KINETIC THEORY (MAXWELL’S DISTRIBUTION LAW)

Introduction

Kinetic molecular theory of gases was first developed by Daniel Bernoulli (1738) and subsequent
progress was made by Joule, Clausius, Maxwell and Boltzmann within 1848 to 1898.

Assumptions
This theory consists of the following assumptions:

(1) The gasis composed of very small discrete particles, now called molecules. For a gas, the mass and size
of the molecules are same and different for different gases.

(2) The molecules are moving at random in all directions with variety of speeds. Some are very fast while
others are slow.

(3) Dueto random motion, the molecules are executing collision with the walls of the container
(wall-collisions) and also with themselves (intermolecular collisions). These collisions are perfectly
eastic and so there occurs no loss of kinetic energy or momentum of the molecules by these collisions.
Speed of the molecules remain same due to wall-collisions but may changein intermolecular callisions.

(4) The gas molecules are assumed to be point massesi.e, their sizeis very small in comparison to the
distance they travel.

(5) There exists no intermolecular attractions specially at low pressurei.e., one molecule can exert pressure
independent of the influence of the other molecules.

(6) The pressure exerted by a gasis due to the incessant and uniform wall-collisions of the molecules. Higher
the frequency of the wall-collisions, greater will be the pressure of the gas. This explains Boyle’s law
sincewhen volumeis reduced, wall-collisions becomes more frequent and the pressure is increased.

(7) Though the molecular speeds are constantly changing due to intermolecular-collisions, average kinetic

energy (E ) of the molecules remains fixed at a given temperature. This explains Charle’s law that when
temperatureisincreased, & isincreased, velocities [as & = (1/ 2) mc? ] areincreased, wall-collisions

become more frequent and violent, so pressureis increased when volume is kept constant or volume is
increased when pressureis kept constant.

Idea of root-mean-sguare speed (Cqys)

Letinagas of N molecules, N1 have speed c¢1, N2 molecules have speed
C2, N3 molecules have speed c; and so on, then

_ N +Nyg, +Nog, +.... 1 1 1 1
P 22N 33 :N[leémcf+N2><§mc22+N3><§mc32+...}
2 2 2
=Em N,C + N,C5 + N,C; +... :EmCéMS'
2 N 2

Theterm within the bracket is called Cerms (mean-square-speed, ?) and root-mean-square speed is defined as

c (: ?j:\/Nlcf+Nzc§+N3c§+....
RMS N

Concept of Temperature and Kinetic Theory
This speed (Cqys) is morefundamental than average speed,
C sinceit originates spontaneously from the average kinetic energy of the molecules and it depends on the

thermodynamic parameter, temperature (T)
(Postulate 7).
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Thus kinetic theory of gases can provide a concept of temperature (T). Average kinetic energy (E ) is a measure of

temperature. Higher the average kinetic energy of a gas, greater will beits temperature. When the molecules are at
rest (i.e. £ =0), thetemperature will also be OK.

Formulation of kinetic equation, PV = %m N cZ,s

These postul ates are used to formulate the above kinetic equation Let us
take a cube of edge length | containing N molecules of a gas of molecular mass m
and RMS speed is ¢ at temperature T and pressure P. Let N1 molecul es have speed ¢1, N> molecules have speed ¢ ,
N3 molecules have speed ¢z and so on.
L et us concentrate our attention to a single molecule among N that have resultant speed c¢: and the component
velocities are u, v and w along the x-, y- and z-axes respectively, so that

cC=U"+V +W

Volume of the cubg, V = I oo
B v Total surface area = 61°

) 4
/ Change of momemtum for

the collision
=y —[—wmu | = 2y

The molecule will collide walls A and B with the component vel ocity u and other oppositefacesby v and w.
Change of momentum of the molecule along X - direction for asingle collision= mu—(—mu) = 2mu.

. . . u
The number of collisions suffered by the moleculein one sec between the two opposite walls= — and so therate

i u 2mu® _ o
of change of momentum for the above type collisions = 2mu x I_ = T Similarly along y- and z- directions,

2

2myv 2mw?

and

the rate of change of momenta of the molecule are respectively.

2

m¢

2m .
Total rate of change of momentum of the molecule = I—(u2 +V2+ Wz) = . For similar N1 molecules,

2
the rate of change of momentum = % . Taking all the molecules of the gas, thetotal rate of change of

5 2 2 2 2 2 -
momentum = 2mN, Gy 9 2mMN,C) 4 2mN,C; L 2NENG A NGG + NGy ) 2mNc |
| I I | N |
According to the Newton’s 2™ law of motion, rate of change of momentum due to wall-collision is equal to the
2mNc?

force developed on the walls of the gas container. That is P x 6l 2 but, I° =V, volume of the gasin the
cube. So the kinetic equation of the gasis

PxV:%mN? ----- o
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Again the equationis P = %(mTNj 2 put, mTN =d, density of the gas at the given temperature and pressure.

o - 1. =5 .. .
So, another form of the kinetic equationis P = :—)’dc2 . Thiscis RMS speed of the gas molecules.

These equations are also valid for any shape of the gas container other than cubic one.

Expression of root-mean-squar e speed
Let us apply the kinetic equation for 1 moleideal gas. In that case,
mN = mNa = M, the molar mass of the gas and theideal gas equation for 1 moleis PV = RT.

_— - . 1
Putting in the kinetic equation, wehave RT = 3 MCc? . So root-mean-square speed,

M
This shows that RM S speed depends on the molar mass (M) and temperature (T) of the gas.

Problem: Calculate the RMS speed of O, gas molecules at 27 °C. [Ans. 483 m/g]

Expression of average kinetic energy (&)

2 (1
Again, the kinetic equation can be writtenas PxV = 3 N (E mczj , but %rnc2 = ¢ , average kinetic energy of the

molecules. So, PV = % Ne. 2.

Thus considering 1 moleideal gas, RngNAxg or, gzg(ijT or, Ezng’ ...................... )

A

. R
where k is the Boltzmann constant(—j =1.38 x 10 erg molecule* K™,
A

For 1 mole gas, the KE is E:gRT and for nmole of the gas, the KE is E::—ZgnRT.

£ depends on the temperature only and does not depend on the nature of the gas. Thus, most light gas H» and very
heavy gas UFg both have same average kinetic energy at a given temperature.

Problem: Calculate the kinetic energy of translation of 8.5 gm of ammonia gas at 27 °C. [ Ans. 450 cal]
Problem: Which of the following statement(s) is (are) true?
In kinetic theory of gases,
(A) Average kinetic energy of the molecules is proportional to absolute temperature.
(B) Therms velocity at a given temperature is inversely proportional to the square root of molecular mass.
(C) The pressure exerted by the gasis onethird of the kinetic energy per unit volume.
(D) If the pressureisisothermally doubled, rms speedisdoubled. [IIT —JAM, 2015, MSQ Type]

Correct Options are (A) and (B).
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Deduction of the gas laws from kinetic equation:

From kinetic equation (2), we have PV = % N& but, & cT (Postulate7) or, £ =k'T

2 , . . .
or, PV = (5 N k'jT = constant x T. This equation provides necessary deduction of the gas laws such as Boyle’s

law, Charle’s law, etc. Deduction of the Avogadro’s law is given here only.

Let us consider two gases under same T, Pand V. Thus, PV = % mN,c’ = % m,N,c2

or, MN,c; =m,N,C5 . @

. . - 1 1
Again, the two gases have the same average KE at the given T, s0 £, = £, or, > mc’ = 3 m,c

or, mc’ =mg;. (b)
So dividing the equation (a) by the equation (b), we have N1 = No.
It means that equal volumes of all gases at the same T and P contain equal number of moleculesand it is
Avogadro’s law.
Graham’s law of diffusion can also be deduced. The rate of diffusion of a gas (rq) is directly proportional to the

speed of thegas. That is, I, oc C but, C= ,/% SO, Iy oc /% . Thisshowsthat atagivenT, 1 oc /ﬁ

Thus, at a given temperature, the rate of diffusionisinversely proportional to the square root of molar mass of the
gas and this is Graham’s law of diffusion.

Problem (1): For one mole of a monatomic ideal gas, the relation between pressure (P), volume (V) and average
molecular KE (€) is

A) P NAE B) P NAE © P ZNAE (D) P ZN“ [GATE 2000]
Y Y Y, G
Answer: (C).
Problem (2): Two gases A and B have equal volume, equal number of mole and equal r m s speed but unequal
molar masses Ma > Mg, Which gas has higher pressure and why? [Burdwan Univ. 2008]

Solution: Hints: We have for ideal gas, PV =nRT and C, = ,/% o, RT :%Crmsz'

2
Thus PV:ancrmS2 or, P=| nx 5™ |M = constant x M.
3 3V

This shows that the gas A has higher pressure than the gas B.
Problem (2): At what temperature will the r m s velocity of oxygen gas be one and half times its value at NTP?
Solution: Temperatureis 619.25 K [Burdwan Univ. 2015]
Problem (3): Comparetherates of effusion of methane and of sulphur dioxide through the same pin-hole at the
same temperature if the pressure of sulphur dioxideis four times than of methane.
[Burdwan Univ. 2015]

Solution: (re)CHA oc\/%z\/g and (re)s02 m\/%:\/g . Thus (re)CH4 :(re)SOZ =2.

[Rate of effusion does not depend on the pressure of the gas.]
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Molar heat capacities of gases
Heat capacity (C) of asubstanceis defined as the amount of heat required to raise
the temperature of the substance by one degree. Heat capacity per gram of a substance is called specific heat and
per moleis called molar heat capacity.
Thus molar heat capacity = molar mass x specific heat.
For gases, there are two heat capacities at constant volume and at constant pressure.

Sofor gases C, =M x¢, and C, =M xc,, where C, and C, arethe molar heat capacities at constant
volume and at constant pressure respectively. ¢, and C, aretheir specific heats.

F rernains

constant
g
W oremains T
constant 1'-'11
1 mole gas | —% T+1 1 mole gas | —5% T+
T T
. o

P

From the above two schematic descriptions, it is clear that C, > C, , sincefor C,,, some mechanical work
isrequired as additional energy to absorb for lifting the piston from V1 to V..
Thus, C, —C, = mechanical work =PdV =P (V2— V1) =PV,-PV1=R(T +1)-RT =R.

Thus, C, —C, = R. Thisisvalid for ideal gas only asPV = RT is taken for 1 mole gas.

Now let us find the expression for Cy from the stand-point of the kinetic theory of gas.
Cv = energy required to increase tranglational kinetic energy + energy required to increase intramol ecular
energy of 1 mole gasfor 1 degreerise in temperature.

Increase of translational KE of 1 mole gas for 1° rise in temperature = gR(T +1)—g RT = :—; R.

Let the intramolecular energy increase for the gas for 1° risein temperature = X, then Cy = g R+ X
Thevalueof X is calculated from thelaw of equipartition of energy and this will be discussed later.

5 . , : . C., »° 5+x
Thus, Cp= = R+ X. The molar heat capacity ratio (Poisson ratio), y = —&-= 5, R+X = L,
2 c, 3 3+x

ERer

when expressed in calorie unit and R = 2 cal mol™* K™,
For monatomic gas, X = 0, for diatomic gas, X= R = 2 cal mol*K ™,
and for polyatomic gas, X = 3 g=3ca mol*K™,

2

Thus, ¥ =5/3=1.66 for monatomic gas, = 7/5 = 1.4 for diatomic gas and = 4/3 = 1.33 for polyatomic gas.
Foragas, y canbedetermined from the measurement of velocity (V) of sound passing through the gas using the

relation, V= /% . Thevalue of y thus provides the atomicity (molecular complexity) of the gas.

Problem: The specific heat at constant pressure and at constant volume is 0.125 and 0.075 cal gm™ K™
respectively. Calculate the molar mass and atomicity of the gas. Name the gas if possible.
[M =40 gm/mole, y = 1.66 (monatomic), argon]
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Simple concept of probability

When a coin istossed, either head or tail may be upwards. The probability of the
coin for head being up is 2 or 50 %. It means that if we toss the coin twice, then one time the head will be up.
However, this may not happen always and hence the idea of probability will be applicable only when large number
of operations will be made. Another condition for applicability of the probability is that the two sides of the coin
(events) must be equally likely and mutually exclusive. Therefore, the probability (P) is defined as,
P number of favourable events (m)

~ total number of events(n)
B number of favourable events (p) ap = p
number of favourable events (p) + number of unfavourableevents(q) p+q

The range of probability isfromOto 1. Thatis, O<P<1
For awell-shuffled packet of cards, probability of drawing a diamond is 13/52 =1/4 (Py) and probability of drawing
aking = 4/52 = 1/13 (P.).
But when both conditions are imposed simultaneoudly i.e., to draw a card which will be a king and also diamond,
the probability (Pi2) = 1/52 = (1/4) x (1/13) = P1 x P, i.e,, it is the product of two individual probabilities. Thus, the
probability follows multiplicative rule.

For instance, it might be important to know the probability that a system has both the value X of some

Or, P

discrete property X and the value Y, of some other discrete property y . If the properties are independent of each
other, the probability of the system having both value X of the property X and valuey, of the property y is
P(x ¥,) =P(x)xP(y;) ,where P(x) and P(y,) aretheindividual probabilities.

For example, in a country if the probability of a person being manis 0.495, and the probability of a person (man or
women) being left-handed is 0.01, then the probability of selecting a left-handed man by random choice from a
crowdis 0.495 x 0.01 = 0.00 495 or, 495 in 1,00,000 (one lakh). If, however, |eft-handedness were male
characteristics, this calculation would be false.

Distribution function and aver aging of physical properties of a system

Distribution

A distribution is the division of a group of things into classes on the basis of a certain property of the
system. If we have a thousand balls and five boxes, and place the balls in the boxes in any particular way welike,
the result is the distribution. If we divide the people of a country into classes according to age, theresult is an age
distribution. Such a distribution shows how many people are between the ages (say) of 0 to 5 years, between 5 to 10
years, 10 to 15 years and so on. Similarly we can divide the students in class according to the marks they obtainin
an examination within a certain range.

Choice of range or width of the interval

While we distribute a group of things in classes, we generally userange
or width of the classification for better computation of the average value. This range or width must be small and not
very large. In the above example, |et us consider the age distribution in which therange is taken 5 years. Clearly it
is absurd to choose 100 years as the width of the interval then the people could not be divided into classes at all. So
the width must be small. On the other hand, if we choose avery small interval width say one day, and then in any
small group of peaple, say of 10 people, we find that one person fallsin each of theten intervals and zero falsin all
the others. For any large group, the time required to write down such a detailed distribution is just impossible.
Therefore, the interval width to be chosen must be wide enough to eliminate details of no interest but narrow
enough to display meaningful aspects so that it allows calculating more accurate average value of the property.
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Averaging of a property

Thedistribution is used to compute average value. From the distribution mentioned
above, we can compute the age of the people of the country or average marks of the students they obtain, etc.
Let us cite an example to see how the distribution is hel pful in averaging the properties of a system. For the average

value of a property X, let ustake X, (outcome of the observation) occurs n, times, X, occurs n, times,
X, occurs n, times and so on. The mean value ( X') of the property X is the weighted sum of all the outcomes
divided by the total number of observations.
% = X+ + X+ A NX NX+ X+ X+ 4+ X .
n+n+n+..+n n
We can write the computation in different way in terms of probability (P) also.

X = (nljxﬁ( jx2+(n3jx3+ ........ +(%j>§ = P(x)X% + P(X)X, + P(X)%; +....+ P(X)% =Z P(X,) X; ,

where P(X;) isthe probability of outcome of the property, x; in the sample.

But if the outcome of an experiment may take continuous values like the case of height of a population or in the
speed of gas molecules, then the definition of the mean value has to be modified. Summation will be replaced by
integration and the mean value can be written as

x= [ xf(ydx,

all possible
valuesof x

where f (X)dx= P(X), the probability for the outcome of X lies some where within the infinitesimal range dxat
X i.e, from X to x+dx, where f(X) isthedistribution function.

Distribution function:
In the above, this analytical expression f (X)is called distribution function or probability density of the property,

X. It may bedefined as f (X) = PCEX)

1(dn
f(x)==—| —=
9 n(dx

For the mean height of a population, h = _[ h f (h)dh, because only (+ve) values of h are possible and thus, the
0

dn
but, P(X) = —=. Thus the distribution function is written as
n

) . Itis defined as probability of the outcome X within unit rangeat X.

limit of h rangesfrom 0 to co. If we consider the mean velocity of moleculesin X- direction, then

U:Tu f(u)du.

For example, f (h)dh = P(h), probability of a person to have height h to h+dh and f(h)——(c(ljr;:‘] Thus

f (h) tells us the probability of a height h within unit rangeat h.

If f(180cm)=0.12cm™, wewould know that the probability of the height of a sample of population fallingin
the range 180 — 181 cmis approximately 0.12 or 12 % and that for the range 180 — 182 cmis approximately 0.24 or
24 %. However, if the height chosen at 200 cm, then it may bethat f (200 cm) = 0.01cm ™ which means that the
probability of the height in the range 200 — 201 cmis only about 0.01 or 1 %. So the distribution severely depends
on thelocation of the value.

This suggests that the distribution function f (h) depends strongly on the location of the value, here h.
Multiplicative nature of the probability can be shown for continuous properties also. If the probability of X lyingin
therange dxat X is f(X)dx, and the probability that an independent property y liesintherange dy at yis
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f (y) dy, then the probability of xlyingintherange X to x+dx and y in y to y+dy istheproduct of
probabilities: f(x)dxx f(y)dy or f(Xx)f(y)dxdy.
Conversion between Cartesian co-or dinates and Polar co-ordinates
Description of the co-ordinates: Co-ordinates are used to locate a point in space. There are two types
co-ordinate systems. These are shown by the adjoining
diagram. In the Cartesian co-ordinate system, the point P is il
designated by the co-ordinates (X, Y, Z) and in the polar
system, the co-ordinates are (r,6,¢).
To identify the co-ordinates of the point P, a perpendicular is F(x,7,2]
drawn from point P on the Z-axisand it cuts at z. (¥, 8,0
Another perpendicular is drawn on the XY plane and
it cuts at Q point on the plane. r
Then perpendiculars are drawn from Q on the X-axis and
Y-axis and thesecut at X and y . These (X, Y, 2) arethe
co-ordinates of the point P in the Cartesian system.
In the polar system, the point P is designated by (r,6,¢) .
The distance between O and Pis I' , called radial distance.
Thisradial distance OP makes an angle, @ with Z-axis. ¥
This angleis called zenith angle. Again, OQ makes an / 0
angle, ¢ with the X-axis and this angleis called v
azimuthal angle.
Range of each X, Y,z co-ordinates arefrom —co to 0.
therangeof I isfromOto o, @ fromOto 7 and ¢ from Oto 2x .
Conversion between the two systems

OQ =0Pcos(90—-8) =r sin@ . Now the Cartesian co-ordinates are deduced as follows:

z=rcosf, Xx=0Qxcosp =rsindcose andy=0Qxcos(90—¢) =rsindsing . So conversion from polar
co-ordinates to Cartesian co-ordinatesis givenas, X=rsin@dcose, y=rsinfdsing z=r cosé,
Conversion from Cartesian co-ordinates to polar co-ordinates is given as follows:

Radial distance, r =[x’ + Yy’ +Z* , zenithangle, 9 = cos™ {;J and azimuthal angle ¢, — tan* [X] :
X

JC+y+ 27

o/

Conversion of area dxdy and volume dxdydz
in polar co-ordinates are shown by diagram only.

volume =
drdpdz = r 9 dr =y sin Od g
et
area:dﬂﬁf:rd;ﬂ?{cﬁ " ;
{
s 49
o g7 -
=
r
7z
&
d dg
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Properties of Gamma function
Definition

A limited definition of gamma (I")function is given by theintegral, I'(n) = J.t”’le’tdt for n>0.
0

Reduction formula of I"(n)

The Gamma function of n can be degraded by the following way.
Integrating by partsit gives

r'(n) = j t™etdt =[ " e ]: +(n-1) j t"2edt = 0+ (n—1) j t"2etdt = (n—1)[(n-1) .
0 0 0

Thus, T'(n) = (n-)I'(n-1).
Repeated successive integration by parts leads to following cases:
casel: When n is (+ve) integer
Irmy=(n-HIrn-)=mn-)(n-2)r(nh-2=("-H(n-2)(n-3)I'(n-3)
=(N-DH(N-2)(N—3).....3x2x1IxT'(D).
Evaluation of T'(2)

By definition, T'(1) = jto td'[—[ e] [ :] =1-0=1,Thus, T(D) =1

Therefore, F(n)_(n—l)(n—Z)(n—S) ...... 3x2x1=(n-1!.
This leads to the formulation,

r=[te'd=1=1, r@=[te'd=21=2 T(4)=[t’e'd=3=
0 0

0
Evaluation of O!: The above formulation givesthat 0! = T'(1) =1.
Casell: When nishalf an odd integer
r'(n) =(n-1)(n—2)(n—3).....(3/2)x(1/ 2)xI'(1/2).

