), when n = odd.

[ Extracomments: With respect to X = 0, at the middle point of the box, the cosine functions are
symmetrical and sine functions are antisymmetrical].

(c) The energy expression can be obtained from energy eigen value equation, H v =Ey o,

2 2 2 2 2
h d— Asin—nﬂx+ Bcosrwx = h _[ Asin—mx— hr Bc:os—mX
L L L L L

- 87°m dx? - 87°m L
21,2 2112
_n h2 Asin@Jr BCOS@ .Thus, E = n h2 .
8mL L L 8mL

(4) A particle of mass 10™° kg is rolling on a smooth floor of a 1x10™ m wide box with a speed

3.3313x10° ms™. Applying particlein a box problem, calculate the quantum number ()
corresponding to the tranglational energy of a ball. Will you consider the energy to be quantised in
apractical sense?

21,2 212
Solution: KE, T = E, sincePE=0inthebox. So T :Emvf :n—h2 or, n? :%(vf)
2 8mL h
2x(107°kg ) x(1x10*m
or,n=2"(y,). Putting values, n= ) (34 )(3.3313x10-3rrs-1)=1021.
h (6.626x10°* Js)

Largevalue of n indicates that tranglational energy of the ball changes continuously and
not quantised according to Bohr correspondence principle.

Again, AE =1.098x10 * Jand this confirms the conclusion.
Particlein Three- Dimensional (3 - d) Box

Let a particle of mass mis confined to move within a cube of edge length L . The potential energy (
V') is zero within the box and infinity out-side the
box. The particle can move without any restriction along

X -axis, Y -axisand Z -axis. It is sometimes called 3—d .
potential well. N V=0 V=
. . . o m
Schrodinger equation of the particle inside the box 5 . nce
PE=0 L

i—lere, v isafunctionof X,Y,Z.
Let y/(x, Y, z): X(X)xY(y)xZ(2) or,smply, ¥ = XYZ,where X isafunctionof X, Y isafunction of
y and Z isafunctionof z. Putting thevalueof w = XYZ inthe Schrodinger equation, we have

0*°X %Y 0°Z 8z°m L :
YZ=5+XZ 2+XY822+ = (E,+E,+E,)XYZ=0. Dividing by XYZ and separating the
. 1d>X 8z°mE,\ (1d?* 8z°mE,| (1d%Z 8z*mE
variables, weget | ———+ > +H o——+ > +H ot - =0.
X dx h Y dy h Z dz h
The sum of three independent terms is zero, hence each term is then separately equal to zero. Thus,
1 d*X  8z°mE 2 ‘mE
—d2+”2X:O or, d>2<+ 87[T"X=0.
X dx h dx h

2 87°mE 2 2
Similarly, the other equatio are given as ZZ+[ ”hz yjYzO and z§+{8ﬂhrerZJZ =0.
y z
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Each of the equations has a form similar to the Schrodinger equation for a particlein 1 — d box with similar
boundary conditions. Thisis equivalent to one of three particlesin three separate 1 — d boxes

of lengths L,, L, and L,. But for cubical box, L, =L, =L,=L.

n, =
Solving the equations, X=\/§sinnxﬂx,Y:\/§siny—y and Z=\/§sinnzﬂz,
L L L L L L

here n,, n, and n, arethe quantum numbersalong X, yand z directional motion of the particle.
They havevalues 1, 2, 3, etc any positive integer excluding zero. Total wave function is given as

KZJ% . nzx . N7y . nzxz
w=|—| 9n sn sn and

L L L L
h2 h2 h2 5 5 5 2
thetotal energy of thesystem, E=n?| —— |+n?| —— |+n? =(N>+nZ+n
¥ > X[8rri_2j V[Srﬂ_z] Z(Smsz (] Z)8mL2

Thetotal energy and wave function of the particle depends on the value of n,, n, and n,.

2 %
Zero-point energy is EmZSSThLZ and l//m:(%) s ”szin”TysinﬂTz.

= E22 = 12h%/8mL*- This level is non-degenerate.

-

L‘:w : 1"-‘ L‘;““
2L =L 2 Fooi =Ean = Ein = 9h¥/8mlL?

. This level is 3-fold degenerate.

TS "
] ] ] - 122 = o . *
1 1al Ex11=Ein1= Eizz = 6h*/8mL-. This level is 3-fold degenerate.
LF-' 5 bl . . -
111 E,;; =3h%/8mL?. D= =0y = Nz = 1- This leveli is non-degenerate .
Et r levels and corresponding wave functions are shown below. Some levels are degenerate and some are

nc  generate.
In e cases, there are degenerate levels, each is defined by a particular wave function but all the wave
fus wuuns have same energy value. The degeneracy is developed when the quantum numbers are

arenot equal, i.e, N, # N, #n,. The degeneracy can be lifted by slight distortion of edge of the box, i.e,, the

edges of thebox arenot equal, L, =L, #L,.

