SEM6_C13_SUGGESSTION

Dr. Manoj Majumder, MTBC

CHEMISTRY

INORGANIC CHEMISTRY-IV CORE-13 (CCCEMH13)

Time Allotted: 2 Hours Full Marks: 25

Group-A

Answer any ten (10) questions from the following

 $10 \times 1 = 10$

- 1.(a) What is the oxidation state of Ni in [Ni(CO)₄]?
- (b) Calculate the value of x in $Co_2(CO)_x$ using 18-electron rule.
- (c) What is heptacity?
- (d)Write down the formula of Collman's reagents?
- (e) Give one example of reductive carbonylation reaction?
- (f) Give one example of acylation reaction reaction Ferrocene?
- (g) Draw themoststable structure of the oxidative addition product of Vaskas's complex with O₂ molecule.
- (h) Give one example of insertion reaction.
- (i) What is the possible chemical composition Ziegler-Natta catalyst?
- (j) Draw the structure of one homogeneous hydrogenation catalyst?
- (k) Give an example of spectator ligand.
- (l) Give an example of non classical carbonyl.
- (m) Give one example of σ -donor and π -acceptor organometallic complex.
- (n) Find the number(n) of CO ligands in the complex $Fe_3(CO)_n$ using 18-electron rule.
- (o)Cite one example of fluxional carbonyl.
- (p)Comment on the acidic behavior of HCo(CO)₄.
- (q)Which compounds is used as co-catalyst in Wacker process?
- (r)What is polymerization reaction?
- (s) Why Vaska's compound cannot act as hydrogenation catalyst-why?
- (t)What is the role of CuCl₂ inWacker process?
- (u)Cite one example of positive catalyst.
- (v) What happens when BeCl₂ wastreated with CH₃Li in presence of ether?
- (w)What is hydrometallation reaction
- (x) Draw the geometry of $Mn_2(CO)_{10}$.

Group-B

Answer any one questions from the following

 $5 \times 1 = 5$

2.(a)The carbonyl stretching frequency of $[Mn(CO)_6]^+$, $[Cr(CO)_6]$ and $[V(CO)_6]^-$ occurs at 2090, 2000 and 1860 cm⁻¹ respectively. Give reasons for such variation.

	SEM6	C13	SUGO	GESST	ION
--	------	-----	------	-------	------------

(b) Square planer d⁸ complexes usually undergo oxidative addition reaction-explain. 2 3.(a) Why ethylene cannot be hrdrogenated by Wilkinson's catalyst? (b) Classify the following reactions as oxidative addition, reductive elimination, insertion, β -elimination, etc. (i)TiCl₄ + 2Et₃N \rightarrow TiCl₄(NEt₃)₂ (ii)Co₂(CO)₈ + H₂ \rightarrow 2HCo(CO)₄ (c) How terminal CO group can be distinguished from a bridging CO group-explain briefly on the basis of IR data. 4.(a) "Infra-red spectroscopy is informative tool to describe the final structure of metal carbonyls- illustrate this statement with suitable example 2 (b) What are the disadvantages of Co-catalyst in hydroformylation reaction? 5.(a) Why is reductive elimination described as 1,1-elimination? (b) Which of the following in each pair will be more reactive towards oxidative addition of dihydrogen? (i)Rh(PPh₃)₃Cl or Rh(PPh₃)₂(CO)Cl (ii)Ir(Cl(CO)(PPh₃)₂ or Rh(Cl(CO)(PPh₃)₂ (iii)[Co(dppe)₂]⁺ or[Ir(dppe)₂]⁺ Group-C Answer any one questions from the following $10 \times 1 = 10$ 6. (a) Discuss the mechanistic steps for the hydrogenation of olefins by Wilkinson's catalyst. (b) Substitution reaction of $Cr(CO)_6$ is very slow whereas the iso electronic complex $[V(CO)_5NO]$ is very reactive-why? (c) Using 18 electron rule as guideline calculate the number of M-M bonds present in $Ir_4(CO)_{12}$. 2 7. (a) What is Wacker process? Explain the role of $PdCl_4^{2-}$ in this reaction. 2+3=5(b) What are metallocene compounds? Distinguish between metallocene and sandwich compounds. How would you prepare Ferrocene from FeCl₃? 1+2+2=58.(a) Discuss the structure and bonding and bonding in [PtCl₃(C₂H₄)]- anion with special reference to PtC₂H₄ bond. Point out two evidences in favour of the bonding mechanism. 3+2=5(b) The V-C bond distances in $[V(CO)_6]^-$ and $[V(CO)_6]$ are 1.93 Å and 2.00 Å respectively-explain the difference in bond distance. 3 (c) Which of the following complexes are likely to be unstable and why: [Ti(CO)₄]⁴⁺, Fe₃(CO)₁₂, $Cd(CO)_3$. 9. (a) Predict the product in the following reactions: 4 (i) Ir(PPh₃)₃Cl (ii) $W(CO)_6 + C_6H_5Li$ (iii) V(CO)₆NO (iv) $[Fe(CO)_4]^{2-} + CH_3I$

SEM6_C13_SUGGESSTION

(b) Cyclopentadienyl ring in ferrocene has aromatic character but cyclopentadiene itself has no such property-Explain.

2

(c) Nitration of ferrocene is not possible but acetylation of ferrocene is possible- comment.

2

(d) What is trans effect?

2