Evaluation of I"(1/2)

For this purpose, let usfirst evaluate theintegral, | = J.e*X2 dx.

y w% 2
dxdyzj'je’r rdrde.
00

X+

Then, |2 =Tex2dxxTexzdx=Texzdx><Teyzdyzﬁe
0 0 0 0 00

The variation of ¢ islimited from 0to % since xand y arein the range over positive values only

(first quadrant). Thus,
x 7
_[ e’ rdr J. do =

NI}—\

% % or, | =%\/; [For theintegral, Ie”zrdr,let r’=xandso 2rdr =dx,
0
putting we get the integral, Ie’rzr dr :%J-exdx:—%[exj :%_]
0 0

0

Now we find the value of F(1/2).Wehave %\/;:je‘xzdx, let X* =t or, 2xdx = dt or, 2\/t_ dx = dt
0
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1 dt 1 15,-1 B 1 1
,OXx==—.%0, =\r ==|t 2e'dt = t e'dt = = Tl == .
o, =3 G50, =21 e j 2r(3) er(3)- 7

Hencefor n= half of an odd integer, we can flnd the values,
r(n =(n-1)(n-2)(n-3).....(3/2)x(1/2)xI'(1/2) = (n—1) (- 2) (n—I)...... (3/2)><(1/2)><\/;

ie, jt“ e'dt=(n-1)(n—2)(N—3).....(3/2)x (1/ 2) x/z . Thisformulation givesthe value,
0

['(5/2) = (3/2)(L/ 2T 1/ 2) = (3! 2)U/ 2\ = (31 AN .
Caselll: When n= (+ve) quantity but other than an integer or half of an odd integer, integration is not so easy.

Application of gamma function

(1) Evaluation of theintegral, j x"e®dx, when n = (+ve) integer.
0
1 . : .
Let ax=t or, adx=dt or, dx=—dt, putting these values, we have integration
a
T n —ax T t " —t 1 n 4t
_[xe dx:J' —| e x=dt= n+1It € dt_
a a
0 0

Thus, .[X e *dx =

Example: When n= (+ve) integer (say 2)

n+1 '

n+1

(2) Evaluation of integral, I X"g dx, when n = (+ve) integer or zero.

2 _ _ t Y2 1 % . .
Let bx® =t or, 2bxdx=dt or, 2p o dx=dt or, dx_2—b>< . dt. Theintegral is thus,

n 1

0 5 0 9/2 }é 0 [§7§J o n-1
[ x"e™ dx=j[£j e xi(gj dt=— 1 [t Jetdi= [tz etdt
0 0 b 2b t ZbE >0 /bn+l

© n+1

Itz etdt=—1 [0+ Thustheintegra isJ'Xne—bXZdX: 1 (n+1)

n+1 n+1 n+l
\/b 2\b 2 o o 2 2

Example (a): When n= (+ve) even integer (say 2)
oo 2er(3)- o dr(3)-45- 16
sz 2\b b
Example (b): When n= (+ve) odd integer (say 3)

1 1 1
X3 —bx? dX — T — 1 —_- .
_[ ( ) 2b2 2b2
Various standard integrals can be done easily by the use of this Gamma function.
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Maxwell distribution of speeds

Introduction

James Clerk Maxwell (1859) formulated speed distribution of particles in idealized gases where the
particles move freely inside a stationary container without interacting with one another. Particles refer to gaseous
atoms or molecules but in this text, we shall use molecules only.
On the basis of probabilistic idea, Maxwell and later Boltzmann formulated the distribution law as

3 _mc?
ﬂ—m{ m j e Achde

n 27KT
d
where Y is the fraction of molecules that have speed C to C+ dc, m isthe molecular mass of thegasand T is
n
the temperature in absolute scale.
Assumptions

The following assumptions are made for the distribution of the molecular speeds.

(1) The number density of molecules (i.e., number of molecules per unit volume) is uniform through out the gas
assembly in the ideal gaseous system at thermodynamic equilibrium and at given temperature (T).

(2) The mation of the moleculesis complete random. They movein all directions with equal probability. Thisis
isotropic behavior of the molecular motion.

(3) The resultant speed of the molecule (C) can be resolved into three mutually perpendicular component
velocities U, vV and W, such that

C* =W +V° +W.
These component velocities are equally likely and mutually exclusive. Maxwell also assumed that these
component velocities are independent to one another.

(4) Though the speeds are changing due to intermolecular collisions, yet at a given temperature, definite
fraction of the molecules will always have definite speed within a small range. This situation is called the
steady state condition of the molecular speeds of the gas at temperature, T.

(5) The distribution of speeds will be disturbed if any internal force field (such asintermolecular attractionin
real gases) or external force field (such as gravitational force field) is operativein the gas.

In brief, it is assumed that the gas molecules remain in complete random and the probability of a
molecul e to have a definite speed within small range is always finite.

Formulation

Let usfirst consider the motion of the moleculesinthe X- direction with velocity U. The
probability of a moleculeto have velocity, U within range duis given by P(u) . This probability isincreased with
theincrease of range, du and it also depends on thelocation of U at which the range is considered. Thus, the
probability of a molecule that have velocity U within range du is given by,

P(u) = f (u)du.
The probability, P(U) depends on some function of U i.e, f(U) and this function is some mathematical form

which contains U.
Since U, V and W areequally likely for the molecule, hence the probability of a molecule to have velocity vV and

W within therange dv and dw are respectively,
P(v)= f(v)dv and P(w)= f(w)dw

The mathematical format of the functions, f(u), f(v) and f(w) aresame, except f (U) contains U,
f (v) contains V and f (w) contains W only.
Since, U, V and W are equally likely and mutually exclusive, the probability of a molecule to have the velocity
U to u+du, V to V+dv and W to W+ dw simultaneously is

P(uvw) = P(u) x P(v) x P(w) = f (u)dux f (v)dvx f (w)dw
or, P(uvw) = f (u) f (v) f (w) dudvdw.
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d d vw .
But, P(uww) = Mo then Do _ f (u) f (v) f (w)dudvdw, where dn,,, is the number of molecules
n n
out of total number n that have velocities U, V and W simultaneously within range du, dv and dw.

dnr:VW = F(u,v,w) dudvdw, where F(u,v,w) = f (U) f (v) f (W)

Thus,

and F(u,v,w) isthe probability density or distribution function that contains U, V and W terms.
I sotropic nature of molecular motion

Now we consider the function, P(u) = f (u)du and P(u) is the probability of the
molecule that have velocity U within range duin the X - directional motion of the molecule.

Since the molecular mation is isotropic in nature, the probability of a moleculeto have velocity U to u+du inthe
range 0 to +oo is same with that in the range 0 to—co . This aspect of the molecular motion is possible if the

function f (U) contains U® and not U. If the function contains U, then P(u) becomes different for the molecule
to have velocity U and —U within the samerange du. Inthat case,

the molecule has not the same chance of going east with certain velocity as it Py | P
has the chance of going west with that velocity. But if the function may - I +o
contain U?, the probability of the above motions becomes same and U—

isotropicity is maintained and asin thefigure, P (u) must be same with P (-u).
Evaluation of natur e of the function
Considering the isotropicity of molecular motion, the functions may be

writtenas f (U?), f(v?) and f(W?). Then, F(u,v,w) will beF (u® v*,w?) and it is the probability density or
distribution function of molecules to have velocities U, V,***
In the adjacent velocity space diagram, let the point P is
the position of molecules that have component vel ocities [~
U, V,W and theresultant speed ¢ such that

CC=U +V° +W. Ao
The molecules that have velocities U, V and W within

range du, dvand dw must have the velocity points W Y v
o /

within the rectangular box of volume, dudvdw at that

point P.
Thus the probability density or distribution function,

f(U?) (V) f (W) =F(c®) = F(U* +V* + W) q By
or, f(U2)f (W2 FW?)=FU2+V2 + W)
This mathematical condition can only be satisfied

by the exponent function [such as€® x €” x e = gl@b+0) 1,

Then Iet each function may be written as f (U) = Aet® ¥

where A and b are constants dependent on the nature of the  p
gas and temperature.
Velocity distribution in Cartesian co-ordinates

Again, T (u) isthe probability of the moleculeto have
velocity virtually U, henceit can have only finite value.
But, if (+ve) signin the exponent term is taken, then when U — oo, f (U) becomes infinite which is not possible.

et =ut +vt

Thus, only (—ve) signisallowed and the functionis f (u) = Ae ™’ Other functions are
thus f (V) = Ae™ and f (w) = Ae™ Then the distribution law in Cartesian co-ordinates is given as
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d —b(uZ+v2+
”;VW — () F(v) f () dudvaw= A%e I dvaw
d 2
or, nr‘;vw = Ae ™ dudvdw.

Distribution function in polar co-ordinates
The above equation can be converted into polar co-ordinates
by replacing dudvdw= c*dcsindd@de and thus the distribution in polar co-ordinates is
dn
— % _ A3e ™ c2dcsinddode,
n
where dn,, isthe number of molecules that have speed cto ¢+ dcwithintheangle @ to §+dé and ¢ to

@ +de . If we consider the magnitude of the speed only irrespective of direction, then angleterms are to be
integrated with the full rangeof & and ¢ i.e,
dn . i
kU A?’e*bczczdcjsn@de j do ,
n 0 0

where dn, isthe number of molecules out of nthat have speed cto ¢+ dc in any direction. Integrating and

putting the limits, we have © — 47 A% c2dc =F (¢) dc,

d
where F(C) = ld—nC = 47zA3e‘bCZ c? and it is the speed distribution function or probability density function that
n dc

have speed C within unit rangeof Cc i.e, C to c+1. Since ¢ >>1, so F(C) is practically the fraction of molecules

that have speed C.
Evaluation of constant A in termsof b
The value of A can be obtained by the use of normalization condition of F(C)

dn <
and the condition is J F(c)dc=1 or, I ©=1 s, 47rA3_[e‘bCZ c’dc=1
all valuesof ¢ all values of ¢ n
r@) _ 1 v
or, A7 A3 x =1 or, A A3 x \/_ 1 o, A3 x [—j =1.
b 2b/2 b

% .
Thevalueof A intermsof bisthen A= (Ej and the speed distribution is dTnC = 47[(9J e_bCZCZdC
V4 T

Evaluation of b .
For evaluation of b, let us borrow the value of mean-square speed, ¢ = 3k% from kinetic theory of gas
and equate it with the value obtained by averaging from the distribution law.

7 fo e ferar 2 e

% %
e c2dc= 47{ j jc e ™ dc =4z ( j x F(SQZ)
0 T Zbé

%2 3z 31 3 m
=4 L = 24 = andthisisequal to KT/ Thus, = —-3kT o, b=——.
ﬂ(nj “8\Vee ~27b = Vi Thus, 5 = 307 2KT

Putting the values of A and b we get the Maxwaell distribution of molecular speeds

-
dn, _ 47;(—m J e—m%chde =F(c)dc

n 27KT
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% e

n M

Thelaw can also be written as dn, =4rx M e CARTCZdC: F(c)dc,
n 27 R

where F(¢)= 47| - %e‘mc%ﬂcz o, E(0)= 4z M %e’M%RTcZ and F(c)—l(dnc itis
B 27KT ' B 27RT nldc )’

the probability of a moleculeto have speed C within unit range.

Distribution and dependent factors

From the expression of F (C) , it is seen that it depends on the nature of the gas
which is characterized by molar mass (M) and the temperature (T). More precisely, F (C) depends on

M/I’ of thegas. Thus, F(c) of O, gas molecules at 300 K is same as that of SO gas molecules at 600 K as

M/I’ valueis samefor both the gases at these temperatures. It means that fraction of O, molecules at 300 K have

the same vel ocity with that of SO, gasat 600 K. Similarly, F () of N2 gas and CO gasis same at any temperature
as both the gases have same molar mass.

Salient features of the speed distribution law

It is possible to calculate F (C) of a particular gas at a given
temperature with different speeds ranging from small value to high value. The calculated values can be put in a
table and then it can be projected in afigure, F(C) vs. ¢ . These are shown below.

Far ':jz gas 300 K

speed function
po 0 For (4 gas300 K
€1 Ficy) ’[
€z Fieg)
- Fe) | Fle) F(c)
[ Ficy) \
s
- e 0 Cmp cChde 0 o
C — C——~

Various conclusions can be drawn from the mysterically hidden informationin the F(C) vs.ccurve.

(1) When ¢ =0, F(c) =0andit meansthat thereis no molecule that have zero speed i.e. no molecule
isat rest at any temperature, all molecules are moving in the gaseous phase.

_mc?
(2) The expression of F (C) contains two factors, oneis exponential term, € A“T and the other is

non-exponential term, ¢*. Thus with increase of ¢, the exponential term decreases the value of F(C)
while the non-exponential term increases the value of F (C) . So the net effect on F (C) depends on the
relative magnitude of these two factors. At low c, the non-exponential term dominates whileat high c,
exponential term dominates. Thus, the valueof F(C) startsfrom zeroat c= 0, increases, then attains
maximum and finally decreases towards asymptotic value with increase of C.

Thevalue of F(C) again becomes zero at ¢ — co.
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(3) Maximum fraction of the molecules have a common speed and it is called most probable speed (C,,, ).

(4) The fraction of the molecules that have speed ¢’ to ¢’ + dcisgiven by thearea, F(c") x dc (shaded area
inthecurve). Total area of the curveisunity i.e., fraction of molecules that have speed O to oo isone.

(5) Thefraction of molecules having speed > ¢’ is obtained from the area of the right-hand side of the ordinate
drawnat c’'. Similarly, thefraction of molecules having speed < ¢’ is obtained from the area of the
|eft-hand side of the ordinate at c'.

Effect of temperature on the distribution

_mc?
(1) F(c) also contains two factors which are dependent of T, oneis the exponential term, € A“T

%

and the other is non-exponential term, (%ﬂ'kT) 2 Atlow T, exponential termis low and

non-exponential termis high, but at high T, exponential term is high and non-exponential termis low.
Thusat low T, as ¢ increases, F(C) increases more dueto increase of non-exponential term initially but
as cfurther increases, the exponential term dominates due to presence of T and ¢*, and the value of

F (C) decreases sharply.

Now at high T, F(C) decreases dueto decrease of non-exponential terminitially but as cis further
increased, the exponential term dominates due to presence of T and C* ,and the value of F(C) decreases,
attains maximum and then drops to zero slowly as ¢ — oo for the presence of ¢* in theterm. But dueto

high T, the exponential term increases and dueto C* theterm decreases. Overall the exponential term
lowers the value of F(C) but the lowering is less than that at low T.

\
|

CnlTy) €7 Gupligd
.:—_',

Thus, when the temperature of gasis increased, the distribution curve is broadened and it becomes more
uniform.

The most-probable speed is increased with rise in temperature though the fraction of molecules having
most-probabl e speed is decreased.

e, if T, >T,, then Gy (T,) > G (Ty) but, F (G )at T, < F(Gpp)at T,
(2) Thefraction of molecules having speed > C' isincreased with rise in temperature and the fraction of
molecules having speed < c'is decreased.
(3) Thefraction of molecules having speed closeto Cmp isalso large asthe curveisflat at higher T.
(4) If T ismoreincreased, the curve becomes more and more flat and when T — oo (very large), the curve

liesonthe c-axisindicating that the speed distribution is totally uniform. All the molecules have same
speed and in fact distributionis lost.
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(5) If T isdecreased, the curve becomes narrow. More and more T is lowered, the curve becomes more and
more narrow and when T — OK , the curvelies on the F(C) - axis. All the molecules have speed zero

and so again the distribution is | ost.
(6) However, thetotal areain both thecasesof T, and T, issameand it is unity.

Effect of molar mass on the distribution

The molar mass (M) and temperature (T) remain
in the expression of F(C) as (M/T) s, the effect of M

isjust the oppositeto that of T. Thus the effect of M at

constant T, the curve of F(C) vs. ¢ will be similar to that 2
of the effect of T at constant M but in inverse fashion. F(c)
Thisis shown in the adjoining figure.
The curvefor the gas of lower molar mass (such as helium) e
is wider than the gas of heavier molar mass (such as argon). Crp(10,) © Cop( 1)
C —

Expression of most-probable speed (Cmp)

F () attains maximum value at a certain speed in the F(C) vs.c curve and this speed is called

dF(c)

most-probable speed, C,,, . Using the condition of maxima and minima, =0, itispossibleto

find the expression of C_,, .

% mc7 mc?
F(0)=4 e /¢’ = Ae o &
(©) E(ZEKTJ N . }[

So, FO_p e_m%kT x 2C+ cze_m%” (—Z—ij =0 FE)
dc 2KT

_mc? 2 0 c

or, A2ce /AT (12 ) g mp € ——
2KT

Three options may be considered to find ¢ at which F(C) attains maximum value.

(1) When ¢ =0, the expression is zero and it is the minimal condition of F(C).

_mc?
(2) When e 72K =Qor, C =00, the expression is zero. Thisis also the minimal condition of F(c).
2

(3) When 1— 1€
KT

mc’ /2kT 2RT
B RS _ [2RT - ]
Thus, 1 KT Oor, C,, or, Gy, M . Thisis the expression of most-probable speed, C,,, .

Problem: Calculate most-probable speed, C,,, of oxygen gas molecules at 300 K temperature. [Ans. 394.7 m/s|

=0, the expression is again zero and it is the maximal condition of F(c) and thisCisCpy, .