Problem(1): Calculate the number of degeneracy of the energy level 14h? / 8mL? for a particle
moving in a cube with zero potential energy.
Solution: Six-fold degeneracy.
Problem(2): Determine the degree of degeneracy of the level 38h*/8mlL?
of aparticlein a cubical box with PE = Q.
Solution: 9 -fold degeneracy. [1,1,6 —» 3-foldand 2, 3,5 — 6 —fold].
Problem(3): If benzeneis regarded as square box of side 0.4 nm containing
67z dectrons, then calculate the wave length of light to
promote a 77 electron to the first excited state.
Solution: The energy of the benzene in the ground state
Egs = 2x(2h?/8mL* ) + 4x(5h*/8mL*) = 24h*/8mL* , since E =(n} +n})h* /8mL*.
The energy in the excited state,

g
g

L
|‘J|—-L|.l|—-l.u|,_ll
R o = P ]

Nz

(=

Es = 2x(2h°/8mL*) +3x(5h°/8mL* ) +1x(8n*/8mL* ) = 27h* /8mL> .

The difference of energy levelsis equal to the energy
of the photon absorbed to promote the electron to the

excited state. That is, hv =hc/A =E—Eg —i— —i—E3 = Eay
or, hc/ A = 27h?/8ml* — 24h? /8ml? = 3n?/8ml2 E

Exn

— En
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or, 1 =8mlL*c/3h. Putting the values,

2 8x9.1x10%®gx (O.4>< 10*7cm)2 x3x10°cmsec™

— =175.8x10"" =175nm.
3x6.626x10 “"erg sec

Hydrogen-atom Problem
H-atom is the simplest of all chemical dements. Solution of non — relativistic and time —

independent Schrodinger equation of H — atom produces the expression of wave functions which are called
atomic orbitals. These are labelled as 1s, 2s, 2p, etc. The atomic orbitals are the building blocks for the
construction of molecular orbitals, which, inturn, play a very important role in the understanding of chemical
bonding, electronic structure and spectrum of molecules.
Thus, the quantum mechanical study of H-atom constitutes the most important problem in quantum chemistry.
H-atom is composed of one electron and one nucleus. The nucleus again contains only one proton. We may
consider two types of motion of H-atom.
(1) Trandatory motion of the atom as a wholein 3-d space. This motion is like that of free particle

and energy for this motion changes continuously. Therefore, this motion need not require quantum

mechanical treatment.
(2) Internal motion of the electron and nucleus within the H-atom. But nucleus is about 1836 times

heavier than the dectron. So, we may consider the nucleusis at rest (fixed nucleus

approximation or infinite nuclear mass approximation).
The spatial rotation of an electron around the nucleus in the H-atom can be described in terms of electron’s two
angular variables, @ (zenith angle) and ¢ (azimuthal angle), and itsradial distance r from the nucleus. The

nucleusis at rest at the origin of the co-ordinate system. Schrodinger equation for electron’s 3-d motion within

the H-atom is Vzl//+2ﬂ(E—V)l//=O , where

7w
2 2 2
V2= Laplacian operator = _2+8_2+_2 and u =reduced mass of H-atom = m, XM, ~m,.
ox" oy° oz m, +m,
Since mass of the nucleus is much greater than that of electron so 1 = m,. But we shall continue to write

instead of m,.
V isthe potential energy of the electron in the atom. This energy originates due to Coulombic force of attraction

(—€?/r?) of the electron from the nucleus. Thus potential energy,
2 2

0 e’ of e €

v :—iFdr b, F=-—= & V :-i’(—r—zjdr =

This shows that the PE of the electron is spherically symmetrical and V isinversely proportional to r and it
is known as central field problem (the force — e’ / r? actstowards the centre). The electron experiences the

same potential energy due to nucleus at any point on the surface of sphere of radiusr .

Hence the nameis spherically symmetrical.

Schrodinger equation in polar co-ordinates:

Since the Schrodinger equation of H-atom contains radial distance (), it is better to write the equation in polar
co-ordinates. In polar co-ordinates

, 10(,0 1 o(. ,0 1 o
Viess—Ir" = lt5———|9N0— |+ 5——==-
reor or) r<sné oo 00) r<sn“0 op

Thus the Schrodinger equation is given as

2 2
%2(r2gj+ 2% i(sin@i]+% 82 z//+2—/; E+S w=0.
reor or) r<sné ol 00) r-sn“6ogp h r

The wave function, y dependson 1,6 and ¢ . Thuswe canwrite i/ (r 6 9)=R(r)xP(0)xF (), where

R, Pand F arethefunctions of I,6and ¢ respectively .