F (C,,) islessat higher temperature
Thefraction of molecules having C,,, is decreased with risein T and this

can be shown by diagram and also by mathematics. In the diagram as shown earlier, it is clear that F (Cmp) is
decreased at higher T. Now we show it by mathematics.
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e 4ch2. But whenc= C

'mp ?

m
27KT

% mc?
J i

3
JZ . %ATC

F(c)=47z( then F(cmp)=47z(

27KT
or, F(Cnp):Ar/\/'F or, F(Crm)oc}/\/_?. This shows that F(Cmp) decreases with risein T for a given gas.

3 %
Putting the value of Crp = 2KT , wehave F (Coo) = 4;;[ m j/z el(ﬁj or, F(C )= 4(2 ij el
m m

Problem: For an ideal gas obeying the Maxwellian distribution of molecular speedsin three-dimension,
1)\dN
find the maximum value of (Nj ((jj— for a gas of molar mass 4.0 gm mol ™ kept at 127 °C.
c

[CU 2012, Q5 (a), m = 3]

| e (1N y 2
Solution: Whenc = Cp = E, (_jE attains maximum value and it |s4><( j el(Seetheabove
m

expression after proper s mplificatio:;). Putting the data given, we get maximum valzfe of
[ j N _ 4 x [ 40gmmol ™ ]% &' =6.44x10"®(cm/sec)
dc 2x3.14x8.31x10" erg mol 'K ™ x 400K
Expression of average speed (T )
Using the process of averaging, dn, = T cx F(c)dc

n

o

* m % _m07 )
Inserting the expression of F(C) and integrating, T = ICX Az (ﬁ] e /&cdc
T
0

2% mey m Y2 I(2) m V2 1(2kTV  [ekT
- 4 27 e = 4 /P B Rt (LI [y LI
”(27sz) Ie cde ”(27sz) o0 ”[kaj Xz( mj m

Thus, the average speed of the molecules, ¢ = IE or, C= /ﬁ .
m M

Problem: Calculate the average speed, T of oxygen molecules at 300 K temperature
8x8.314J mol 'K x 300K
3.14x32x10° kgmol *

Solution: € :\/ =4455nys .

Expression of root-mean-squar e speed, \/0_2

Earlier we have calculated mean-square speed, Q= KT

m
Thus, root-mean-square speed, \/0:2 = /ﬁ or, \/c:2 = %
m \}

Problem: Calculate the root-mean-square speed ( Cg,,s) of oxygen molecules at 300 K temperature.

. = 3x8.314J mol *K™* x 300K
Solution: +/c? = =483.4nys.
\/ 32x10° kgmol *
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Thusitisseenthat C <T< \/c__2 . Theratio of the speeds are given as below

= \/sz \/8kT \/3kT */_\ff 1\[\[ 1113:122

Problem: A hypothetical molecular speed dlstrlbutlonls— M =4r| —— e " , where cgoes
N dC 27sz

1(dn
from QO tooo. (i) Draw the function graphically taking N( d(;) asy—axisand cas X- axis.

(i1) Calculate the average speed of the gas molecules using the above distribution.
[Calcutta Univ. 2010]

The position of these three speedsin the F(C) vs. ¢ curve are shown.
The differenceinthevalueof C,, and C originates dueto the

fact that the distribution curveis not symmetrical. The peak of the curve T
isinclined towards the F (C) -axis and hence ¢, has lower value.

— F(c)
v C? contains sum of square terms and thisis why its value is highest. \
— 0 Gy EJC'zz
Expression of standard deviation of molecular speeds, v &° ¢ ——

Since the speeds of the molecules are distributed, we can talk about the deviation of the
speed of the molecule from the mean value, 6 = ¢— C . The average deviation from the mean value is zero.

However, the root-mean-square deviation (which is called standard deviation of speed) o= \/5_2 iS non-zero.

Let us now find the standard deviation of speed of the moleculesin a gas assembly at a given temperature.
We have discussed that in a given gas under steady-state, definite fraction of molecules has definite speeds.

So, let n, molecule have speed ¢, n, molecules have speed C,, N, molecules have speed C, and so on.
Thus, deviation of speedsfor n, molecules from its average valueis ¢, = ¢,—C , for n, moleculesis
0, = C,—C, for n, moleculesis c,—C and so.

Mean-square-deviation,

MO, N0l 4 (6 —C) 4N, (C,—C)° +ny(C —0) + ...

n n
n {cf —-2cC+ (6)2} +n, {022 -2c,C+ (6)2} +n, {c§ -2c,C+ (6)2} +
- n
_ NG N0+ C 2T (NG, + N, + Ny, +...) ) {nl +n, +n, +...}: ?—2(6)2 +(cY
n n n
or, 5% = g—(_) = (+ve). Thus ¢2 > ( 2 or, \/7> c.
This shows that RM S speed is greater than average speed of the molecules.
— 3KT 8KT KT
Putting the values of these speeds, we get 6> = % - 8— (3— gj Thus root-mean-square deviation

which is called standard deviation of speed is o, =[5z _ /k_T(g_§j or, J5 - /E(s,_ﬁj = 0.67x /E.
m P M T M

This quantity gives us a measure of the breadth of the distribution.

KINETIC THEORY AND GASEOUS STATE WITH BURDWAN UNIV. QUESTIONS AND ANSWERS - DR N C DEY 18



Problem: Calculate the difference between RM S speed and average speed for an ideal gas exhibiting
Maxwellian distribution of molecular speeds, given the molar massis 2.0 gm mol ™, density is
0.089 gm L™ and the pressureis 1.0 atm. [CU 2012, Q 1(a)]

Solution: For ideal gas, P = dRT or, RT P . Wehave ¢, /— - /8RT
RT -
=.0.136x =0.136x Puttlng the values, we have

6, — C=0.136x 1.0 atm _ =0.136x 76><13.6><981d}/3nec_r;1‘ _14 516 CVSec.
0.089 gmL 0.089 gmx10—>cm

problem: The standard deviation of speed ( o) for Maxwell’s distribution satisfies the relation
W o, cT (2o,cdT @o, % 4) o, c1/\T [NET (CSIR - UGC), 2013

Expression of average timerequired to travel unit distance
Average value of any property can be doneiif that property is
directly related with the speed of the molecules. Thus the time required to travel unit distance is directly related to

thespeedast:} . S0, the averagevalue of t is t_:jl F(c)dc
c c

0

B 2 % %

o, t =4r m J‘eimc//' fm @ =471'( m j xix£= —2m

27KT ) 4 v ) 27KT 2 m KT

2KT
Thus, averagetimerequired et 10lecules, f - /z_m - /Z_M
i e : KT ZRT

Problem: Calculate the aver et ey AT\ distancefor O, gasat 27 °C . [Ans. 2.86 x 10°3m]
Distribution of momentum

B

Any propert speed can be made under distribution from Maxwel
speed distribution law. Such properties are momentum and kinetic energy.
For momentum, P = MC, the speed c is now replaced by p in the speed distribution and we get the momentum

distribution. The speed distribution is

% mc? 2
dn, =47z’(lj e Achde_ Now, C=£, mc? :p—, 2= and dc=@.
n 27KT m m m

_p/rrkT 2

dn,
Putting these values, we have the Maxwell momentum distribution —— 47[(

n 27mKT

Distribution of kinetic energy of the gas molecules
This distribution is important one and this can also be done by replacing ¢ by kinetic energy, &

using the relation, € = lmcz. Now, c? = 2 so 2cdc = Edg
2 m m

or,dc=idg= ! de = !

mc m g J2me
\/ m

%
) ef%‘T [§j ! de or, dn, =27z[ j %‘T\/_dg
m KT

de . Putting these values, we get the Maxwell KE distribution as

n

y
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One important point of difference from the speed distribution is that it does not contain the molecular mass of the

gas. This means that KE distribution only depends on T but does not depend on the nature of the gas.
Thus, all gases have same KE distribution at agiven T.

KE distribution function, F(¢) :ldn‘f or, F(¢) = 27;( ) _AT\/_
n de KT

Since, ¢ isfraction and small so, \/; >¢g and non-exponential term (\/Z ) F(g)
dominates more, so theplot of F(g) vs. & givesthe KE distribution curve that
rises more steeply but falls more slowly than the speed distribution curve. 0 FE—_

Expression of aver age KE of molecules
Average KE of molecules can be obtained by the process of averaging

3
EZTsxdn‘g =27 1 yJ‘ % e Mg = on %x 013 - 27[( X j/ZXi&\/;X(kT)%
n KT 0 7Z'|(T (l/kT)/Z KT 2 2

or, & = g KT . Thus, the expression of average KE shows that it depends on T only and does not depend on the

nature of the gas. So, the most light gas H. and most heavy gas UFs both have the same average KE at agiven

temperature, i.e, &, () = Eury(q) -

Expression of fraction of molecules having KE > g,

The fraction of molecules having KE 2 ¢, is calculated as below:

ngl _ < dn

1 V2% .
ZﬁiﬁkTJ JleATJEdg.Lag=ka2w,dg:de(XZ),

n % o
When, e = ¢, x= E%T S0, izzﬂ(%J j > KT xx de
T

" 7

dle) =7 be Y - L) “Flae ™

ﬁn_.s

or, n Jj_

Generally, &, >>KT so kT isvery largeand € * = ef%T is very small, and the second term is neglected.

n _
So, the fraction of molecules having KE = ¢, is - 4T
n J_ kT
, . N Ey
When KE is expressed per mole, ¢, isreplaced by E; and the fractionis — = J_ RT RT
n

RHS of the equation varies quite rapidly with temperature particularly at low temperatures.
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n
The adjoining figure shows such variation of % with g at

1.0

different temperatures, calculated by using the above expression.
Thefigure also shows graphically that the fraction of molecules

having KE > ¢, increases markedly with rise in temperature,
particularly if ¢, isinthe high energy range. This is fundamental 5105

especially in the domain of chemical reactions. L 200 }%DDH
Problem: Calculatethe % of oxygen molecules having 100k
KE >60 cal mol™ at 27 °C. [Ans. 32.28 %] 0
1 7

Maxwell distribution law in one dimension
The probability of a moleculethat have X- component velocity

d d
U to u+du is P(u) = f(u)du, but P(u) = 2 s, Y _ £ (u)du.. The function is already evaluated and it is
n n
exponential in nature. The function contains U” and not u for theisotropic behavior of molecular mation.

Thus, the functionis f (U) = Ae ™ . Therefore, —”“ = Ae™ du. Thevalueof A can be obtained from the

normalization condition of the function, J. f(u)du =1 so, AJ. e du=1or, ZAI e du=1
—0 0

—00

or, 2Ax 1r@?2 _1 or, A\/Ezl or, A:\/E.Thedistributionisthus d_n“:\/Ee‘buzdu.
2 b% b T n T

Now evaluation of b can be done from the value of mean-square X - component velocity from the distribution
equati on and equated with the value obtained from kinetic theory of gas.

J'u f (u)du = AJ'u e™ du= 2A_|'u e™ du= 2\/B 1I(3/2) \/7 —xlx/_
T

2 o7
\ AN 1 KT
But from kinetic theory, g_X:%mUZZ%kT or, U? :kﬁT 0, 5 = o b= 2kT

14 . . . .d m Y2 _m?
Thus, Maxwell distribution law in one dimension is o, = (—j e AKT du.
Expression of average value of X- component velocity, (U)
u= I uf(u)du= AI ue™ du=0.[Since, f u e du= 0] This result is due to the fact that amoleculeis

equally likely to be moving in a (+ve) direction asin a (-ve) direction. If U had a value other than zero, this would
correspond to a net motion of the entire mass of gas in that particular direction.

Graphical representation of X-component velocity function, f (u) f[u]
d
The above function is f(u):1 N Aet
n du
The distribution function, f (u)when plotted against U of agas at
agiven T, the curve becomes symmetrical and average X-component = =
velocity, U=0. I +
—

Again, thefunction, f (u)attains maximum valuewhen u =0
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so, the most-probabl e X -component velocity, U, =0. 7 [u ]

When T isincreased, the curve becomes moreflat and the distribution
is more uniform. The peak of the curveislower but it is broadened.
However, the area of each curveis unity.

Expression of root-mean-squar e of X- component velocity

We have already formulated mean-square X -component velocity using
the process of averaging from the distribution law in one- dimensional

. 2 H 2
motion as U® = — .So, the root-mean-square vel ocity, Yu* = ™y ——— 0 e

m

= RT . . . "
or, «/uz Vit Comparison of different average X -component VEloCitito we. v — upy — v ww yu :\/_ . In
m

\/u_2 , each velocity term (U) is squared up so it becomes (+ve).
Question: Show that total probability of a moleculeto have velocity u to u+ du within therange —oo to +oo

is unity.
] ~ ~ b 1 F(1/2) b T
Answer: P(u fuydu=[ A e™ du=2A[ e™ du=2 \f \F \P=
aleaJ[Lofu (W)= —[c ) '[ ‘[ T 2 b% 7ZX b

Expression of average X- component velocity in therange O to +oo

When all the molecules are moving in one direction only, the expression of thefunction, f(u) =2A€ o

This expression can be easily obtained from the normalization condition, I f(u)du =1.

0
Thus, the average value of X -component velocity intherange O to +oo is calculated as below (All the molecules
are moving in one direction so it is multiplied by 2):

= [ufUdu=2Afu ebuzdu:ZAxi:\/E . X /2kT . 0= /ﬁ_
0 0 2b ™

Problem:
A sample of caesium is heated to 500 °C in an oven. In one wall, thereis a small hole and the atoms emerge to form
an atomic beam. Find the average vel ocity of the atomic beam.

2RT  [2x8.314J mol ‘1K‘1><(273+500) K
M 3.14><133><10‘3kg mol *
KE distribution in one dimension

=1755ms™.

Solution: U

d % _mu?
Maxwell X -component velocity distribution is - _(_m e A“T du . Now, &, = 1mu2
n 27KT 2

2¢ 1
so, de, :mudu:mx,/ X du=.2ms, du or,du =
m " J2me

X

de, - Replacing uby ¢, , we get the

}/ % _&x
? e, 1 de, :E(—l ] e 4T><—1 de, .
n 2;sz * ome, 2\ KT Ex
7 e
Thus, KE distribution law in one dimension is an, - L Ze_ e L de,
n 2\ KT Ey

This KE distribution is also independent of molecular mass (m) of the gas but dependent of T.
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Expron of average KE of moleculesin one dimensional motion

o0

gxzj
0

1 2% &y }é 1 % 3 1 1
[mj e e m“’xz(ﬂm (;(3’)2} (m] (KT = kT
0 2
2

This average value can also be calculated from mean- square X - component velocity by the relation,

%o
= 2J.8 ( j 3 /T X —— \/_ de, [Sincethe molecules move in one direction only]
gX

g_x——mu Iu =—kT

Speed distribution law in planar motion (2-D motion)
The molecules in this type of motion have both
X- component and Y -component velocities simultaneously. Thus, the probability of a molecule that has vel ocity
uto u+du and v to v+ dv simultaneously is
P(uv) = P(u)x P(v) = f(u)dux f(v)dv= f(u)f(v)dudv.

d
But, P(uv) = Ny , S0 the fraction of molecules that have velocity u and v simultaneously within range
n
d 2
du and dv is M _ £ () f (V) dudv=Ae™ x Ae? dudv = A& dudy = A% dudy.
n

d
But, A= /E and b= i, putting the values, we get My _(_M_ Sz dudv.
T 2KT n 27rkT
dn _mc?
Converting the distribution in polar co-ordinates, we have —% = (%)e rlrl(%"Tcdc de.
n 7

When only speeds areconsidered, dg isto beintegrated withinfull limitsand it is

dn
dn, _ /kTCdCIdQ o, —==|—|e /kTCdC Thus, Maxwell speed distribution law of
n 27sz n kT

d m ) -me
molecules for planar motionis F(c) = Ed—n° so the distribution function F(c) = (Eje m‘%"TC .
n dc

Thecurve, F(c) vs. ¢ rises more gently but falls more rapidly than the curve in three dimensional motion.

Expression of most-probable speed of moleculesin planar motion
Differentiating the speed distribution function, F(c) with respect to ¢, we have

dF(c) _ (ﬂj{e—'m%n . 4 e_mC%kT (_Z_rncﬂ ( je M T [1_ mc? ] -0.
dc KT 2KT kT kT

2

When € / KT =0, ¢ — oo and this corresponds minimal value of ¢ and 1— = 0 corresponds to the

maximal value of C. Thus, 1— k =0 so, the most-probable speed ¢, ,/ or, Gy, = ‘/
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Expression of aver age speed of moleculesin planar motion

We have distribution function, F (C) = ( T j e ™2 2KT ¢ So the average speed,

® @ 2 0 2
§=J.C><F(C)dC=J.C>< M) ™ e ge—( M ICZXe‘mCAkT do=[ M), _TE/2)
0 0 KT KT B kT 2(

%
o)
m) Nz (KTV?_ KT [akT _ [7RT
= — | X — X| ——— = —w,C: _ = —.
KT 4 m 2m 2m 2M
Expr ession of root-mean-squar e speed of molecules in planar motion

. . o mY -mc?
This expression can be formulated from the distribution law, F(C) = (ﬁj e Ach.

The mean-square speed

ZIC xF(c)dc = _[C X[kT) /chdc ( )J'c xe /dec (gjx%
2KT

2 ——
(mjxlx[ﬁ] =E.SO,RMSspeed, e = fﬁz |2RT
KT ) 2 m m m M

Thus, the comparison of different average speeds are made from the above expressions
— KT KT |2KT
Cop cNG = /—: /”—: /— =1:\/E:\/§=1:1.253:1.414.
m 2m m 2
KE distribution of moleculesin planar motion

TheKE, ¢ = %mc2 s0, de = mcdc. Putting in the speed distribution law, we get

n_( j%(ng \ dn, ( )e/deg
KT m  n \KT

Thus, KE distribution is independent of molecular mass but it dependsonly on T.
Fraction of molecules having KE = ¢, in the planar motion

n, . ekt ] e
n ( Jje%‘Td ( j [ } =e %T.Thus,fractionof molecules having KE > ¢, is

Ha

_ dn _E
r‘? —e T . When KE is expressed per mole (Ey), it is nEl =e YRT .
Problem: Calculate % of oxygen molecules having KE > 60 cal mole* at 27 °C. [Ans. 90. 5]
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Principle of equipartition of energy
The principleis based on classical theory and it is much helpful to calculate
average energy (£ ) of amolecule and also molar heat capacities of the gas.

Statement of the principle
If the energy of a molecule can be expressed as sum of terms, each of which is
proportional to either square of velocity component or square of position, then each of the square term contributes

% KT to the average value.

Verification of the principle:
Maxwell velocity distribution law can be used to justify this principle from the value

of X- component trandlational KE ( &, ) that contains square of velocity (u) term.

5X=1mF_—mju f(u)du, but f(u)= Ae™ WhereA:\/E andb=_"1
2 p 2kT

2 r(3/2
=Em><2Ajuze‘b“ du= rn\/E (3/2) —}mxixlxE V2 :meﬁ EkT_
2 > 7 op2 2 Jr b2 4 m 2

. . . 1
This shows that the square of X- component velocity term will add 2 KT value.

Molecular motion

A molecule can execute three types of motions — translational, rotational and vibrational.
Thelatter two constitute internal motion while former oneis external motion.
Translational motion can be executed by a moleculein three independent axes (three degrees of freedom). So,
Buns = &y + &, + &, PO Ty S P Y ST SR 100 S R SN 0),

2 2 2 2 2 2 2 2

Rotational motion: A linear molecule can rotate in two axes independently. If bond axisis taken as X - axis, the
molecule canrotatealong Yy - axisand z - axisindependently with centre of massis at the origin. When it rotates
along X - axis, thereis no positional change of the moleculein space so, it is not counted. Thus,
_ 1 — 1 — 1 1 A
Eot = 2I o +>l o ——kT+§kT=kT,WhereI = moment of inertia= xr? and o, and @, arethe angular

velocities of the moleculealong Y - axisand Z - axis respectively so, for linear molecule, &, = KT .

Non-linear molecule can rotate along the three axes independently and so rotational KE,

Erot —ll a)_+il a)_+ll _:lkT+lkT+£kT :§kT . So for non-linear molecule, &, = §kT :
2 2 2 2 2 2 2 2

)

Vibrational motion: For each mode of vibration (say along X - axis) &, = % mu? + % kx? = %kT + % KT =KT .

It means that each mode of vibrational energy consists of two square terms so it posses energy, KT .

Degrees of freedom
The degrees of freedom of a particle may be defined as the number of co-ordinates necessary
to describe the position of the particlein space.

Thus, for an atom, 3 co-ordinates are required to specify its position. So for a system
containing N atoms, there requires 3N co-ordinates or degrees of freedom. Even when these atoms arein motion,
still then 3N independent degrees of freedom are required to define the system.

If, however, the atoms are connected by covalent bonds, a molecule is formed but total
degrees of freedom (3N) remain conserved.

Out of 3N degrees of freedom, the molecule execute 3 degrees of translational motion, 2
degrees of rotational motion (for linear molecule) and (3N — 5) degrees of vibrational motion.
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Thus, for alinear molecule containing N atoms, we have total 3 +2 + (3N — 5) degrees of freedom.

Since each degree of vibrational energy constitutes two sgquare terms, so a linear molecule has total
3+2 + 2(3N — 5) sguareterms in its energy value.

For non-linear molecule, it has 3 +3 + 2(3N — 6) square terms.

Calculation of aver age energy of a molecule
The principleis used to find the average energy of a molecule. For a
linear molecule consisting of N atoms, the average energy

E =By + &y + By =[3+2+2(3N—5)]x%kT.

Thus, for CO, which is triatomic and linear, the average energy of the molecule in gaseous stateis
1 13

£ =[3+2+2(3x3-5)|x KT = —KT = 6.5KT .
2 2
The average energy per moleis, E = 6.5RT andfor n molesitisE = 6.5nRT .
So for 1 mole CO; gas at 27 °C, the average energy can be calculated as
E = 6.5RT =6.5x2cal mol 'K x300K =3.9x10%cal mol *.
For a non-linear molecule consisting of N atoms, the average energy

E = Eyan + Eror + Euip =[3+3+2(3N—6)]x%kT.

vi

Thus, for HO which is triatomic and non-linear, the average energy of the molecule in gaseous state is
£=[3+3+ 2(3x3—6)]><%kT = 6KT .

The average energy per mole of H2O gasis, E = 6RT and at 27 °C,

E=6x2cal mol 'K " x300 K =3.6x10%cal mol ™.
For monatomic gas like He, Ne, Ar etc, the molecule has only tranglational KE and no rotational and vibrational
energy arethere. So, the average energy of these moleculesis

E = Eyan= ng and per mole, E=gRT and at 27 °C, E:%chaJ mol "K' x300 K = 9x10°cal mol *.

Molar heat capacity
This energy constitutes the trandlational, rotational and vibrational energy of the molecules,

henceit istheinternal energy of the system (U). The constant-volume molar heat capacity, C, = (G%T)
\%

andthus, C, = [3+ 2+ 2(3N —5)]>< % R for the gas constituting linear molecules.

and  C, =[3+3+2(3N-6)]x % R for the gas constituting non-linear molecules.
For monatomic gas, (N = 1) thereis no rotational and vibrational motion so these motions do not contribute to the
3 5 : . C
b N = — = P = =
energy. Thus, C, y Rand C, > R, and molar heat capacity ratio y %V é 1.66.

This shows that for monatomic gas, there is excellent matching with the experimental value of .

For diatomic gas, U =gRT o, C, :%R, C, zgR andy:gzl.B.

But the experimental valueis 1.4 when determined at ordinary temperature

This discrepancy is much more pronounced for more complex molecules (for higher value of N).

Thelimitation originates dueto the fact that the principle is derived from classical theory in which energy changes
continuously. There occurs no limitation for monatomic gas in which translational energy changes continuously.
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For polyatomic molecules, if contribution from the vibrational motion is not considered, then calculated value

matches the experimental value. Asfor diatomic gas, itisthen Cv = (5/2)R, Cp= (7/2)Rand y =7/5=1.4

which matches excellently with the experimental value.

Limitations:

(1) Cv valueisfound from the law is independent of temperature (T), but Cv increases with increase of T.
Thus when T decreases, Cy decreases and when T — 0K, C, — O (Experimentally found).

C R . , _
y=—"b= CV—+ =1.4 when determined at ordinary temperature. But as temperatureis increased,

G, G

the vibrational energy begins to contribute to the value of Cy and Cy isincreased so y of thegasis
decreased. At high temperature, thus the value of y from the law attains the experimental value.

Problem: According to equipartition principle, predicted at high temperature limiting value of the molar heat
capacity at constant volume for C;H; is
(A) 55R (B) 6.0R (C)9.0R (D) 9.5R. [NET(CSIR —UGC) 2015, Calcutta Univ. 2015]

Collision of gas molecules

The molecules are moving at random in all directions with equal probability in a gas. So,
when a gas is confined within a vessal at equilibrium, there occurs collisions of the molecules with the walls of the
vessd (called wall-collisions) and with themselves (called intermol ecular collisions). By frequency of callisions,
we mean the number of collisions made by the moleculesin unit time.
Frequency of wall-collisions (Z,,)

It is the number of collisions made by the molecules per unit area of thewall in unit

time. The value of the Z,, can be estimated roughly or can be formulated accurately by using Maxwell one-

dimensional velocity distribution. These are given as follows.
Approximate estimation

Let usconsider awall of area, S and the molecules that can hit the wall in unit time must be T
distance away fromthewall. T isthe distance that the

molecules can travel on an averagein unit time. So the —
volume of the hit cylinder is € x S. . c N

If N'isthe number density of the moleculesin the gas at O number density, i ( wall of
temperature T and pressure P, then this cylinder contains hit cylinder - ’
€ x S x N’ number of molecules. Since the molecular -

motion isisotropic in nature, so only (1/6) of the above molecules can strikethe wall of area S in unit time.
: . L 1_
Thus the number of molecules that can collide unit area of awall in unit timeis (ZW) = 5 CN'.

Accur ate expression using Maxwell one-dimension velocity distribution
L et us consider agas at temperature T and pressure P containing N’ molecules per unit volume

(i.e, N'=N/V). Now let us take awall of unit area placed

, _p unit area
perpendicular to the X- axisintherangeO to +o0. So, the molecules . ﬁ
that hit this wall in unit time must have velocity U within the range - 0 +e
0 to +oo. The molecules having velocity Uwithin range 0 to —oo are H—

moving in the wrong direction and they can never hit the wall of our reference.
The molecules that hit thewall in unit time must be U distance away from the wall. Since the wall is of unit ares,
these molecules must be contained within the volume (U x 1).

Let AN/ isthe number of molecules per unit volume out of number density N’ that have velocity U within range
0 to +oo0.
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Thus the number of molecules hitting the unit area of the wall in unit time, which is frequency of wall-collision, is

i m
ZW=.([(U><1)dNLj. But, lej:N’Ae_buzdu,where A= \/Eand b_ﬁ

So, Z,, =N’ Ajueb“d u=N'’ \Px_: / {ZkT /SkT <N'G

Thus, the frequency of wall-collision, Z, :Z N'T

The mass of the gas that strikes unit areain unit time, u = Z,, x m:%(N'x m)¢ = %dé,

(since N'xm=d, density of the gas).

Foridealgas,d:pxwI and ¢ = Sﬂso,,u:}x PxM X 8RT =P M .Thus,#:p/ M
RT V;zM 4 RT M VZ/IRT 27RT

Thisrdation is used to determine vapour pressure of solid by Knudsen method. This determination is illustrated by
the problem (4) as given below:

Questions:
(1) Using the appropriate form of Maxwell’s distribution function in 1-D, arrive at following expression for the

callision flux (Z,,) inthe case of wall-molecule callisionin 3-D, Z, :%(%)(Q collisiong/arealtime.

W

Where (N/</) presents the number of molecules per unit volume of the gas under experimental conditions

and (C) represents the average speed in 3-D of the gas. [CU 2007, Q 1(d), m = 4]
(2) Calculate the number of wall-molecule collisions per cm? per sec in O, gas at 25 °C and 1 atm pressure.
[Ans. 12.74 x 107 collisions per cm? per sec] [CU 2010, Q 1(b), m= 2]

(3) The average speed of H, moleculesis 2x10° cnvsec at t °C. Calculate the number of grams of H per sec
hitting 1 cm? of wall, if pressure of the gas is such that the molar volume is one litre.[Ans.100 gm cm sec’!]
(4) The vapour pressure of solid Be was measured using a Knudsen cell. The effusion hole was 0.318 cmin
diameter and there occurred a weight loss of 9.54 mg in 60.1 minutes at a temperature of 1457 K.
Wheat is the vapour pressure of Be.

Ans. to Question (4): WehaveyzprM or, P=pux
T RT

9.54x10°° J 2x3.14x 8.314x 10" x 1457 K B
gncm: sec cmseC
60.1x 60x 3.14x (0.159)* 9.01

. Putting the values, we get

P:

= 9,586 dynecm® =9.45x10° atm.

Graham’s law of effusion
This law can be formulated from the expression of . The mass of the gas hitting a

hole of area dswill be effused from the vessd.
Thus, (31_\'1[\/ = mass of the gas effusing in unit time through the hole= x x ds =%p6 ds.

dw dv dv hole area
Again, W= pxV or, — = px— . But, — =T, rate of effusion of the gas. ’
9 r a7 dat ¢ 9 ds
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Thus, pxl‘ez%rpédsor, I‘ez%lé ds.But, T = % 0, rez[%r /8% dijﬁ

1

or, I, oc W for gas effusing from a vessel of definite hole area at constant temperature T .

This is Graham’s law of effusion.

Question: How many times does the rate of effusion of a gas through a pin-hole into vacuum change when
pressureis doubled and temperature is increased four times? (Ans. 2 times) [CU 2011, Q 3(b), m = 2]

I ntermolecular collisions
As the molecules are in random motion so they collide with themselves also. The
molecules are assumed as rigid spheres, so when the molecules collide,

the centre of two molecules can not approach beyond a certain distance. — 02
This distanceis called distance of closest approach or _ —
collision diameter (o) of the molecules. — _

Expression of collision number of a moleculein unit time

Let usfind an expression of the number of collisions made by a
single moleculein unit timein a gas at temperature T and pressure P.
We count hit whenever the distance (r ) between centre of two moleculesis equal to or less than the collision
diameter, i.e, r < o andwecall it abinary collision. The simplest approach to the problem is to freeze the position
of al the molecules in space except one of our interest which is moving through the gas with an average speed C .
In doing so, it swept out a collision tube of area 7o'> and length T x Atintime At .

This 7o? isalso called collision cross section. The volume of the collision tubeis 7zo> TAt . The molecules with

centresinside this volumeis 7o> CAt x N, where N is the number of molecules per unit volume (also called

number density) of the gas. All these molecules whose centres are within this volume are suffered collisions by the
moving moleculein At time. So, the number of collisions made by the mobile molecule in unit time

isZ, =xc*CTN’.

Eﬁ::s) collizion cross
. sectiion(ﬂﬂa)

hit
l:just)
But we have taken a wrong supposition that only one molecule is moving with average speed, C and other
molecules are at rest. To rectify this, we have to use average relative speed ( €, ) of the colliding molecule.

That is, if all the molecules are moving with average speed, T then the mobile molecule of our interest is moving
with C whichis \/56 . Thus, the expression of number of collisions made by a single molecule in unit timeis

:\/EHO'ZCN’
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Mean-free path (1)
The distance between two successive collisions of a moleculeis called free path.
The free path of a molecule can rangefor O to oo asamolecule can collide with the other molecule just
immediately after the start of its motion or it can move long distance without suffering any collision.
Thisiswhy, wetalk of mean-free path (A ) and it is defined as the average distance traveled by a molecule between

two successive collisions and it is formulated as, A = - where Z, isthe number of collisions made
1

by amoleculein unit time when it travels T distance. Putting the value of Z, , we get the expression of
mean-free path, A= __c or, A= ;
J275%E N J275% N’
Frequency of binary collisions among the same molecules
It is defined by the total number of collisions occurring per unit volume of the gasin unit time and it

issymbolized by Z,, . Itsexpression is obtained when Z, is multiplied by %N' anditis Z,, = Z, x%N'.

1 . .
Thefactor, 3 ensures that thecollison A....A" and A'.....A are counted as only one collision. So,
2 = i 1 i .
Z,= N27ro®TN'x > N’ . Thus the expression of frequency

1
of binary collisions among the same moleculesis Z,, = ——7zo”T( N’)2 .

V2

Frequency of binary collisions among the different molecules
Let usfirst consider the number of collisions made by a single molecule of 1% type with 2™ type

O, +0,

moleculesin unittime, anditis Z;, = ro5C N}, where o), = , C, isaverage speed of the 1% type

moleculesand N, isthe number density of the 2™ type molecules. It is assumed that all molecules are at rest
except one molecule of the 1% type is moving with average speed, C,.
hit Imiss
(\ Qli_]ustjlﬁ m[just]
T, - -
s A B @

When the false assumption of one molecule Is moving and others are at rest is rectified, the C; isreplaced by

Cq and T, =./(C)" +(C) = BT | 8T _ 8k_|_,where£:i+i and Z,,, = 70y, %Né,
wmam, \7u uomom \ 7

where u iscalled reduced mass of the two molecules.

Thus the frequency of binary collisions among unlike moleculesis givenby Z,, = 765G,y Ny x N/
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8kT .., .., +o,) [8RT( 1 1
or, Z,=r 65 |— N/N} o, z =r|21% —+— | N/N, .
12
T 2 T

Frequency of collisions for two like molecules — A special case
When the two colliding moleculesaresamethen M; =M, =M, o, = o, = o and

N/ =N,=N'".Then, o3 =0% 1,1 _ 2 and N,xN/=
1 2 12 M1+M2 M 2 ( )

Putting the conditions and multiplying by % to avoid double counting of collisions for like molecules, we get

1 2 8RT 2 2 8RT 2 l 2 — n2
=1 0°J2x.[—— (N’ —— (N'")" or, =—mx o°C(N
Zy=35 () o an v (N o 2y = (N)

Mea. n-free path in a mixture of two gases
Mean-free path of 1* type of moleculesis A, = LZ and of 2™ type of moleculesis A, = #
+ +

1(1) 1(2) 2(2) 2(1)
where Z, ,, isthe number of collisions made by a single molecule of the 1% type with the 2™ type of molecules and
Z,, isthenumber of collisions made by a single molecule of the 2" typewith the 1% type of molecules in unit
time respectively.

Effectof Tand Pon Z,, Z,; and A
For ideal gas, the equationisPV = ﬁ RT or, P:(E] ﬁ
N, \Y

A

T or, P=N'KT or, N':i
KT

8kT ( P L2rc? [8k ([ P P
S0, Z, =276°EN’ o, Z =J2r6%|— | — | or, Z = or, Z o —.
2,=\2r0 Z,=V270 m [ij ' K ﬂm(ﬁ] 1 JT

Z, isdirectly proportional to P at constant T and inversely proportional to the square root of T at constant P.

_ 1 1.A {8kT 8k p? pP?
Again, =— C N’ :— = or, Z —_—.
gain, Z,, \/5770' ( 7[0 (kTJ { 2[ 2 j — :|XT% ﬂocT%

So, Z,, isdirectly proportional to the square of the pressure of the gas at constant temperature.
Thus, at constant T, if pressure of the gasis doubled, le isincreased by four times.

1 k T T
Mean-freepath, A = ——— or, A = (—j S0, A oc—.
N27ro? N’ 2 7o (% ) L2702 \ P P

So, if pressure of the gas is doubled at constant temperature, mean-free path of the molecules becomes halved.
When Pisconstant, A oc T and when T and P both vary, A remains constant as P oc T at constant V.
Problem:
(1) A stream of oxygen molecules at 500 K exit from a pin-hole in an oven and strikes a dlit that selects the
moleculesto travel in a specific direction.
Given that the pressure outside of the oven is 2.5 x 107 atm, estimate the maximum distance at which the slit
must be placed from the pin-holein order to produce a collimated beam of oxygen molecules.
(Radius of O, =1.8 x 10%°m) [1T-JAM 2008, Q 41(a)]
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Solution:
The maximum distance between the pin hole and dlit must be equal to the mean-free path so that
within this distance the oxygen molecules suffer no collision and do not scatter from the path.

1

Wehavem%n-freepath,ﬂ, :m. Plﬂ]ﬂl:l].E alit
In the problem, o = 2x1.8x10°m ‘
= 3.6x10%cm. N

N’ = PN, ovEn collimated beam

" RT DFDE}?gEH

7 23 1
_ 2.5%x10 atgnx 6._(1)23>_<110 mol — 367x102 cm®
82 atmcm’ mol ™ K™ x500 K

J2x3.14x(3.6x10° cm)2 «3.67x10% cmr®

Problem:(2) For O, gasat 25 °C and 1 atm, estimate the number of collisions made by a single molecule of O,
in 1 sec and total frequency of collisions per cc per sec. The bond distance of O, = 1.2 A.

Solution: The number of collisions made by a single O, moleculein onesecis Z, = \/57[02 CN'.

7 1 -1
c= [BRT _ [8x831x10 ergmol K 298K _ 4 44x10%cmisec = 1598.4Km/ h.
T 3.14x32 gmmol

_ PN, _ 1.00atmx6.023x10% mol
RT 82atmcm’mol ™ K x298 K

The oxygen moleculeis neither hard nor spherical, but reasonable
estimate of o inthe hard sphere model might be twice the bond distance.
Thus, o =2x1.2A=24A=24x10%cm. So,

N’ =2.465x10" cm™

]Dl:lnd_—distance

Dﬂ
Z, =2x3.14%(24x 10’8cm)2 x 4.44x10" emsecx 2.465x10™ cm*=2.8x10° sec™ = 280 crore/ sec.

Freguency of collisions, z,, = % N'Z = %x 2.465x10" cm®x 2.8x10° sec* =3.4x10% cm 3 sec™.