In brief, we can write ¥ = RPF and thefunctions R, P, F are independent of each other.
Separ ation into three equations — each containing one variable:
Now replacing  in the Schrodinger equation and differentiating, we get
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2 2
PF 8(r25Rj RP 5F+2,12¢ - & lrPE 0
2 or o) r smeaé’ r sn’0 op®  h T

Dividing by RPF and multiplying by r? and rearranging, we have

2 2
1op®), 1 igneaj L_oF 2wt &) g
Ror or Psné& o6 00) FsSn*0op® r

2 2
or, lg(rzaRj 2,qu E+S |=- 1 i(sin0$j+ ,12 g F2 =1(1+1).
Ror or h r Psné 06 060) FsSn“ @ op

Each side of the equation must be a constant, as LHS depends on r while RHS dependsongand ¢ .

| isconstant and called azimuthal quantum number, having values 0, 1, 2, 3, €c.
Now Schrodinger equation is separated into radial part that depends on r and angular part that depends on
angles @ and ¢ .

2 2
Radial part is g(rzcl—Rj+ 2 e € 10+1) |R=0
dr dr h r

Psnég 06 00) Fsn?0 op 09
Again the angular part could be separated into two — one depending on @ and other depending ong .

2
and angular part is 1 a(sinH@] cs 1 oF +1(1+1) =0.

Multiplying by sin® @ and separating into two sides dependingon & and ¢ , we have

sm@d(sngdP 1dF_mz( ).
P do do F do?

Each part is constant and M is called magnetic quantum number that depends on the value of | .
Thus, three separate equations are given here:

2 2
(1) r - dependent equation, i(r2£j+{2’ur (E+eTj—I(I +1)}R:O

j+|(l+1)sm 0=

dr dr h?

(2) @ - dependent equation, Sinéi(sinﬁd—Pj+[l(l+1)sin2¢9—m2]P=O and

do deo
. d’F
(3) ¢ - dependent equation, — +NTFF =0.
@
Energy eigen value ( E,): Solving the radial part equation (1), the expression of the energy of the
. . 1) ue 1)\ 27°ue'
stem is obtai ned. =—| — |[=— o, =—| — |—F—.
R 5 (nZJZhZ 5 (nzj h?

The energy is found to beidentical with the value calculated from the Bohr mode of H-atom. Thus, this
expression of energy can explain the spectrum of H-atom successfully.

The potential energy, V = _e% anditis (-ve) aways. E = KE + PE and KE is always (+ve).

Asthetotal energy (E) is (-ve), hence numerical value of PE is greater than the KE of the electron.
The éectron is thus remains bound within the atom and energy is required to separate it from nucleus.
Quantum numbers (N,I and m): When the three differential equations of the Schrodinger equation are
solved, the solutions contain three quantum numbers — principle
guantum number ( N), azimuthal quantum number (1) and magnetic quantum number (M).
Theradial function, Rcontains N and |, angular function, P contains | and M, and F contains monly. Thus
the wave functions of the H-atom is

l//nlm(rggo) = Rﬂ (r)X le(g)>< I:m ((0) '
This wave function of the eectron in atom constitutes what we call atomic orbital.
1 2 et
Principal quantum number (N): Wehave E, :—(—Zj Zﬂhél .
n
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Thus, this quantum number (N) determines the energy of the electron in the atom. Higher the value of n,

higher will beits energy value. Thevalueof n =1, 2. 3, ...., any (+ve) integer excluding zero.
It also determines the distance of the dectron from the nucleus. For state n= 2, the electron is at higher distance

from the nucleus than for state n = 1.
Azimuthal quantum number (1) : Theangular momentum (L) eigen value equation is,

h

~ h
LP=| /I (I +1) — | P and the angular momentum of the eectronis L= /I (1 +1)—.
(D5 g G=ga

Thus this quantum number (1) determines the quantised value of angular momentum (L) of the electron. The
valueof | dependson n anditisO, 1,2, 3,...(N - 1). | specifiesthe orbitals.
These are usually expressed by the symbols s(1=0),p(1=2,d(1=2),f(=3).
The degeneracy of the of the orbitalsisgiven by (2l +1). Thus s- orbital is non-degenerate,
p - orbitals are 3-fold degenerate, d - orbitals are 5-fold degenerate and f - orbitals are 7-fold degenerate.
M agnetic quantum number (M): It determines the spatial orientation of the angular momentum, L, .
h o

. h .
z - component angular momentum eigen value equationisL,F = (m—j F ,wherel, = — :
2r 271 O

On solving the equation, it possible to find the function, F = F €™ and magnitude of the property,
Vs

L, = m2L . Thevalue of mdepends onthevalueof |.Itis —|,—(1 =1)....0....( =1),l . Thevalue of mis
T
(21 +1). 1t means that thereare(2 +1) orientations of angular momentum vector in space with respect to Z-

axis. For | =1, m=-1,0,+1 and total orientations of p - orbitals are 3.
Problem: Calculate the magnitude of ground state orbital angular momentum of the dectronina
H-atom , according to the (a) quantum mechanics and (b) Bohr theory.
Answer: (a) L=/(I+2) 21 , but for ground state orbital, | =0(S- orbital) and so, L =0.
T
h

(b) L= nL and for ground state of H-atom, n=1,s0 L =—.
2r 2r

Wave function of H-atom and its normalisation condition: The wave function of H-atom is represented
asy/,,.,(r8p) . The normalisation condition of the function is given as

j |t//n|m(r¢9(0)|2dr =1, but dz =r°dr sin6déd¢ (small dement of volume)  or,

all space

T

oc 2z
j j j |/,4m(r 69)| T 2dr sind@dgp = 1. The probability density of finding the electron at a point defined by

r=00=0 p=0

r,0 andg is w,,(r0p)xy" (rop) and the probability of finding the electron within small element of

volume, dz a I, 0 andg isgivenas|t//n,m(rt9gz))|2 dr.

Expression of different orbitals: The wave functions of H-atom, v, is called atomic orbitals.
The expression of different orbitalsis given below:

(D) vin(=yis) = (ﬂaS)_% A , where a,= Bohr first orbit radius = 0.53A
(2) Vo (= ‘//23) = (3272'83 )_]/2 (230 -r ) ei/zao .
(3) Vaol=vy,) = (32785) e/ 1 cos0 = (3278) " e /% 4

() vaul=ysy)=(32085) e/ reinosing =(320a) e 2 y
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(5) Va1 (= ¥, px) = (3272'33 )_1/2 87%80 rsné Cosp = (327[33 )_]/2 87%80 X .

Atomic Orbitals
For hydrogen-like (i.e. one electron) atoms, the wave functions are called ‘atomic orbitals’.

Isorbital () For thisorbital, n=11=0,m=0. Theanalytical expression of this orbital is obtained from
the solution of theradial part of the Schrodinger equation of H-atom.

The expression of this orbital, v, = AefA0 , Where A isnormalisation constant.

2
Thevalueof A is obtained from the normalisation condition, j ly| dr =1,
all space

o V4 2
o, Afe z r’dr [sin@ dé [ dp=1 [since dr = small dement of volume= r’dr sindddde].
0 0 0

3
Or1 AZX F(2+1) T )7]/2 .

(2/ )2+1 [—COSH]OX[(p]Zﬁzl or, Azx%x2x27z:1 or, (zag

0
. : . 3\ V2 -V
Thus, the normalised wave function of 1s orbital is ;= (ﬁao) e’™.
Thisis the ground state of the electron in H-atom. The e ectron remainsin the 1s orbital at this ground state. For
4

this state, N=21,1 =0,m=0. So thetotal energy (zero-point energy), ZPE =— % the angular momentum,

[(1+1) 7#=0,since | =0 and the z - component of angular momentum,
L,=m72=0 as m=0. a,= Bohr radius = 77e2 =053 A. y,, isindependent
y7,
of the angular variables (6 and ¢) and depends on the radial distance (distance of the electron from the
nucleus), r. 1, takes shapes of spherical symmetrical. At every point on the surface of a sphere of fixed

radius (1), thevalue of y issame.
Calculation of energy value of 1sorbital : The eigen energy value of 1s orbital is obtained by solving

the eigen value equation, H v = By,

~ 2 1 2
The energy operator, H v puvi-Ltd [ 2 d j v=-5 ad v, = Ae .
2u Zdr\ dr r

[y, isindependent of  and ¢ so, 6 and ¢ part of the equation is zerg]. Putting in I—]wls =By,

. " 1d dae e | 1d -
H =— 2 — = A [ — %
Vis 2ulr2dr ' dr [r]w1S Zy{rzdr(r ( aoj H ( J%S
2 r r 2
or, I:Il//ls_—;—ﬂ{riz{rz[%}eA+2r[—£]e/a°JH—[eT]%s

Zy{aé ra, e’ e 2ya§+2,u ra, r Vis
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4

4 2 4
or, I—Ah//l,S = (—g—;jyﬁs = By, . Thusthe energy of 1sorbital is E = —g—;z or, E =- Zﬂhfe

The energy valueisindependent of t andr , so the energy remains constant for infinite time of duration at this
state. Heisenberg uncertainty principle states that AEx At >(1/2) 7, thus AE =0,

hence At —oc. E also remains constant at any point though KE and PE will vary from point to point within 1s
state of the H-atom.
The energy valueis (-ve) and hence the dectron remains within this state and energy is required to remove the
electron from the influence of nucleus of the atom. The ionisation potential (IP) of H-atom
2,6t 2x(3.14)*x9.1x10 kg x (1.6x107°C)’
p= 2T HE (314) 9110 k| ©x10 ©) — 2160x10°3 ~1356 v
h (6.626x10*J )

Shapes of H-like atomic orbitals: There are two fundamentally different ways of depicting orbitals.
Method 1 isto draw graphs of the function and
Method 2 isto draw contour surfaces of constant probability density.