Various properties of the gaseous state can be known from the above calculation for O, at 25 °C and 1.00 atm.
(i) Mean-free path (A1)

= 4
The value of mean-free path, 1 = % = 4';:( i%gcm/ iec —1.6x10°cm = 1600 A.
8x10° sec
(i) The average time between two successive collisions = é = Zi = W =4x10" sec.
C | .8x10° sec

Special notes

(@ A issmall in comparison to the macroscopic dimension (say, 1 cm) of the container so that the molecules
collide with each other far more often than with the walls of the container.
If the length of the two walls of the container is taken 1 cm, then the number of intermolecular collisions

tom__ 10m  _ g 5x10° = 62500.
A 16x10°cm

The molecules suffer sixty two thousand five hundred collisions among themselves before colliding the walls.

suffered within this distance =
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(b) A islargein comparison to the molecular diameter, asfor Oz it is 2.4 A only.

So, a molecule moves a distance of many molecular diameters before colliding with another molecule.
-5
Number of molecular diameters moves within 4 = 16x10"cm =6.67x10° = 667.
2.4x10°%cm

. . A _ . 1
(c) A isincreased asPislowered. A good vacuumis 10°° torr ~ 10 °atm. Since A o B so, mean-free path of

1.6x107° cm

10°atm
which is large compared with the usual container dimensions. So in a good vacuum, the gas molecules collide
far more often with the container walls than one another. At 10™° atm and 25 °C, one O, molecule makes only
anaverage of Z, x P = 2.8x10° x10™° = 2.8 collision per sec with other gas molecules.

82 cc atmmol 'K ™ x 2908 K
latm

Let the gas bein a cubic container. If the gas molecules are distributed uniformly in space with equal spacing

between adjacent molecules, the gas volume can be divided into Avogadro number equal sized cubes.

24,436 cc mol *

6.023x10%mol *
then the edge length of the cubeis distance between the two molecules in the gas.

Thus, the distance between two molecules at 25 °C and 1 atm is (4.05x 10?% cc)%’ =3.44x10"cm=34.4 A.

A islargein compared to the average distance between gas mol ecul es.
(e) Thefrequency of wall collisions of oxygen molecules under the conditions of 25 °C and 1 atm pressureis

Z. = 1 TN’ = % x 4.44x10%cm sec *x 2.465x 10" molecules cm™ = 2.74x10%collisions cm? sec ™.

O; at 25°C and 10 °atmis xlatm=1.6x10*cm = 160m. Thisis approximately 0.1 mile

= 24,436 cc mol .

(d) Molar volume of O, gas at 25°C and 1 atmis V = R-%::

The volume of each cube = =4.05x102 cc. If each cube contains a molecule at its centre,

w=—
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GASEOUSSTATE

Ideal gas equation
A gas at equilibrium has definite value of pressure (P), volume (V), temperature (T) and
composition (n). These are called state variables and are determined experimentally. The state of a gas can be
defined by these variables and hence the name.
Earlier works of Boyle (1662), Charles (1787) and Avogadro (1811) give
birth one equation of state for ideal gas.

1
Boyle’s law: V o B when nand T are fixed for the gas.

Charle’s law: V o T, whennand P arefixed for the gas.
Avogadro’s law: 'V oc n, when Pand T are kept constant for the gas.
When all variables are taken into account, the variation rule states that

Voc%xTxn or, V:Rx%xTxn or, PV =nRT.

This is called ideal gas equation of state. This equation is found to hold good most satisfactorily when P — 0.

At ordinary temperature and pressure, this equation is found to deviate about 0.5 %.

R isuniversal gas constant and its value is calculated from the statement that “at STP, one mole gas occupies 22.4
L.

Thus, the value of R is calculated as:

R= PV _ R= L = 1o AL =0.082L atm. mol* K™,

nT nT  1mol x 273K

Other values are: R:% .
n
or, R = 831Jmol*K* =198ca mol*K™*=~ 2ca mol*K™
w
The above equation can be written as PV = (MJ xRT ,
where w = weight of the gasin gm and M = molar mass of the gas.
Another formis, p:(i"jxﬂ .
\% M

But, W =d, density of the gas at the temperature, T and pressure, P. Thus another formis,
V

(3

If the gas contains N humber of molecules and N4 is the Avogadro number, then N/Na = n,
so the other form is, PV:( N ]XRT or, P:(NJ( ijT o, P=N'KT

V)N,
where, N" = number of molecules per unit volume of the gas

A

and, k = Boltzmann constant = % =1.38x10"° erg molecule* K™,
A

Unit of P isdynecm?in CGS system and Nm? = Pain Sl system.
1 torr =1 mm of Hg so 1 atm = 760 torr. Again 1 bar = 10°Pa = 750 torr and 1Pa = 10 dyne cm The moderate
pressure is measured by manometer. Various gauges are used to measure low P.
Pand T areintensive properties (independent of amount of the gas present in the container),
while V is extensive property (dependent of the amount of the gas present in the container).
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Problem: Calculate the number of molecules present per ml of an ideal gas maintained at a pressure of
7.6 x 10° mm of Hg at 0°C. [Burdwan Univ. 1985]

ion: - [N _76x10°/ _10° ~10°?
Solution: Usethe equation PV = (%\IJ RT andput P = 460—10 am, V =10"L and
R=0.0821L atm™ mol* K™ . (Ans. 2.69 x 10" molecules per ml.)
REAL GASES

Comparison between Ideal and Real gases

We may use one equation to distinguish an ideal gas from areal gas and this equation is
PV = nRT.
The gas which obeys this equation under all conditions of temperature and pressureis called ipeaL casand the gas
which does not obey this equation at all temperatures and pressuresis called REAL GAS.
A number of points can be discussed to compare these two types of gases.

Ideal gas

(1) Theideal gas can not be liquefied. As the gas has no intermolecular attraction so the molecules will
not be condensed.

(2) Co-efficient of thermal expansion ( « ) depends solely on temperature (T) and does not depend on

L 1
h f th , ——(oV )
the nature of the gas. « isdefined as, o V( éT)p

1
For one moleideal gas, PV = RT, hence (8\%T) zg, o) a:\%xng_i:% ie a:?.
P

This shows that all gases have the same co-€efficient of thermal expansion at a given temperature.

—_—(oV
(3) The co-efficient of compressibility (£ ) similarly isdefined as, g = V( AP)T .

1

For ideal gas, PV = RT, so (oV __RT and g A RT)_RT _PV 14 p==.

’ (Vee) == ﬂv{ )Pz\/ PV P P
Thisshows alsothat £ depends only on P of the gas and samefor all aases.

arectangular hyperbola curve is obtained as given by Boyles law,
PV = constant at agiven T.

The hyperbola curve at each temperature is called oneisotherm s T,

and at different temperatures we have different isotherms.

Two isotherms will never intersect.

(4) When P isplotted against V at constant temperature, T

(5) When PV is plotted against P at constant T,
adraight line paralld to P-axis is obtained. At different temperatures, ’[
therewill be different paralld lines.

P

(6) When an ideal gas passes through a porous plug, —1
from higher pressureto lower pressure under insulated enclosure,
there will be no change of temperature of the gas (J— T expansion). P
This confirms that ideal gas has no intermolecular attraction.
Real gas

(1) This gas could be liquefied since it has intermolecular attraction which helps to coal esce the gas
molecules.

(2) The co-efficient of thermal expansion (« ) isfound to vary from gas to gas at a given
temperature and hence it depends on the nature of the gas.
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(3) The co-efficient of compressibility (4 ) also isfound to depend on the nature of the gas at a
given pressure.

(4) When P isplotted against V at a constant temperature, a rectangular hyperbola is obtained only at
high temperature (above a certain temperature, called critical temperature, Tc of the gas). Tc is defined as the
temperature above which the gas could not be liquefied what ever the pressureis applied. But at temperature below
Tc, the gasisliquefied after certain pressure depending on temperature. It is discussed more elaborately under the
head of critical phenomena.

(5) When PV is plotted against P for real gas, the following plots, called Amagat’s
Ccurves are obtained.

He Ta>Th
Hz A
]
z TE e TB
T| =" - -~ _Coz T /
PV \//{dm,l s PV \/ < Ty
200 a0 600 0 200 400 600
. Pfatnﬂ — . Pfatmﬁ —
Flg..-."—l : Amagat curves for different Fig.E : Amagat curves for a gas[CDI:I
gases at a glven temperature [Uﬂc) at different temperatures

Fig. A shows that for most gases, the value of PV decreases, attains minimum and then increases with
increase of pressure. Only H, and He baffle this trend and the curve rises with increase of P
from the very beginning.

Fig. B showsthat for CO. gas, the depth of the minimum shifts towards the PV axis with increase of
temperature. At T3 temperature, PV curve runs parallel to P-axis up to certain range of P at low
pressure region (P — 0). This temperature is called Boyle temperature (Tg) a which the real
gas also obeys Boyle’s law up to certain range of pressure at the low pressure region.

The minimum coincides with the PV axis. The mathematical condition for calculation of Boyle

temperature (Tg) is given by
PV
M =0 when, P—0.
oP |

The curves obtained for H, and He at 0 °C is above their Boyle temperature and so with increase of P, value of PV
increases from the start.

An important single parameter, called compressibility factor (Z) is used to
measure the extent of deviation of the real gases from ideal behavior.

Itisdefinedas, Z = n whereV isthe molar volume of the gas at temperature T and pressure P.

When thevalue of Z = 1, the gasisideal or thereis no deviation of the gas from the ideal behavior.
When, Z #1, thegasisnon-ideal and departure of the value of Z from unity is a measure of the extent of non-
ideality of the gas.

When Z <1, the gasis more compressible than the ideal gas and

when Z >1 | thegasisless compressible than the ideal gas.

SinceV isafunction of T and P, Z isalso afunction of T and P, so Z may be defined as

Z= v and Z:i

ideal Rded

KINETIC THEORY AND GASEOUS STATE WITH BURDWAN UNIV. QUESTIONS AND ANSWERS - DR N C DEY 36



where, V., isthe molar volume of anideal gas at the same T and P asthe real gas.

Similarly P, isthe pressureof anideal gas at thesame T and V asthereal gas.
When Z <1, the gas exerts lower pressure than the ideal gas would and the volume of the gas becomes also lower

than that of theideal gasi.e. the gas becomes more compressible.
Similarly, when Z >1 the gas exerts higher pressure than the ideal gas would and the volume of the gas becomes

higher than that of theideal gasi.e the gas becomes less compressible.
Amagat curves can also be plotted as Z vs. P and similar curves are given below.

He z 1

1.4r less
compressible

2> 1

1.4k less
compressihle

Ideal value

e-8r Z <1 0.8 1 z <1
more compressible more compressible
0.6 | | | 0.6 : : :
200 400 GO0 0 200 400 &0
Flatm)— Fiatm) —
Figat Amagat curves for different Fig B: Amagat curves for a gas(CO )
gasses at a giwven tEmpEpatupE(Dﬂ',g) at different temperatures

For N2 gasat 50 °C, Z remains closeto 1 up to nearly 100 atm.

(6) When real gases pass through porous plug from higher pressure to lower pressure
under insulated condition, there occurs a drop of temperature. This is due to the fact that real gases have
intermolecular attraction and when the gas expands, the molecules have to spend energy to overcome
intermolecular attraction and so the temperature of the gas drops down.

Problem: Express the coefficient of thermal expansion (« ) of agasand show that o depends solely on T for
an ideal gas. [Ans. Seethe Text.] [Burdwan Univ. 1993]

Question: Supposing that P,V are the pressure and molar volume of areal gas and F?d,\7id arethose of an ideal

gas at the same temperature, do you consider that P, V = PV, = constant?

Draw atypical compressibility plot of Z vs. P for areal gas at ordinary temperature. Predict the values of
Z for van der Waals equation of state at the limit P — o0 and T — 0. [Burdwan Univ. 1997]

Question: Two isothermals of a system do not intersect. Why? (1) [Burdwan Univ. 2001]
Answer: When two isothermals (P vs. V curves at two temperatures) intersect, two isothermals have the
same temperature which is not possible.

Question: Draw curves to show the pressure dependence of compressibility factor (Z) of H, and He.
[Burdwan Univ. 2001]

Question: What arethe unitsof o and  where azl(ﬂj and ﬁ:—l(&j ?
V\aT Jp V\ 0P J;

Givereasons for your answer. [Burdwan Univ. 2001]
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Question: Remark whether Tg should be higher than Tc. [Burdwan Univ. 2002]
Answer: Tg isgreater than Tc of agasasat Tc, both gas and liquid co-exist but at Tg only gas exists.

Question: Define compressibility factor. Draw the volume — temperature diagram
for an isothermal expansion of agas. (1). ’[
W
T—=

Answer: For 1% part, seethe Text.
When V isplotted against T, the curveis a straight line parallel to V-axis.

Reasons for deviation of real gases from ideal behavior
First in 1873, JH. vander Waals, a Dutch scientist tried to explain
the reasons for deviation of real gases from ideal gas equation. He modified the two assumptions in kinetic theory
which are not exactly true. These incorrect assumptions are:
(a) The molecules are point-masses and thus mol ecules have definite masses but no volume.
(b) Thereis no intermolecular attraction in the gases.

Vander Waals suggested that the gas molecules have definite size and he considered each
molecule asrigid sphere. The volume of the gas molecul es cannot be neglected especially when the gasis under
considerable pressure. At N.T.P, the gas molecules occupy at least (1/1000) fraction of the total volume of the gas.
But if pressure of the gasis raised to 10 atm, the gas molecules occupy (1/100) fraction of total volume of the gas

(using molecular radius =2x10°cm).

The gas could be liquefied and also be solidified. It is possible only if the molecules have
strong cohesive forces. Joule-Thomson’s porous-plug experiment definitely proves the existence of intermolecular
attraction of the gases. Further if the gas molecules have no volume then when they condenseto liquid or solid,
how the liquid or solid acquire volume.

Definite size of the gas molecules results from the repulsive forces acting on the gas
mol ecules when they are approaching close to make collisions. When two mol ecules approach to each other, they
cannot reach closer together beyond a certain distance o, called the distance of closest approach and it is also
called collision diameter.

Higher the intermolecular repulsion, greater isthevalue of o — O —
The Vander Waalsradius= o /2.

Thus, it is obvious that gas molecules — ——
have both attraction and repulsion among themselves. —

If there were no repulsion, the molecules would coalesce

when they collide and the existence of gaseous phase would

be at stake.

It is suggested that molecules initially attract each other as they approach and they repel each other when they
collide. This happens dueto the fact that attractive potential is long-range

potential (Vattraction oc % 6) whilethe repulsive potential is short-range one (V

repuision rlz) J
where 1 isthe intermolecular distance between
the molecules. s .1
Qualitative explanation of Amagat’s curves 1.4k Tess
The above concept of molecular compressible
attraction and repulsion can be used to explain the value sl
of compressihility factor (Z) at least qualitatively. . / ,
(i) Atlow P (P — 0), the volume of the gas is large and Trofi— == ===~ = — —
so intermolecular distance (r) is large, both attractive - \ﬁ walue

and repulsive forces are negligibly small so it

O.8F

can not affect the ideal behavior. Z becomes one. zZ <1l
(i) At moderate P, the molecules are not very close and more compressible
long-range attractive potential dominates over the 0.6 | | :
200 400 600

short-range repulsive potential.

. P(l atm) —
The gas becomes more compressibleand Z <1.
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(iii) At high P, theintermolecular distance (r) is small,
the molecules are at very close to each other. At this condition, short-range repulsive potential
dominates over the long-range attractive potential. The gas becomes less compressible than ideal
gas (wherethereis no intermolecular interaction) and Z > 1.

For H2 and He gases, attractive potential is very small in comparison

to repulsive potential so Z >1 always except when T isvery low.
These intermolecular forces are popularly called van der Waals forces and these are responsible
for the deviation of real gases from ideal behavior.

Formulation of van der Waals’ equation
In 1873, van der Waals modified theideal gas equation for 1 mole

P,V, =RT by incorporating the size effect and intermol ecular attraction effect of the real gases. These above

two effects are discussed under the volume correction and pressure correction of the ideal gas equation.
Volume correction
Inreal gas, the molecules suffer strong repulsive forces when they come close and collide
with each other. This repulsive force gives rise to definite size of the gas molecules. They have been assumed as
rigid spheres.
The available volume for free movement of the moleculesin real gasislessthan V . Let ustake
available space for free movement of 1 mole gas molecules (\7id )=V - b.

Where, V is molar volume of the gas and * b’ is volume correction term due to definite size of the gas molecules.
\7d is the molar volume of theideal gas where gas molecules are regarded as point-masses.

I
It can be shown that ‘b ’, called effective volume is four times the actual volume of one mole gas molecules.
Let ustake o isthecollision diameter and r is the radius of each —
rigid sphere moleculeand o = 2r . L
When two molecules encounter each other, the distance between
the centre of the two molecules would be o .They can not !
approach beyond this distance. |
Thus, the sphere of radius o (shown by dotted lines) will occupy
a space unavailable for a pair of molecules. n

Thus excluded volume = gn o for apair of molecules. ™

2 2
Thus effective volume of a single molecule = Ex—ﬂ03 = 57103 and b=§7Z'NA o® whichisthe

3

effective volume of Avogadro number of molecules present in 1 mole gas. Thus,
2
b=§7Z'NAO'3 or, b=4xg7zNAr3.

That is, ‘b is the four times the actual volume of one mole gas molecules.
Thevalueof b isameasure of the size and it helps to calculate the radius of the gas molecules.

The van der Waals equation after volume correction becomes, P, (\7 — b) =RT.

Pressur e correction

Pressure of a gas is developed due to the wall-callisions of the gas molecules. Magnitude of
pressure of a gas depends on both the frequency of molecular collisions with the walls and the force of each
collision. The magnitude of both the factors is reduced by intermolecular attraction. Thus, pressure exerted by the
moleculesin thereal gas (P) will beless than that if there had not been intermolecular attraction asin the ideal gas

(Ra)-

ThUS, Fi)d > P or, Fi)d:P+Pa'
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Where, P, isthe pressure correction term, called internal pressure originating from attractive forces between the
molecules. Higher the intermolecular attraction in a gas, greater is the magnitude of P, .

This reduction of pressure (Pia— P = P,) acts with magnitude proportional to the density of the gas molecules. Both

the frequency and force of each collision are reduced by intermolecular attraction, so the pressureis reduced in
proportional to square of the gas density.

But density of gasis proportional to }\/7 SO P, oc }\/72 or, P, = %2 , Where a is constant for the gas.
Greater the intermolecular attraction of the gas, higher will be the value of “@’. Thus ‘&’ is a measure of

intermolecular attraction of the gas.
Incorporating both the volume correction and pressure correction, the equation formed is called van der Waals

equation for one mole gas.
(P+%2)(\7—b): RT .

To convert the equation for N moles, V isto be replaced by \% , Wwhere V isthe volume of n moles of the gas.
Thus, van der Waals equation for n molereal gasis

2
(P+a(, (v —nb) = nRT .
Thereason for changing the volumeis that it is an extensive property so it is changed when the amount is changed.
The gas which obeys the van der Waals equation is called van der Waals gas.

Units of ‘@’ and ‘D’ in the equation:
. arn? P, xV?
From the van der Waals equation, weget P, = V2 o, a= 2 2
where, P;isapressure correction term and it has the unit of atm.
2
Thus, unit of a = almx %DI , =atmL® mol 2.