_r _r
Shape of 1sorbital: The wave function, y, = (]/«lﬂ'ag)e z = Ae T :

Method 1: If y,, is plotted against radial distance(r ),

the curveis given as,
At 1 =0 (near the nucleus), ;.= A (maximum) and as T

A

I increases, v,  decreases exponentialy, and v, =0 |,
at r —oc. Practically, y, almost vanishesat r = 2a, .

Since v, isonly dependent of r and independent of 0 .

6 and ¢, so 3—d picture of the orbital is obtained by drawing spheres of equal value ;  around the nucleus.

The shape of the orbital becomes spherically symmetrical.
Thevalue of y,, becomes maximum near the nucleus (which is at the centre of the sphere) and fading away as

I increases from the nucleus. i, extendsupto r = 2a,. A2
_2r

Method 2: Again the probability density is i, = A’e z ,

where A? =J/(7zag’) :

When t//fs is plotted against 1 , the curve will be steeper than y/, vs. . T

At r=0, t//fs = A? (maximum). This means that probability density of
finding the electron is maximum near the nucleus and it decreases very 0

rapidly as r increases. f———
We can connect the points of equal praobability density and get spherical T
shape of contour within which there is definite probability of finding the _ P
electron. Thus, the shape of 1s orbital is spherically symmetrical. f A \
Radial Probability Density, P(I') : If we consider aspherical shell of radius VLT neis
4zr?dr and probability of finding the el ectron within the e ;
shell is Axr?dr xyl = dxriyldr = P(r)dr.
P(r) isalso called radial distribution function. It is obtained also by
integrating y°dz over all angles of @ and ¢ but not over r and then
putting dr = 1. Thus probability of finding the electron within radial
distance r to r +dr irrespectiveof 8 and ¢,

T 27 T 2z or
P(r)dr = j j wlidr = j j pe 2y sinodode +dr

6=0 p=0 6=0p=0
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_2r ” 2z _2r
- Re Tor?dr I sin@d&j do = 47rr2(A2e Aﬂjdr = 4xr?yldr .
6=0 9=0

P(r)dr isthe probability of finding electron within the spherical shell of radius r and thickness dr and nucleus
is at the centre.

When P(r) isplotted against r , the curve is obtained as
_2r _2r
P(r) =4z A’r’e o Ar’e /a°. T
When r =0, P(r)=0i.e, though w7 ismaximumat r =0 P(r)
but the P(r) =0 i.e, thereis no probability of finding the - o
electron within the spherical shell of radius r near to the nucleus. —

As r increases, P(r)increases dueto factor r?, then attains
2r

maximum at some value of r and then decreases dueto factor € s .P(r)>0asr —o.
For small value of r , non-exponential factor dominates and at high value of 1 , exponential factor dominates.

_2r
Calculation of 1 value: Wehave P(r) = A'r’e & , but for extreme value of P(r), PO _o,

0, m=1[A'r2e/a"j:A’ 2re%°+r2e%° _2 =0 or 2A're_/a° 1~ -o.
drdr a, a,
: e P(r) _ 8 r o .
Butfor r=0ande = =0(r —>oc),d— = 0, the curve shows minima, hence at 1—g =0, P(r) attains
r

maximumand so 1, = a&,. This means that in the sphere of radius a, will have the maximum radial
probability density.
It seems very interesting to see that the eectron density (gufs ) is maximum just near the nucleus while the

electron is most probable to be found at a distance of a,from the nucleus. This apparent inconsistency may be

explained by considering a number of concentric rings of same thickness but different radii and made of
materials of decreasing density with increasing radius.

Mass = volume (dv) x density (p).
Thering closest to the centre has smallest mass though it has highest density but its volume is smallest. Again,
the ring of very large radius may not have the highest mass as volume is high but the density is very small. For
acertainring of intermediate value of radius, the mass may be maximum
although the density of the ring near the centre has maximum value.
This result is consistent with the Bohr’s calculation of H-atom. But the result differsin the concept. In the

quantum concept, electron is most likely to be found at a distance of a, from the nucleusin any direction but

thereis definite chance for the electron to be found beyond the distance, a, .

But Bohr concept gives the certainty of the position of the electron. It is rotating round the nucleus in a circular
path of radiusa, .

Calculation of average value of I in 1sorbital: We have (r) = J:[ v, fy,dr,
00

o—Y

r

when isnormalisedz(]/\/ﬂ_ag)e%‘).Thus, <r>:(7rag')_1j'e%"rsdr]asinﬁdezfdgo
0 0 0

1 3 3 . . ,

or, (ry=—xx 3 - X 2x 27 ==a, . Thus the average distance of finding the electron is an .
% (2a,) 2 :

This shows that there is definite probability of the electron to be found in the spherical shell of radius greater

than a, .
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Calculation of average value of X in 1sorbital:

© 7 2r

lesxwlsdr J.j I—e AO rsmecow) r2drsin@déde, [since X=rsin@cosg |

06-0p-07C

r 27
= ”i&f’ e @ra‘drj‘sinzedejcowdgo:o. Since jcos¢d¢:[gn¢]2”= Sn27—sno =0.
0 0 0 0

Because y,, and 1//12S are spherically symmetrical, thereis equal chances of the electron being found at +Xx

and —X distances from the nucleus leading to average value of X equal to zero.

2sorbital (/,y,): For this2sorbital, N=2,1 =0 and m=0. Thusit is designated as .y, .

4\ 2n®

(1 +2) 7=0as | =0 and z - component angular momentum, L, =M% =0 as m=0.
On solving the radial part of the Schrodinger equation, the expression of 2s orbital is obtained as

4
Thetotal energy of the orbital, E, = —}(ﬂ) , @ n= 2, the angular momentum,

—r
Was =Wao = A(28,-T)e Voa , where A isnormalisation constant.
Nor malisation of i, orbital: The value of A is obtained from the condition, I widr=1.

all space

So, AZT(ZaO—r)Zrze_%vdrjfsinedezfdgozl or, AZT(4a§—4rao+r2)r2e_%’°dr><2><27z=l

0 0 0 0

or, 4 A 4a§J'r2e%°dr —4anjr3e_%‘°dr +J.r4e_%°dr} 1
0 0 0

2 2 |_2 |_3 H 2 5 5 5
47| daix—E _aa x 2 _|=1 or, 4zA?[8a° - 2487 + 2487 | =1
or a’ T a, ¥a) +(]/ab) } or [ 82} — 247 + 244 |

or, 4788l =1 or, A’ =(327) “or, A=(327a)

So normalised wave function of the2s orbital is Wos = (327za§ )_]/2 (2a,—-r) ef/za"
This wave function depends only on r henceit is also spherically symmetrical in shape.
Ener gy eigen value of 1//2S orbital: The energy eigen value equation of 2s orbital is H Vo = B,

2 2 _r
H= 1y V——— id [r ij ~& ad g//zszA(Zao—r)e/Zao
2u 2u| r? dr dr r
2
So the energy eigen value equation is ——{idi(rz%ﬂ—e—%s =By, .
redr r r

A
Solving the equation, we have the energy eigen value of 2s orbital E, = —%Eg—;j .

The energy of this orbital is precise value and energy remains conserved for infinite period of timein state.
[Hesenberg uncertainty principle, AE, x At > %h ,but AE, =0 and so At — o,

i.e, duration or lifetime of the electron at this stateis infinite]

Shape of 2s orbital: The expression of the function of 2sorbital is ¥/, =,, = A(28, — r)e_yza‘?

) b

Thefunction consists of threeterms (i) A= (327raD (i) non-exponential term (2aD — r) and
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(iii) exponential term ef%a" . The exponential term (ef%"‘") isjust the squareroot of that in (e7%°) . For
this exponential term, y,  will decreases more slowly withincreaseof r than v, function. This means that
this orbital will spread more around the nucleus than y/, orbital.

Thesign of y,, dependsontheterm (2a,—r).

(i) v, (+ve) when r < 2a, i.e, a smaller distance than 2a, .

(ii) v, =0, when r = 2a_, thisisthe nodal point of the orbital .

(iii) v, = (-ve), when r > 2a_, at large distance from the nucleus.

Method 1 for depicting . : When v, is plotted against r 2A
the following plot is obtained )
At r =0, y,,=2A a, (maximum value). Now as r increases,

W, sharply decreases dueto decreasing value of (2a,—r)

L, :
’V u 0 2ach., 4dap 84
and e /%

Thevalueof ., becomes zero at r = 2a, (nodal point). (=)

T

When r > 2a_, yv,, becomes (-ve) and withincrease of r ,

(2a0 —r ) is more negative and increases. The value dominates over the decreasing nature of the exponential

term, ei%a" asat thisvalueof r > 2a, ,.

With further increase of 1, /. attains minimum value and then becomes zero at large distance

ie, r—>ow, y, —0.

There occurs nodal point at r = 2a, . The sphere practically extendsupto r =8a, with (-ve) signat r > 2a, .

_r —
Method 2 for depicting 2s orbital : Wehave 2 = A?(2a,-r)’e Ja , where A% = (327ra§) g

1//22S is the probability density of finding the |
electron in 2s orbital, and it is always (+ve). {
w5, decreasesfrom 4A% a2 (whenr = 0) more rapidly than

W, Withincrease of r and becomeszeroat r = 2a, ¥
and again attains maximum at r = 4a, and then decreases ,
to asymptoticat r —> 0. ; Y iaf
Since (2a, — r)2 = (+ve) always so 2, isalso (+ve).