Again, nb = unit of volume, so  ‘b’=Lmol™
In Sl system, unit of ‘@’ = (N m?) m° mol?2= N m* mol? and unit ‘b’ =m?* mol™.

Significance of ‘a’ and ‘b’
2
“a@’ term originates from the intermolecular attraction and P, = an X/z .

Thus ‘A’ is a measure of internal pressure of the gas and it measures the attractive forces between the molecules.
Higher the value of “ @’, greater is the intermolecular attraction and more easily the gas could be liquefied. Thus,

8o, =3.95amL* mol ? and &, =0.22amL* mol . CO; is more easily liquefied than H gas.

Another constant, b’ measures the molecular size and also a measure of repulsive forces.
The value of ‘b’ can be utilized to calculate the molecular diameter ( o). The greater the value of b, larger isthe

size of the gas molecule: Thus, by, =0.04L mol™ and b, =0.02 L mol ™.

L et us consider two hypothetical cases to show the size effect and attraction effect on the pressure
of the gas.
(@) For thereal gas, a=0 (i.e. nointermolecular attraction exist) but b = O (sizeis considered).

2
We have, van der Waals equation, (P+an Vz)(V —nb)=nRT , but a =0,

__RT_ P, since P, _NRT

V -nb Y

It means that the molecular size (repulsive interaction) creates higher pressure than that observed
by the ideal gas where molecules have no volume.

S0,
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(b) Againfor areal gas, a= 0 (intermolecular attraction exists) but b = 0 (no size of the molecules)

2
The van der Waals equation, P:ﬂ—ﬂ2 <P,,snceb =0and P, _NRT
vV Vv

Thus intermolecular attraction effect reduces the pressure of thereal gases.
Problem: Calculate the pressure of 2 moles of N» gas occupying 10 L volume at 27 °C using vander Waals
equation. Given, a = 1.4 amL?mol?and b =0.04 L mol™.

Also calculate the pressure of the gas using ideal gas equation and find the extent of deviation from
ideal behavior. [Ans. P = 4.904 atm, P,q = 4.92 atm and deviation = 0.325 %).

Calculation of Boyle Temperature (Ts)

Mathematical condition for calculation of Boyle temperatureis, {6(;:)} =0, whenP — 0.
T

The vander Waals equation is, P:ﬂ—% o, py_RFV_2a
V-b V V-b V

e[ A00] [P (o) [ (o)

_|RT(V-b)-RTV a | (av)_| RWb al (ov
e R
8(PV) Y RT,b a _a (V;bjz'

WhenT=Tg, | —2| =0 but | — | #0, hence, ———=— or, =—
B{ oP l (anT (V_bp V2 ® " Rol Vv

~1. Therefore, T; = 9/Rb

Thisis the expression of Boyle temperature for a gas obeying van der Waals equation.

Since P — 0, V is large and

Problem: Calculate % for agas for which Tg = 500K.

Solution: The Boyletemperature, T, = 9/Rb 0, % =RTs=0.082L atm mol*K* x 500K =41 L atm mol™.

Problem: Explain the significance of Boyle temperature and hence deduce an expression for it from vander
Waals equation. Comment on the possibility of defining a Boyletemperatureif a =0and a = b =0.

Solution: Last part of the question:
When a = 0, thevan der Waals equationis, P(V — b) =RT or, PV =RT + Pb.

M} b,

Differentiating with respect to P at constant T, we have { P

o(PV
But b= 0, hence {%} # 0 at any temperature hence the gas have no Boyle temperature.
T

o(PV
AP
oP |
Thisis zero at any temperature so any temperature is Boyle temperature for this gas.

Again, when a = b= 0, thevan der Waals equationis, PV = RT or, {
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Boyle temperature for several gases

Gases He H> N> Ar CH,4 CO, CoHs NH3
Ts/K 23.8 116.4 332 410 506 600 624 995

A quite accurate two-parameter equation of state for gases is the Reddlich-Kwong equation
[O. Reddlich and J.N.S. Kwong, Chem. Review.44, 233 (1949)] is given as:

V(V+b)\T
Whichis useful over wide range of T and P. The Reddlich-Kwong parameters ‘@’ and ‘b’ differ in value for any
gas from the van der Waals ‘@’ and ‘b .
Explanation of Amagat’s Curves in the light of van der Waals equation

l:erL}(V—b): RT for 1 molegas.

We have Amagat’s curves. Z vs. P in two Figures:

Z =1 He Z»>1

1.4k less 1.4r less
' compressihle compressible

z Ideal walue
a.8 Z <l 0.8 zZ <1l
more compressible more compressible
0.6 | | | 0.8 : : :
200 400 GO0 ] 200 400 00
P{latmj — P(latm)—

Figa: fAmagat curves for different Fig B: Amagat curves for a gas(Co 2:]
gasses at a given temperature |I|:| "C") at different temperatures

van der Waals equation for 1 molereal gas, (p+%2)(v_b)_RT or, PV Pb+% VZ_RT.
. ab 3 _ _

Neglecting the small term K/Z , weget theeguationas, PV =RT +Pb % .

Replacing V in the correction term by ideal gas equation as % = /RT ,andtaking z = P\VRT’

the expression of compressibility factor is z :l+R_1T(b_Ri'lrj P . This shows that Z = f(T,P).

This equation can be used to explain Amagat’s curves quantitatively at low P to moderate P region.
Fig. A: For CO; gas, ‘@’ is very high as we have seen that the gas is easily liquefiable.

Thus, Ri'll' > b inthe equation and. b — Ri_l]_ = (—ve) Intermolecular attraction effect

dominates over the size effect.

i.e. theslopeof Z vs. P curveis (—ve) for CO, at moderate pressure region. This shows
that the value of Z decreases with increase of P and it is found also in the curve,

a
For Hz gas, ‘@’ is small as it is not easily 1iqueﬁedﬁ < band the lope of Z vs. P curve

for Hz is (+ve). The value of Z increases with increase of P.
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Fig. B: (i) WhenT <T,, T <i or,b<i and b—i: (—ve) . It meansthat when T < T,
Rb RT RT

the value of Z decreases with increase of P at the moderate pressures. The effect is dueto the
fact that intermolecular attraction dominates over the size effect.
Sofor CO,, Z <1 andthe gasis more compressible.

()WhenT=Te= & or, b=-> or, b——> —0andsoZ = 1, the gas shows ideal
Rb RT RT
behavior. The size effect compensates the effect due to intermolecular attraction of the gas.
Z runs parallel to P-axis up to certain range of pressure at low pressure region.

(i) When, T >T, means T >i or, b>i and b—i = (+Vve) i.e. Z increases with
Rb RT RT

increase of Pwhen T >T;. Thesize effect dominates over the effect due to intermolecular
attractionand Z >1 and the gasisless compressible.

For Hz and He, 0 °C is greater than their Tg values and so Z vs. P slope becomes (+ve).
At very low P (P — 0) and at high T, volume is very large and both the size effect and attraction effect
becomes negligiblei.e. Pb and aP/RT are negligibly small and Z = 1. The gas behaves ideal.

Problem: The compressibility factor (Z) for one mole of avan der Waals gas at 0 °C and 100 atm pressureis
found to be 0.5. Assuming that the volume of a gas moleculeis negligible, calculate the van der Waals

constant “ a’. [I1'T — JEE sample Question]
: 1 a . Q. P a
Solution: Wehave 7Z =1+—| b——=_|P, but ‘b’ is zero. So the compressibility factor, Z =1— —x——.
RT\RT : Y RT RT

(0.082L atmmol 'K x 273K )2
100 atm

2
or, a=(1- Z)@ =(1-05) = 2.50 atm L’mol ™.

Vander Waals constants “a’ and ‘b’ in real gas mixture:

For real gas mixture, V depends on mole fraction, aswell as, on T and P.
The parameters @’ and ‘b’ are taken as functions of the mixture’s composition.
For amixture of two gases, 1 and 2, it is useful to take

2
2 2 —
8=, +2xX,(88,) 7 + X8, = (x/a +%,\8,) ad b=xh+xb,,
where X, and X, are the mole fractions of the components. ‘b’ is related to molecular size so is taken as weighted

%

averageof b, and b,. The parameter < @’ is related to intermolecular attraction; the quantity (alag) isan
estimate of what the intermolecular attraction between gas 1 and gas 2 molecules might be.
In applying an equation of stateto a mixture, Vi is replaced by % andV = )(1\71 + x2\72 .

otal

This discussion explains that ‘@’ and ‘b’ do not follow the additivity rule.

Problem: The curve illustrates the PV behaviour of resal gas, where V is the molar volume.
According to vander Waals for non-ideal gas behaviour, the values of one at high pressure

aredueto ﬂ greater than 1
RT
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2.0 (A) the effects of increased rate of collisions of the molecules with the
walls of the container

(B) the effects of dissociation of individual gas molecules.

(C) the effects of the volume occupied by the gas molecules

1.0 themselves.

(D) the effects of forces of attraction by the molecules.

Sl (E) ideal gas behaviour in this pressure region.

AT molecules with the walls of the container.

0 200 400

Flbar)— =
Question: A gas obeyingthe P(V —b ) = RT has the compressibility factor, Z = 1.0018 at 27 °C and 1 atm
pressure. Assuming the gas molecules to be spherical in shape, calculate its molecular diameter.
[Burdwan Univ, 2004]

P
Solution: Z =1+ b(ﬁj . Putting the values, we get b =44.28 cc/mal. But, b = %ﬂNAO'Z, again inserting

thevalueof b, weget o =3.275x10"* cm.

Critical phenomena — Andrews’ curves

A gas can beliquefied by lowering temperature and increasing pressure. But influence of
temperatureis more important. Most gases are liquefied at ordinary pressure by suitably lowering of temperature.
But a gas can not be liquefied unless its temperature is below a certain value depending on the nature of the gas.
This temperature of the gasis called its critical temperature (T¢) and above which the gas can not be liquefied what
ever high pressure may be applied to.

A gas can only be liquefied when the temperature is kept below T¢ of the gas. The pressure
required to liquefy the gas at its critical temperatureis called critical pressure (Pc) and the volume occupied by one
moleat Tc and Pc is called critical volume (V).

These critical constants can be illustrated from the Andrews curves. These curves are obtained
by drawing P vs. V at different temperatures. T. Andrews (1869), in his experiment with one mole CO, collected
data of Pvs. V at various temperatures.

Let us discuss the isotherm (it is the curve describing the relation of P and V at constant T) at 13.1 °C
(below T¢), pars. The paint p represents the gaseous CO; at low pressure. As Pisincreased, V is correspondingly
decreased according to Boyle’s law.
At the point g, the gaseous CO. begins
to liquefy and the pressure at the point is \
the saturation vapor pressure of CO.. G
Asthe volume is decreased, more of the \\-\
gaseous CO; transforms into liquid CO, Fe

‘-.

but P remains unchanged. This isothermal
_‘\\ﬂ 1°C(T.)
o =
—E G 21.1°¢C
|t
l

S0°C

o

gaseous CO; is converted into liquid COs.
Now the curvers isvery steep as theliquid |
is highly incompressible. P

When the temperature of 21.1 °C is taken for 7 Ve F?g
the study, similar curveis obtained except v

the liquid begins to form at higher saturation
pressure and the range of volume over which
condensation occurs is smaller.

At temperature 31.1 °C, the plateau shrinks
to a point and this temperature is the critical temperature (T¢) of the gas.

conversion continues up to r when all the
~13.1°C

5

=

T. =31.1°C, F: =72.9 atm and V. = 94.2 cc/mol
(Andrew's isotherms for one mole CO2)
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The dotted line encloses a dome-shaped area within which liquid and gas are co-existent. The highest point C
of the areaindicates the critical point. On theright side of the area, gas aloneis present and at the |eft liquid.
Any point within the dome-shaped area represents the two phases, one liquid and one vapour in equilibrium to each
other. The molar volumes of the liquid and vapour can be obtained by drawing a horizontal lineto V-axis through
the point representing the state of the system. The intersections with the boundary line correspond to molar volume

of liquid (V; ) and molar volume of vapour (V,),

respectively. This horizontal lineis called tie line and it connects the state of one phase with the state of another
phase and these phases are at equilibrium. As the temperature is increased, tie line becomes
shorter and the molar volumes of the liquid and vapour approach each other, tending to be more alike and at the
critical point C, thetie line vanishes, the distinction between liquid and vapour phaseislost.

When the temperatureis further increased to 50 °C, the isotherm approaches more closely to that of
ideal gas; no plateau is observed and no liquid is formed. Above Tc, thereis a single gas phase.
Condition of the critical point (C)

The critical point is the limiting point of a series of horizontal two-phase lines. So the slope
of the horizontal lines as well as the limiting point (C) is (@%V) - 0.
T

Again along the critical temperature isotherm, the slope is zero at the critical point (C) and
is (—ve) on either side of the point. Thus the slope is maximum (zero valueis greater than negative values) at the
critical point. This slopeisfunction of V and its derivative with respect

, . . . b O%P .
toV isagain zero at the point. That is, (0P = = (0 at the point.
ag P [av( /W)Tl [awl N

Thus, the condition of the critical point is given by,
=0.

2
Fal-o (22

That means, both slope and curvature at the point is zero.

At the critical point, as (Ej -0 S0, theisothermal compressibility g= —\%(%j becomesinfinite. As S is
T T

oV
very large in the neighbourhood of the critical point, very little work is required to compress the vapour to liquid.
This set up large differences in density in the neighbourhood of critical point. This difference makes spontaneous
fluctuations in density which is accompanied by fluctuation of refractiveindex and light is scattered strongly. This
is called critical opalescence.
Deter mination of critical temperature (Tc)
and critical pressure (Pc) &
These two properties of areal
gas can be determined on the basis that at Tcand Pc, the density of
liquid and vapour is identical and so the surface of separation of the B
two phases (meniscus) disappears.
() Thebulb isenclosed by ajacket and its temperature can be varied =
according to requirements. A small quantity of the substanceis
enclosed over the mercury. This is attached to the manometer B
in which a known amount of air is kept over mercury.
Initially temperature is kept such that both liquid and vapour of

the substance are present over the mercury. The surface of —
separation between the liquid phase and vapour phase should be —|
clearly visible.

(i) The temperature of the thermostat is gradually increased until the
meniscus just disappears. The temperature and the corresponding
pressure are noted from the thermometer and the manometer.
Now the bulb is cooled slowly and again the temperature and
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pressure are noted down when the surface of separation just reappears. The mean of the two temperatures and
pressures are the critical temperature (T¢) and critical pressure (Pc).

Deter mination of critical volume (V¢)
The determination of critical volume (V¢) is based on the basis of law of
rectilinear diameters. According to the law, the mean value of the densities of theliquid and its saturated vapour of
any substanceis a linear function of temperature. These densities where liquid and vapour are at equilibrium are
known as orthobaric densities.
Mathematically, we state the law as
1
E(dl + dv) =a+bt ,
where aand b are constants. If a graph is drawn densities vs. temperature, the following curve is obtained. BB’
curvefor densities of liquid, AA' isfor densities of saturated vapour and DD’ for
the mean density values. The point C, obtained by extrapolating the lines AA’, BB' and DD,
givesthe critical density (d.). B
To determine the densities, a known mass of the liquid
istaken in a graduated tube and sealed. It is heated to
aparticular temperature. Thevolumes V, and V, of
liquid and vapour areread of fromthe graduation of the - f
tube. If d, and d, arethe densities of the liquid and ; O L
vapour, respectively, then = G‘_j':
m=V, ><dI +V, xd,. —

The experiment is repeated with different mass (') |
of theliquid at the same temperature, then it becomes

m =V,'xd, +V,/xd, .
From these two equations, thevalueof d, and d, at the
temperatureis obtained. It is repeated at diff erent temperatures to obtain the above curve.

E(fiz"'dv)—}

10— 100

The critical volume of the substance is then obtained by the relation, V. = dM .
C
Continuity of states:

In the Andrew’s P -V diagram, the area in which the phases, gas and liquid
coexist, are shown by dashed line. It is possible to make a sharp distinction between these two phases. Even the
state point lies in the dashed area, the liquid and gas can be distinguished as there is surface of discontinuity and it
separates the two phases. But it is not always possible to distinguish between gas and liquid.

Thisisthe principle of continuity of states.
Inthe adjoining figure, A and D lie on the same
isotherm at temperature, 13.1 °C below the T¢ of CO..
Thepoint A clearly indicates the gaseous state and point D
indicates the liquid state. These two states are sharply defined
and the dashed area which contains liquid-gas in equilibrium
are also well-defined. But it is possible to shift from the

gaseous state point A to theliquid state point D continuously Ve o
without passing through the discontinuous dashed area. ) A glile
Let the gas at the state point A is 7

heated to B at constant volume along AB. Thenthe gasis

T hase-reg d
gradually cooled at constant pressure along BC, the volume WO PHASELERIn a1

contmity of states
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reduced considerably. Thegasis again cooled at constant volume until the state point D is reached. No where in the
process liquid would appear. At D, the systemis highly compressed gas. But the curve shows that this state point is
for theliquid state. Thusthereis hardly any difference between the liquid state and the gaseous state and thereis no
line of demarcation between the two phases. Thisis the continuity

of states. The point D we may refer as liquid state or highly compressed gaseous state. In the absence of
discontinuity there is no fundamental way of distinguishing liquid or gas. The gasis continuously transferred to the
liquid without passing the usual process of condensation.

Critical phenomena and van der Waals equation

. . RT a
The van der Waals equation for one mole gasis, P = V—b —\7 .
Taking thevalues of a and b for CO,, it is possible to collect data P and V at temperatures 13.1 °C, 21.1 °C, 31.1
°C and 50 °C and to draw the similar isotherms like that of Andrew. These curves can be called van der Waals

isotherms. The experimental Andrew’s isotherms coincide with the

van der Waals isotherms in all the points
except the region where the gas and liquid are
co-existing. The horizontal lines are replaced by a
wavy lines. These wavy portion of van der Waals
curves poses two limitations of the van der Waals C \SD o
equation which are not realized in practice. Fr
Theisotherm, pgrst shows that there are three
volumes of the system at agiven T and P.
Again at the portion srq, it shows that with
increase of pressure, volumeis also increased.
These two points show the limitations of
van der Waals equation. How ever, pq and ts
may be considered to represent the super
saturation and unsaturation of the system.

With increase of temperature, the minimum
and maximum points come close to each other T.=311°C, F. =72.9 atm and V, = 94.2 cc/mol
and at the critical point, both coalesce. I:van der Waals izotherms for one maole CO 2
The slope and curvature both are zero at the point. Tt

=0.