This nature of variation of >, with r can be explained by the values of non-exponential term(2a0 - r)2 and

exponential term eﬁA) . When r < 2a_ both the terms decreases with increase of T, so w2, decreases more

sharply than . Atr = 2a,, 1/1223 =0i.e, thereis no praobability of finding the eectron at this distance (nodal

2 r
point). With further increase of I at r>2a,, (2a0 B r) increases and e_A“ decreases but former is
dominating. Again for further increase of r , exponential term dominates. So, the curve attains maximum and

then decreasesto y,, >0 as 1 —>o0.
_r
Radial distribution function [ P(r) ]: It is defined as P(r) = 4zr 3, but y,, = A(2a,—r)e J, . Thus,

P(r)=4zr*x A° (28, -1’ Y Ar?(2a, —r)ze‘/ao ,where A= 47A°.
T 2z
P(r)dr = j J.szsdf can also be used to find the expression of P(r).

6=0p=0
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If P(r) isplotted against r , we get the following curve.
When r =0, P(r)=0. As r increases, first term (r?) increases, j/-:"‘\

i hY
but second factor (2a, —r)” and third term e /% bothdecresse. L) - / ! \\\
For smaller value of 1, first term dominates and so P(r) increases. ,/5 v : N
As 1 isfurther increased, second and third terms dominate, and 0.8a,2a, 5.23a, 8a,
so P(r) attains maximum at certain value of r and then decreases r =

and finally becomes zero at r = 2a, . With further increase of r beyond the value of 2a_, second term also
increase. Now first and second terms increase but the third term decreases as usual. So, P(r) increases and
attains maximum with greater value than the first maximum value. Again for further increase of r, P(r)
decreases and becomes zero when r — 0.
Thevaluesof r at which P(r) attainsmax™. : The distance (r ) from the nucleus, at which P(r)

attains maximum, can be calculated by using the condition of extrema.

dP(r) d r 2 - _ ,d _r
g A eae | < a| (st gart e

:A{(8a§r —12a r? +4r3)e7%° +(4a§r2 —dar®+ r“)(—ije%"}

ré r

r - 3
= A’e%"‘) [Saﬁr —16anr2+8r3—ab)= Are /e (885 —16a,r +8r% - aojzo.

So, (i) r =0 and (ii) eﬁA" =0 or, r — oo correspond to the minimal points of P(r) in the graph.
3

and (iii) 8a’ —16a0r+8r2—r—:0, but r = 2a, is the nodal point so (2a, —r) =0 isalso afactor of the
a,

3 3

equation. Thus, 83’ —16aor+8r2—r— = 8a§—4a0r—123br+6r2+2r2—r—:0
&, &,

2 2
or, 4aD(ZaU—r)—6r(2a0—r)+é(2ean—r)=0 or, (2ao—r)[4ao—6r+i€j:0 :

2 [2642 _1RA2
Then 4ab—6r+iz:0 or, r2—6aur+4a§=0,s;or:6a°ir 3623° 164, :3;;.131\/_56.D

=(3i\/§)aD.ThevaIu&sof r,atwhich P(r) attains maximum, are r =0.8a, and r =5.23a,.

The shape of 2s orhital is spherical with nucleus at the centre. When a spherical shape orbital rotates, its angular

momentum ( L) becomes zero.
At r =0.8a,, P(r) ismaximum (1st), at r = 2a,, thereisnodal point and atr =5.23a,, P(r) again attains

maximum (2nd). The orbital contour extendsupto r =8a, .
The number of nodal points= (n-1) =1.

Calculation of average distance, (r) : Average distance of the electron from the nucleus of H-atomin
the 2s state is calculated by the use of the quantum theorem.

(=] 1//25f1//25dr:(327ra€’)_1 | r(2ab—r)2e%°r2drsin<9d49d¢

all space all space
= (327;a§)1Ir3 (4—% +%j e%vdrzsinedezf do
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= (327za§)_1Tr3(4a§ —4ar+ r2) ef%“’dr X 2x 21
0

o) = (22sa) x| as[ e o —da[r'e e o e e |
0 0 °

_ 5\71 2 13 |4 15 _(aa5\ ! 6 6 6
=(8 X —4a_x + =(8 24a’ —96a_. +120
(o) { wa) " (way (J/ao)e} (6 [ g6l +1202

5\t 6
=(8a}) “x48a =64a,.
Thus the average distance of the électron in the 2s state of H-atomis 6a,= 6x0.53A = 3.18 A.

Value of (X) : Using the same quantum theorem, it is possible to calculate the average distance of
the electron along the X- axis.

[ yxlskz//ZSdrz(BZnaS)_l | (2ab—r)ze%fjrsin49005(p><r2drsin9d¢9d¢)

all space all space

o r b q 2z
327z . r’(2a,-r) %"‘Jdr sin®6dé | cospdg = 0.
ao (2a,
0 0

2
[since Icos<od¢=[8ihgo]§” =(sin27-sin0)=0-0=0]
Because v/, and 1/1223 are spherically symmetrical, thereis equal chances of the electron to befound at +Xx and
—X distances from the nucleus leading to the average value of X equal to zero.

2p-orbitals: For thisorbitals, n=2, | =1 and m=-1,0,+1. Thus 2p-orbitals are of threein number and
these are degenerate. These p-orbitals are v/, ; (1//2 A ) Won (1//2 0, ) andy/,,o (l//2 b, ) :

For H-atom, the state n= 2are four-fold degenerate, 2s,2p,,2p, and 2p, since the number of degeneracy of

agiven state (n) in H-atom s n’.
The angular momentum of the 2p-orbital is =/I(I +D7% = J2h and z- component angular momentum,
L,=mi=-h,0and +1 for 2p,,2p, and 2p, orbitals respectively.

_r
2p orbital: Thewave function of 2py orbital is y,, =,,; = Ae Vo (rsin@cosg),
_r
but X=rSin@cose, thus Wop, = Ae /zaf’x, where A = normalisation constant.

Putting the normalisation condition, J- ‘t//sz‘zdrzl,thevalueof A can be determined.
all space
,V . ) 0 _V i . 2
Thus A? j e’/ ®*r?singcos’ pxridrsingdddey =1 or, Aﬁr“e %dr'[snsﬁdﬁfmsz¢d¢:1 o,
all space 0 0 0
A? x H z
(Vay)

_ _ _r
or, A= (327[85) %. Thus the normalised wave function of 2py orbital is (327za,f) %2 e /Za°x )

xgxnzl or, A°x32ra’ =1

A

[Integration: jsi n%0do = ]Esinexsin2 0do = ]r'si ng(1-cos’#)do = —T (1-cos® @) d (coso)
0 0 0 0

=—£ d(cos0) +_c[cos2 6d (cos@) =[-cosd]; + :—13[0053 o
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1 1 4
= [—cosﬂ+coso]+§[cos3n—cos3 0]= 2+2x(-2)=7.
2z 1271' 127! 127z 1
And ! cos” pdg = EI (1+cos2p)de = > .([ dg0+§-([ cos2pdp = 7 + Z[Si n2¢p]

0

N

T

o

_ _r
Shape of 2px orbital: Wehave y,, = (327rag) %e/zaﬂx,and r={xX+y*+2°
. _ _ _ _ 5 ’% _‘%ao
but along the x - axis, y =0 and z=0, thus r =|x|, hence v/, —(327ra0) e /%X

a
or, Yy, = Ae Aa"x. Theplot of y,, vs. XisaGaussiantypein both sides of the origin.
When x=0, y,, =0. As X increases within therange

L™
0to 40, ¥, increases, attains maximum and then ‘ @
decreasestozeroat X —+o0. i/, is(+ve)insigninthis  -= o) [ +o
rangeof X. .

But when X increases withintherangeOto —, v, is
(-ve) and decreases, attains minimum and then increasesto zero at X — —o.
Whenthe y/,,, isrotated by 360° along the X - axis, two lobes are obtained on the both sides of origin. The

right lobeis (+ve) in sign whileleft lobeis (-ve). The shapeof ,, orbital is of
dumb-bell shape. y,, =0at x=0. Thustheorbital has anodal planeinthe yZ- plane.
W3p, VS X plot: y3, isthe probability of finding the electron in the 2py orbital.

aL _
y/zsz = A% sz' where A? = (327ra§ ) '
When ‘//Zsz is plotted against X, the curveis given as:

¥,
7w ] @
0

If 1//2sz is rotated by 360° along X - axis, we get two lobes —oo 4a, 4z, 1w
of equal probability at a given value of X on both sides of r—>

origin. The probability density extends along the X - axis

only.

Radial distribution function, P(r):

P(r)dr = I Hyfzp ‘ dr =A% Ar“drjsm Hde_[cos pdo = (327[30) e /oridr x%’x;z

0=0 p=0

= (2435)_ ef/a°r4dr . Thus radial distribution function, P(r) = (2435)_1 ef%"r“.
A [ o /ort ) A'[‘”Se%" rrie /s (—J/ao)}=A'[4r3e%° ~r'/a, e%‘)}

=Ar? Ao(4 r/q)) 0.Thus, at r =0and eA Oor, r =00, P(r) attains minimum.

But for (4—r/a,) =0or, r=4a,, P(r) attains maximum.
Problem: Find the most probable distance from the nucleus of 2p state of H-atom.

dP(r)
dr

32
1( 1 /2 . _
Given, R,, = \/_[aj (r/a,)e”**. (SKB Univ., 2014) [Ans. 1 =43,].
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