(Ba)=0 w [ZR)-

Relation between critical constants (., V, and T.) and van der Waals constants (a and b).

o

Differentiating van der Waals equation, P:V—RTb—\% with respect to V at constant T, we get the slope,
2
(ﬁj =_l+§ and the curvature, 6F2> = 2RT3_6_?_
N (V-b) V? v ) (V-b) V

2
But at the critical state, (5%\/) -0 and {SVF;] -0, ad T=Te, V=Ve
T

N
Rl _2a ., R _6a
(Vc _b) VC (Vc _b) c
8a

27Rb

Putting, we get, . Solving the two equations, we get

Vc:3b and TC=
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Again, the van der Waals equation at the critical point,
RT,
) =—C —iz . Inserting the value of Tcand V¢, wehave B, =i2 :
V. -b V. 27b
Thus, the relation between critical constants and van der Waals constants are:
8a a
V = 3b, T = P =,

© ¢ 27Rb ¢ o

S - RT, . RT, 8
One property of the gasis critical coefficient, € Putting V¢, Pcand Te, € == =266

c 'cC CVC

P.V.
The value of compressibility factor at the critical state, Z. = FETC — § and it islessthan 1.
C
Thisimplies that at the critical state the gas is more compressible.
These values are tested experimentally whether the critical coefficient is constant and equal to 8/3 for all gases but
it isfound that it varies from gas to gas and the average value is about 3.66.
Unique application of these relations is the calculation of the van der Waals constants, aand b .

V,
b= ?C , but Vcisavoided in therdation asit is not easily determined experimentally.

- . -, . . . 3 R-I-c
Vcisreplaced by using the value of critical coefficient, V. :§ 5
C

1RI, 212
Therefore, the van der Waals constants are; b==—% d a= g RTg

and a

8 P 64 P
The critical constants of a gas can be determined experimentally and so the value of the van der Waals constants, a
and b can be calculated.

Problem: The van der Waals equation of a gasis given by, [P + 0'292786J(V —0.00224) = 0.0041(273+1)
where Pisinatmand V inlit. Find the values of Pc and Tc. [NET]
2
an
Solution: Comparing with van der Waals equation, (P + WJ (V - nb) =nRT |

NR = 0.0041 or, n x 0.082 = 0.0041 or, N =0.05. Now,
nb = 0.00224 or, 0.05 b = 0.00224 or, b =0.0448 lit mol™.
Again, an®= 0.00786 or, a x (0.05)>=0.00786, or, a = 3.14 atmlit> mol2.
8a 8x3.144
=2 _ 314 g oogamandT, = =
27b% 27« (0.0448) 27Rb 27x0.082x0.0448

Problem: Calculate the radius of Argon atom, given its critical temperature and pressure as — 122 °C and
48 atm respectively. Assume that Argon obeys van der Waals equation of state. [Burdwan Univ. 1994]

= 253.58K.

1 RT,
Solution: The van der constant, b = é?c . Putting the data given in the problem, we get

C
,_ 1 0.082Latmmol *K *x(273-122)K

=0.0322L mol * =32.2 cc mol™.
8 48atm

But, b=4x NA%';; r¥or, 32.2 cm® mol™ = 4 x 6.023x10% x (4/3) x 3.14 x r®or, r = 1.5 x 10 cm.
Hence the radius of the Argon atm = 1.5 x 10 cm.
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Question: A scientist with a simple view of life proposes the following equation for one mole gas.

RT B C
P:———2+—3.
vV V°V
Express Pc, Vc Tcinterms of B and C and find the expression of critical compressibility factor, (Zc).
2 3
[Ansvcz%,Tcz B andp =2 1]
3

3RC c T ot %

Table showing the values of critical constants of different gasesincluding their critical coefficients

ras TelE Py I atm W rlit Critical coefficient
ET PeWe
H; 332 128 00627 3.05
P! 12597 335 0.090 3.42
(g 15428 497 00744 342
Oy 30415 729 00942 363
H,0 fd7 .3 2185 0.05554 3.37

Reduced form of vander Waals equation of state

Vander Waals equation can be expressed in terms of their
reduced variables in stead of T, Pand V. The reduced variables are defined as the actual variables divided by the
corresponding critical constants.
Thus, reduced pressure, 7 = P/Pc, reduced temperature, @ = T/T¢ and reduced volume, ¢ =V/Vc.

Replacing P, V and T in the van der Waals equation by corresponding reduced variables, we have

{;z P+ ((p\z ; }((pvc ~b)=ROT,-

8a a
Inseting the value of critical constants, Vc = 3b, T. = —— and P. = —— in the above equation,
J \ ¢ T o7R0 T S T o7 .

we get the reduced form of van der Waals equation,
(72'+%J(3¢)—1) 80
@

The important feature of the equation is that it isindependent of van der Waals constants, aand b .

Thus it appears that the equation is independent of the nature of the gas and general asit isin ideal gas equation.
But it is not true. The characteristic gas constants now remain in disguise within the reduced variables

(7,9 and ) asthese variables contain critical constants (Pc , Vc and Tc) and these are characteristic constants of
the gas. Thusit is not that generality lost in van der Waals equation is regained in this form. However, the reduced
equation is more general than any specific equation of state.

L aw of corresponding states:

The reduced equation of state, (7;+ %j(&o—l) =80
»

gives birth one important generalization, called law of corresponding states. If the two substances have the same
reduced pressure ( 7) and are also in the same reduced temperature (), then their reduced volumes ( ¢ ) should be
the same and the substances are said to bein their corresponding states. Thus, two gases are at the same reduced
temperature and under same reduced pressure so they arein corresponding states and have same reduced volume.
This principle of corresponding states is not exact, but it is the single most important basis for evaluation and
comparison of different physical properties of substances. All substances will appear to behave similarly at their
corresponding states.
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For example, argon at 302K (T¢ = 151K) and under 16 atm (Pc = 48 atm) pressure and ethane
at 381 K (T¢ =190.5K) and 18 atm (Pc = 54 atm) arein their corresponding states, since each has

0=2 and 7 =13
This principleis approximately valid for gasses composed of spherical and non-polar molecules.
The important utility of the law is that any physical property can be compared among the substances when they are
in corresponding states. Let usillustrate it with the value of compressibility factor (Z) of different gasses at their
corresponding states.

ﬂ:M or, Z:ﬁxw o, Z=—x—,

We have by definition, zZ =
Rx 60T, RT. 6@ 8 46

Since %(p is samefor the gasses in the corresponding state so the gases have same
value of Z. Thisimpliesthat all gases

deviate from ideal behavior to the same

extent when they arein corresponding state.
Thus when Amagat’s curves are drawn

Zvs. rr at constant @, all gases produce

single curve as due to the same value of Z.

The curves are drawn taking the average value
of Z at the corresponding state of different

gases as the law is approximately obeyed.

This shows that, all substances behave almost
similarly like the value of Z at the corresponding
states. r—_ -
Limitations of vander Waals equation

(1) The equation predicts V¢ = 3b but the mean valueis Ve = 2b.

RT,
(2) The equation also suggests that 3 \; = 8/3 = 2.66 but the average value is 2.66.
c 'C
(3) Te/Tc = 27/18 = 3.375, but the valueis about 2.98.
So we can conclude that van der Waals equation explains the behavior of thereal gas qualitatively but it fails to
explain quantitatively.
Question: For anideal gas, critical temperatureis 0 K. — Comment on the statement.  [Burdwan Univ.1992]

Answer: The statement is correct. This can be shown as follows.
Theideal gas equation for one moleis PV = RT or P=RT / V. Now taking 1st and 2" derivatives of P
with respect to V at constant temperature and setting to zero at the critical point, we have,

—RT,L? =0 and ZR-I;C =0 . Subtracting, T, [2—|§+£2J:0 or, Tc = OK.
V, Ve©
C C C C

Kammerlingh — Onnes Virial equation:
The equation of state of a gas can be satisfactorily expressed as a power
series of volume or pressure as suggested by H. Kammerlingh — Onnes

3

in 1901 as, PV:RT[1+§+\%+VR+ ........ }

where, B is 2™ virial coefficient and is most important in the expression. B, C, D isthe virial coefficients and
dependent of T and on the nature of the gas, their values are small in magnitude.
Virial equation as power series of P is given by

PV =RT[1+BP+CP+DP+.....].

KINETIC THEORY AND GASEOUS STATE WITH BURDWAN UNIV. QUESTIONS AND ANSWERS - DR N C DEY 50



Vander Waals equation of real gas can berecast in virial form as follows:
: _RT a _RIV a_ RT a _ b/t @
The equation, P=——-— of, PV =—— PTYARY) RT(l K/) v

V-b V? V-b V (1_%)
2 3
or, PV =RT 1+E+b—2+b—3+ ...... _2 (1+Ej—E ~RT+RT(b—ijl'
vV V°V Vv V) V RT )V
- . : , a1l
So thevirial form of van der Waals equation as power seriesof V is Zz1+(b—ﬁ]\7.
The 2" virial coefficient, B:b_% . Thus, evaluation of B is possiblefrom a and b .
At the Boyletemperature, (Tg), B =0, andthus, b——2 =0 L
e Boyle temperature, : =0, andthus, - = or, .\
yieram ° RT, ° " Ro
Therefore the virial form of the vander Waals equation can produce the expression of Te.

The above virial form can easily be expressed as power series of P by replacing by

1 a
v = BT (Taking approximation for small term). Sotheformis, Z=1+—|b—-— [P,
P RT RT

A morerigorous mathematical treatment can be exercised to get aform consisting of 3rd virial coefficient. This

formis,
z =1+i(b—ij py_2 = (2b—ij P?.
It can be shown that the 2" virial coefficient is (~ve) while 3" virial coefficient is (+ve).
Thus, when P is low, 2™ term dominate and Z decreases with increase of P but when P is high, the 3 term
dominates and Z increases with the increase of P inthe Z vs. P diagram.
A complete description of Z vs. P curve is obtained by this virial form of van der Waals equation.
More accurate virial form of van der Waals equation is

z =1+%(b—%jP+ (Ri)s (Zb—%j P (;)4 {3102 (é_?_z)zjlp3

Problem: What is the molar volume of N2(g) at 500 K and 600 bar according to (a) ideal gaslaw and
(b) the virial equation? The virial coefficient, B of N»(g) at 500 K is 0.0169 L mol™

RT  0.08314L bar K 'mol *x 500K

Solution: (a) The molar volume, V = — =6.92x10°L mol *
P 600bar
0.0169L mol ™ ) x (600bar
b z=1+22-14 ( 1) (1 ) _1
RT 0.08314L bar K™"mol * x 500K

Now, V = g - (l.244>< 6.92><10’2) -8.62x102L mol

1 a a a
Formulation of virial form, Z =1+—(b——j P+ 3 (Zb——j P2
K’ Onnes virial form as power series of P is, Z =1+ BP+C,P*+D,P®————(A)
But the van der Waals equation for one moleis, pv = m(l_%)fl_\% (Seethelast page).
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1 b (b)Y (bY a
or, —(1-b/\ __a - 1+—+| — | +| — | +————|— -
2=[-%) RTV { \% (vj (VJ } RTV

o))

2 52 3 p3
. 7ZRT 1 a \P b P b P
Replacing v =2, Z:1+—(b——j—+ — | =+ = | =+—-- B
@ J P RT RT )Z RT ) z° RT) Z° ®)
Equating with equation (A), we have,
2 2 3 13
BlP+ClP2+Dlps————Zi(b—iJE-i-(Lj P—2+(Lj i3+——
RT RT)Z \RT) Z RT ) Z
2 3 2
Dividing both by P, BI+C1P+D1p2____:i(b_iji+(£J i{i} L (o)
RT RT )Z RT ) Z2 RT) Z°
But, when P — 0, Z — 1. Using this condition, we get 2™ virial coefficient, B = i(b_ij :
RT RT
Putting this expression in (D), Bl+cp+Dpz____:Bll+(£)2ﬂ+[i)3p_2+__,
v z \RT) 2z? \RT) Z°
1 bYP (b)P
or, Bl[l—zj‘f‘clp'i‘DlPZ———— :(ﬁ] ?+(ﬁ] ?‘f‘——-
Again dividing by P, we have Bl(z—_ljl+cl+DlP————:(LTiZ+(£ P D
P )z RT ) Z RT) Z
Z-1 5 Z-1
From (A), T=81+C1P+D1P +———,but, whenP —0,Z — 1, so, T=Bl.
N, - § bY 1 (b)Y P
Using this value of B1 in (D), we get i+c +DP_—=(_J _J{_j 4
o in(D), we g z RT) z? \RT) Z°
2 2
Again, using the condition, P — 0, Z — 1, we get Blz+C1:(%j or, Cl:[%j -B2-

. 1 a a a
Insertin =—|b-——|, we get C = 2b———|.
° 8 RT( RTJ S N (RT)S( j

Putting the values of By and C; in (A) and keeping up to 3" term, the required expression of Z is,
z =1+i[b—i) P+—2 (2b—ij p2.
Question: The compressibility factor (Z) for one mole of a van der Waals gas at 0 °C And 100 atm pressure

is found to be 0.5. Assuming that the volume of a gas moleculeis negligible,
calculate the vander Waals constant “@’. [I1'T — JEE Sample Question]

Answer: We have, Z=1+i(b—ijP = ]_—ixi, (as b inthe van der Waals gas is assumed to be 0)
RT RT RT RT

RT) .
or, a=(1- Z)% Putting, Z = 0.5, R = 0.082 L atm mol K™, T = 273K and P = 100 atm,

weget, a =25amL?mol?
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Question: An approximate expression for the compressibility factor (Z) of van der Waals gasis
R Y e L
with terms having usual significance.

At what temperature does the slope of the Z vs. P curve (at P — 0) have maximum value?
What is the value of maximum slope? [Burdwan Univ. 1995, 2001]

Answer: 1% Part :Theslope of the Z vs. P curveis (G%P) and let it be S. Thus, from the expression of Z,
T

we get, s:i(b_i}r 2a)3(2b—%jP . But the slope at P — 0, sb:i(b a j

RTU" RT) (RT RT RT
Itisseenthat Spisafunction of T only. Now putting the condition of extrema, we have
& __ b 28 5 o b _2a o L_2a
dT RT? RT® RT? RT® Rb

It could be shown that at this temperature, S, attains maximum by using 2™ derivative of S,
with respect to T and then equating to zero.
2" Part: The value of the maximum slope, is obtained by inserting T = ;_2 in the expression of the slope,

1 a it - b7
%:ﬁ(b_ﬁj and itis §, Aa
Question: Draw agraph P%T vs. Pfor areal gas. Remark on its nature for a general case. If a gas obeys the

eguation, P\%?T = 1+ aP+ BP?, show that the following restrictions areimposed on & and 3 .

(i) a<0 and B>0 (ii)48>a” . [Burdwan Univ. 2004]
Answer: 2" part: Thevalueof P%T =1whenP -0
T e and then decreases, attains minimum
i ‘o and then increases with increase of P.
E¥| e 3 part: (i) For therestrictionon o and 5, let
Rl

_ 2 _ PV
E ; Z= 1+ aP+ fP° where Z = %?T'

. " 2
For the minimum value of Z, the conditions are d%P=a+2ﬂP=0 and d %Pz =20 = (+ve) .
Thus, f =(+ve). Now, a+2BP=0 or, a =—2fP =(—ve)as f =(+ve) so, a =(—-Vve).

Thus, restrictions « <0 and £ >0 arefulfilled.
(i) Againsince a+2pP=0 or, P= _0/2,3' Putting this expression, we get the minimum
2 a2 a2 aZ

valueof Z as Zmin_:1+a(—0/2ﬂ)+ﬁ(—0/2ﬂ) 1—§+@:1_@.

2
But, Z,, =(+v@)>0, s01-%L 50 o 1>% o, 48>a® .
' 4B ap

Question: A gas obeyingthe P (V — b) = RT has the compressibility factor, Z = 1.0018 at 27 °C and 1 atm
pressure. Assuming the gas molecules to be spherical in shape, calculate its molecular diameter.
[Calcutta Univ. 2004]

. . _ _ 3
Answer: z=1+b(|7RT) . Putting the values, we get b = 44.28 cc/mol. But b—(%)ﬂ'NAO' ,
again inserting the valueof b , weget, o =3.275x10"° cm.
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Problem: The critical density of CO, is 0.45 gm/cc; calculate the constant ‘b’ for the gas in dm*® mole™,
[Burdwan Univ. 1996]

1
Solution: Thecritical volume of CO, V/, = dM _ _g‘; gm mol_
. 0.45gmcc

Thus, b=V, /3=32.59 cc mol™ = 0.03259 dm® mol ™. [1 dm® = 1 litre 10° cc.]

=97.78 cc. Again, Vc = 3bcc mol ™.

Problem: Using the above value of b, calculate the collision diameter (o) of CO, molecules.
B V* ~ 3x32.59 cm® mol
27N, 2x3.14x 6.023x10% mol

Question: Express the compressibility factor Z of a van der Waals gas in terms of reduced temperature (&)
and reduced pressure ().

: o 2 b4
Solution: Therelationis b = §”NA03 o, o =[ j =296x10"° cm.

-1
Answer: For van der Waals gas, 7 :ﬂzi_i:(l_gj __24 Replacing V by RT
RT RTV P

\%

4 RT 27TR°T.’ ' 2z
o, 7 _(1_PP) __a  Now, putting b=—< anda= —, weget Z={1-— | ——.
RT 2 8P P 86 646

(RT) c c
Dieterici equation
Theideal gas equationis P,V,, = RT , where V,; isthe volume of 1 mole gas in which the

molecules are assumed as point masses and thus it is the free space for the movement of molecules. P, isthe

pressure of the gas in which the intermolecular attraction is assumed to be zero and so the molecules can exert full
thrust on the walls of the gas container during their wall-collisions.
When the equation is used for real gas, correction of the above two assumptions are needed.

Volume correction
In Dieterici equation for real gas, the volume correction is same as that done in van der Waals

equationanditis V,; =V —Db, whereV is the volume of 1 molereal gasand b is the effective volume of
Avogadro number of molecules .

Pressur e correction

Inreal gas, the molecules suffer attraction among themselves. The molecules which areinside
theinterior (bulk) of the gas, each molecule are surrounded by other molecules uniformly and the resultant
attractive force on the molecule becomes nil. It means that the molecules in the interior behave like ideal gas. But at
the exterior (near the wall), the molecule must have excess potential energy (A) to escape attraction of
neighbouring molecules and hit wall.
Thus the number density near thewalls (N") isless than that in the bulk (N, ).
So, N, _P et o, R,=PxeR,

Nid I:i)d

where P, isthe pressure that the molecules would exert if there had not been any molecular attraction (ideal

pressure) and P is the pressure when the molecules suffer attraction (real pressure).
A isthe excess potential energy of the molecules per mole of thereal gas.
Incorporating these two corrections, we have Dieterici equation as

Pxe’% (V —b)=RT or, P(V —b) = RTe '~

It is expected that A isinversely proportional to molar volume, V and so A oc \% or A= \% ,
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where a is characteristic constant of the gas but its value is not same as that in van der Waals equation.

The Dieterici equation then becomes  P(V —b) = RT e RV
Thevaluesof a and b aredetermined experimentally by fitting to data.

Dieterici equation and van der Waals equation
RT - ' .
We havethe Dieterici equation, P = —— RV Expanding the equation, we get

V-b

RT a 1( a Y RT a N
P= 1- += — = 1- . [Neglecting higher terms

V—b( RTV Z(RTV) J V—b( RTV) [Neg gnd ]
S0, the Dieterici equationis P = - . But at low pressures, the volume is large and so

V-b V(V—b)
2 . . N RT a a .

V (V —b) = V*. Putting this approximation, we get Pzn—\? or, P+\7 (V —b)=RT whichisvan

der Waals equation.
So, the Dieterici equation and van der Waals equation would respond to the same extent at low pressures.
The validity of the Dieterici equation can be compared by average experimental value and calculated value of the

properties like Boyle temperature, critical co-efficient, V. /b of the gases, etc. These values wefirst calculate using
Dieterici equation and then match with average experimental values of the various gases.

Relation between critical constants (V,T., P ) and Dieterici constants (a and b)

RT
V-b

<
Putting Ri'll' = ¢ inthe Diegterici equation, weget P = eV.

C
NOW, (a_Pj - _ RT e_V£ + RT e_v (ij = —L_*_ PX% and
NJ (V-b) V-b  \Vv? (V—b) \%

Py 1 (fj+ P +i(£j _2Pc_(@j [L_L}p 1 2
ov? ), v-blav) (v-b) Vi\ev /) Vv oV ). LV? V-b (V -b)* Ve

At the critical point, both 1% and 2™ derivative would be zero, and P=Pc, V = Ve and T = T,

thus, (ﬁj = _ R +chi2=0andso R =P, x C2 or, 1 ziz ........ (a)
oV ); (VC —b) V. (VC —b) V. (VC —b) V.
2
Again, (a F,:j :(E) {iz_ 1 }rp 1 2_2_(; =0 or, 1 2:2_(; ........... (b).
ove ). \oV )i |[\V" V.-b (Vc_b) Ve (Ve —b)" Ve
From (a) and (b), we get V. = 2b, and at the critical temperature,
V.2 V.2 2 a
C:i,sofrom(a),C: €t —-_ ¢ - 4o =4b , thus a _ or, T =—.
RT. (VC - b) (VC - b) 2b-b RT. 4Rb
- Rl %y, -a 1 4 a
At thecritical pressure, p. = ¢ g /Rlce = & __ = o 720 o, p. == g2,
P e vc—|oe 4b 2b-b ¢ A
a
Thus, therdations are V.=2b, T __a and P. = — g2
¢ ¢ 4Rb ¢ ap?
2
Critical co-efficient = e — &, 1 40" 2 1o 3605
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Boyletemperature (Tg)

When Dieterici equation is multiplied by V, weget PV = Vg g 7RV

= e S (]

Rl RV RV a
] - X =
V-b (V-b)* (V-b) RV’

At the Boyle temperature, {Q(PV)} —pand T=T; so
T

oP
RgVi1 1 a | g, .2 1 1 b - aV-b
'V-b|V V-b RTVZ| ' RTVZ V-b V V(V-b) ' °* bV

. a
But for the condition of Boyle temperature, P — 0and V isvery largeso, V —b =V ,and. T, = =Y

Comparison of the equations with experimental values
The table shows that Dieterici equation is

Wan d.E-I" DlEtE‘-‘I"lCl Experimental bdta but lt hasa|SO |ImltatI0nS
Values W aals eqn eqn (average) However, van der Waals equation is
T 30 70 70 smpleanqleas/to handle
2 mathematically.
RT.fRV, 2.66 3.695 3.6
T, [T, 3.375 4.0 2,08

L ]
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THE LIQUID STATE OF MATTER

Introduction: This state of matter has definite volume but no definite shape. It takes the shape of the
container in which it is kept. Thisis dueto the more intermolecular attraction than the gaseous state but
less than the solid state. In gas, the molecules arein a state of random motion as there is small
intermolecular attraction whilein liquid state, randomness of the molecules are in |ess random state.
Liquid can flow like the gas and so these two are called fluid. From the above consideration, it is
concluded that most properties of the liquid arise due to nature and magnitude of the intermolecular forces
between the molecules. The important properties which we shall discuss in the chapter are:

(A) Vapor pressure (B) Viscosity (C) Surface tension one after another.

(A) VAPOR PRESSURE OF LIQUIDS:

When aliquid is added into a closed evacuated container at constant temperature, we find
that some molecules of the liquid pass from the surface into the space above it spontaneously. Thisis
called evaporation. The moleculesin the vapor phase collide with each other and also with the wall of the
container like the gas. Some of the molecules in the vapor phase collide on the surface of the liquid and
come back to the liquid phase. This is called condensation. Evaporation and condensation go on
simultaneously. A stageis ultimately reached when the rate of evaporation is equal to the rate of
condensation and a dynamic equilibrium is set-up between the liquid and its vapor.

Liquid evaporation, "
am condensation Vapor F e a=1-d
i "': Vapor
et . . . [ 4 I AT 1
At the equilibrium, the number density of molecules of theliquid Ex‘apmtlﬂn-—l 147" | lEdcondensation

phase and of the vapor phase remains unchanged.
The molecules in the vapor phase arein chaotic random motion. g —
They are colliding with the walls of the container and exert some equilibrium
pressure. At equilibrium, this pressureis called vapor pressure of
the liquid and this pressure is the characteristic property of theliquid at a given temperature. Thus vapor
pressure of a liquid can be defined as the pressure exerted by the vapors that are in equilibrium with the
liquid at a given temperature. The vapor pressure of the liquid depends on:
(i) the nature of the intermolecular forces in the liquid, higher the intermolecular forcesin theliquid less
will be evaporation and low is the vapor pressure of the liquid and
(ii) temperature. With increase in temperature, average kinetic
energy of the moleculesisincreased. The increased KE partly
overcomes the intermolecular attractive forcesin theliquid ;ﬁnﬁ_ﬂﬂ E
enhancing the escaping tendency of the molecules.
There occurs more evaporation and this results an increase
of equilibrium vapor pressure of theliquid.
The vapor pressure of the liquid can be determined by manometer.
Other several methods are there such as barometric method,
isoteniscopic method, Ramsay and Y oung method etc. 1 |
The vapor pressure of aliquid is determined at different temperature Teaipresne —=
and when these vapor pressures are plotted against temperature,
we have the above type exponential curve.
The vapor pressure of the liquid is increased exponentially with temperature. The temperature at which
the vapor pressure of the liquid becomes equal to the superincumbent pressure (usually atmospheric
pressure), the liquid starts boiling. So the boiling point of aliquid is the temperature at which its vapor

ligquic

e

I atm ol

Vapor pressore —
L
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pressureis equal to the external pressure. When the external pressure is one atmospheric pressure, it is
called the normal boiling point of theliquid. It is the characteristic constant of the liquid.
The quantitative relation of variation of vapor pressure ( p) of aliquid with temperature (T ) is given by

Clapeyron equation (derived in the chapter, Chemical Thermodynamics)
dp = La

T, )
where L, isthe molar latent heat of vaporization, V, and V, arethe molar volume of vapor and liquid

respectively. Since V, >>V] sowecan neglect V; in comparisonto V,, and we get

3—_? = % . If we assume the vapor abeys ideal gas equation, then, \7g = E and the equation becomes
p
¢}

ﬁzif or, @:ﬁd_'lz' or, I%:ﬁjd—z or, In p:——ap(lenA or, p:Ae_LV%T
dT ~ RT p RT p RT RIT

(assuming L, to remainindependent of T) and In A is constant.
The equation shows that In p isafunction of reciprocal of T.
When In p is plotted against 1/T, it gives a traight line from the

slope of which we can get the value of Evap :

Again, if p isplotted against T, the curve will be exponential type
same as that obtained from the experimental data.

P, I % I _
The equation can be integrated within limits, I%:ﬁjd—l— or, In&:ﬁ(uj.
P p R T1T Py R T1T2

L, s assumed to remain constant between the temperature T1 and To. py and p. are the vapor pressure of

theliquid at temperatures T1 and T respectively.
This equation is helpful to determine molar latent heat of vaporization of aliquid by measuring vapor
pressures at two temperatures.

(B) VISCOSITY OF LIQUIDS:

Resistance to flow exhibited by liquids is known as viscosity. Because of
this property some liquids flow slowly than the others. For example, glycerene, castor ail, etc flow
dowly while ether, ethanol, water, etc flow rapidly. Former liquids are called high viscous liquids while
the latter liquids are called low viscous liquids.

Flow of aliquid in a pipe: When aliquid flows through a pipe, all parts of the liquid do not move with
equal velocity. A thinlayer immediate in contact with the wall
of the pipe remains almost stationary. The velocity of flow of ?J:H Profile of advancing
successive layers from the wall of the pipe increases and liquid front
reaches maximum for the center layer. Laminar flow of liquid in a tube

Thus thereis velocity gradient, (dv, /dz) of theflowing liquid.

V, isthe velocity of layer along X- axis (along the pipe) and z isthe distance of the layer from the wall
of the pipe
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Origin of viscosity in liquid:

When a higher moving layer slides over the lower moving layer, there
occurs internal friction between the layers. Dueto thisinternal friction, slower moving layer exerts
resistance to the faster moving layer and the flow of the higher moving layer isretarded. Thisinternal
friction originates in liquid due to intermolecular attraction between the layers. This is evidenced by the

]
fact that viscosity of the liquid decreases with increase of temperature, i.e.a—z = (-ve).

. — : o dv,
Co-efficient of viscosity: Newton’s law of viscous flow is givenby f = —nA( r X j :
VA

where 7 isthe viscosity coefficient of aliquid. It isthe characteristic constant of the liquid at agiven
temperature and pressure. It isa measure of the viscosity of aliquid. Higher the value of 77 of aliquid,

slower isits flowing tendency.
The unit of 77 in CGS system is poise according to the name of the scientist, Poiseuille

which is equal to dyne cm® sec and in SI systemiit is Pa. swhich N m?sec. 1 Pa.s = 10 poise.
Thedimensionof 7 isM L™ T or M/LT.

Fluidity (¢) of aliquidisthereciprocal of viscosity (77) i.e., ¢ = % It measures the flowing tendency

of aliquid.

Kinematic viscosity: In some fluid-flow, theratio of viscous force (77) to the inertia force (p) is
important. Flow depends, apart from (77) , on density (p). The ratio (77 / p) is thus defined as kinematic
viscosity of theliquid. This viscosity is very often used in engineering work to compare the flowing
property of different liquids. It is defined as, kinematic viscosity = viscosity coefficient (77) / density.
It is expressed in stoke unit. One stoke = (gm cm*sec®)/gm cm™ = cn? sec™.

Mass factor of theliquid is absent in this viscosity of the liquid.

Type of liquid-flow:

() Laminar flow: When the viscosity of discharge of aliquidin atubeislow, all
the layers of the liquid move paralld to each other. Thisflow is called laminar flow or streamlined flow
(lamina— layer). arnar fom
The veocity of thefluid (both liquid and gas) at any particular point is =
aways samein magnitude and direction. Hence two streamlines do not =
cross each other.

Newton’s law of viscous flow is only applicable to this laminar flow.

(i) Turbulent flow:

L

When the rate of discharge of the moving liquid — :" —

is high, the condition of streamline flow is not — ,“ N I :

maintained and turbulent (broken) flow starts. e— ’;— ~ 0
‘ Tl bairi 11w

The streamlines crowd as the velocity of flow
increases. Theveocity of the liquid at a point
varies with time irregularly.

Turbulency starts

Reynold Number (Re):
Reynold suggested that when the value, Gz;;u, adimensionless quantity , called

Reynold number (Re) exceeds a certain value (= 1150), turbulent flow starts.
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Thus, R = M , Wherealiquid of viscosity coefficient, 77 and density, p flows through a tube of

n
-3 -1
diameter, d with velocity U. Reis dimensional quantity since 22% = SRXgmem Xemsee ” _nitless so

n gmcm~lsec™1

dimensional quantity.
Approximately, the following conditions are followed for the liquid-flow. When,

Re < 1000, laminar flow occurs.

Re = 1000 — 1500, turbulent flow starts, a transition zone.

Re> 1500, definite turbulent flow persists.
Thus when a capillary tubeis used, d is very small and the flow becomes streamlined especially when the
velocity of discharge of the liquid through the capillary is low. Thisiswhy capillary tubeis used in the
measurement of viscosity of aliquid.

4
Formulation of Poiseuille Equation, {77 e P t]

a8V

Let us consider the streamline flow of an incompressible fluid (here we take liquid) through a capillary
tube of radius r which is large compared to the mean free path of the liquid (so that molecules cannot
bounce between the walls which they invariably do in diffusive flow). Let the length of the tubebe | .
Fluid at thewall is at rest and the velocity of liquid is maximum at the centre of thetube. Let v bethe
velocity of the layer at any distance z from the central axis and it variesfromQOto r .

T z+dz
B PP+ P
A 2 | I| .
4 F=F_F |I { . B
s 7] L ."'. Y
L o - | [ hi |
(] i o L S
AT Y R
T ] g e A s
; 3 SToss-Rechon
: = - of the tube
velocity profile in lninar flow

dv, dv,
Newton’s law viscous flow for laminar flow, f, = nA( r X j , Where ( 4 X j = velocity gradient and as z
z z

increases V, increases, f,= driving force of theliquid flow and A = area of the contact of layers.

Let us consider the liquid layer which is z distance away from the centre of the tube. For this layer, the
above equation becomes as: f, =Px 7Z°, where P = P, — P, = pressure difference of the two ends of
the tube.

A=27r2 and (%VZXJ:(—(;—‘\Z/) sinceas z increases, V decreases, when z=r,v=0.

Putting the values, we get Px72° =nx 272 (—@J or, dv:—izdz.
dz 2nl
L P 7 P/, o
IntegratlngW|th|nI|m|ts,jdv:——fzdz or, v:—(r -7 )
0 2nl ¥ 4nl

THE LIQUID STATE - DRN C DEY 4



Now thetotal volume of the liquid flowing through the tubein unit time i.e. rate of liquid flow,

Ny jZﬂ'ZVdejZﬁzxi(rz—zz)dz:ﬂ—P{ﬁ_ﬁ}: zprt (E_Ej: zPr* _
0 0

dt 47 onl| 2 4| 279 \2 4) el
N . o dv zPr* . :
Thus the Poiseuille equation for therate of fluid (liquid or gas) flow, E: a1 is derived.
7]

. : , dv. VvV . L _
Since thefluid flow is steady, hence E:T i.e. V volumeflowingintime t, so the equation is

7Prt

n= . J L Poiseuille formulated the equation in 1844 from Newton’s law of viscous flow.

This equation is applicable to incompressible fluid executing a streamlines flow in a tube.

Deter mination of viscosity coefficient (7) of alow viscous liquid:

(i) Using Poiseuille equation directly. The Poiseuille equation
4

! whichisvalid for laminar flow only. et =

o Vs
isgivenas i =

Here V isthe volume of liquid of viscosity coefficient (77)

flowing in a capillary tube of radius r and length | under Z==la ;Z:[ l
constant pressure difference, Pintimet . e e e I
To determine 7 of aliquid, all theterms of the right hand side |==| capillary tube i
of the equation are to be determined. .ﬁ .
The radius of the capillary () is determined by inserting a ::: \é‘
main outlet Voo

mercury pellet into the tube and
the mass (m) and length ( X) of :H:
the pellet are measured by using X

balance and travelling microscope. Using therelation, m,, = 7rr2x,oHg ,I' can be calculated.

This method provides the absolute value of 77 of aliquid but the method is time consuming. Further a
small error in the determination of r makes alarge error in the value of viscosity coefficient, a I remains
in the 4™ power in the expression of 77 .

Problem: If thereis 1% error in the value of r, theradius of the capillary, what will bethe error in the
viscosity coefficient value calculated using Poiseuille equation.

zPrtt Pt dyp 4kr’dr dp  dr

. op=——=kr* k="— __ dn=4krdr —L = —=4—

Solution: 7 sV , Where gy o n , or n krt o n r-
dr 97 _ 40

But the% of errorinr=1% i.e, Tzl%,so i.e, erorin M =4%.

n

(ii) Using Oswald viscometer :
Easy way to determine the relative viscosity coefficient of aliquid with reference

towater (7 /1,) isdoneby using Ostwald viscometer.
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This viscometer consists of two bulbs at different height as shown in the figure.
Thebulb in the wider tubeis first filled with the liquid and then it is sucked up

intheleft hand limb up to level &, . Theliquid then flows down through the
capillary (c) and time (t,) required to fall fromlevel & toa,is carefully noted.
The experiment is repeated with water in the same viscometer with same volume -
of the liquid by pipette. The corresponding time (t,,) is also noted.
Thus for liquid, the Poiseuille equation is

=

hp gr‘t hp, gr‘t t
n = 7npgry and for water 3, = NP9 bty . So, ho_ AL Ostwald vicometer
8V 8V M Puly '
or, AL _ Pulu i.e pt is constant for aviscometer for all runs. So, 7, =7, x P 4 .

Density of the liquid ( p, ) is determined by specific gravity bottle. Both t, and t,, are noted by

stopwatch. Density and viscosity coefficient of water are obtained from standard text book of physical

chemistry.

Precautions of the method: Temperature should be kept constant by using thermostat.
The capillary must be cleaned width chromic acid, water, etc before using.
The viscometer should be placed vertical and any sort of mechanical jerking
must be avoided.

(iii) Using Stokes law: [Generally used for high viscous liquids]

When a metal ball of spherical in shape falls freely in afluid, the viscous force devel ops that resists
thefal of theball. The layer of fluid, in contact with the ball moves with zero velocity (no-dip layer), a

velocity gradient develops in the fluid surrounding the sphere. This gradient generates a viscous force, f,
resisting the sphere’s motion. This viscous forceis found to be proportional to the velocity of the ball (V)
provided, visnot very high, f, =Kkv, where Kis called frictional constant. Stokes proved that for asolid
sphereof radius, r moving at speed, V through a Newtonian fluid (the fluid that obeys Newton’s law of
viscous law) of viscosity, 77 theviscous forceis

f, =6znrv Thisis called Stokes law.

In this determination, liquid is generally taken in atall cylinder and spherical metal ball is allowed to fall
intheliquid. The driving force of the ball is dueto gravitational force
acting on the ball.

ms 6

= f, :gﬁre‘pg, where p isthe density of metal ball.

Thisforceis again is resisted by the buoyancy force and it results from
the greater fluid pressure below the body than above it. Thisforceis
equal to the weight of volume of liquid that is replaced by the body.

fouoy = ?—31721'3,@ g, where p, is the density of the liquid.

When the driving force on the ball is equal to the opposing force,
the ball falls with steady vel ocity.

Falling sphere viscometer f,=f

- buoy+fv or, g”rapg=gﬂr3p,g+6m]rv
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2

or, Gﬁan:gﬁr?’pg—gmap,g 0r,67z17|’V=§7rf3(p—p|)g or, 77=§r—(p—p|)g
\'

2

If theball falls | distanceintime t, then v:lf and so, n=§r|—t(/?—,0|)g

Determination of all the terms of the RHS gives the absolute value of viscosity coefficient (77) of the
liquid.

Relative viscosity: When water is taken as reference liquid and same ball is used to fall between the same
two marks of | distancethen,

n =n,x% (t—'j {MJ and n,, is obtained from the text book at the temperature of the experiment.

tw p_pw
Problem: A sted ball of radius 2x10>m fallsin a vertical column of castor oil. The coefficient of
viscosity of castor oil is 0.7Nm s and its density is 0.98x10° kg/n? . The density of the

sted! ball is 7.8x10° kg/m’® and g =9.8ms™. Find theterminal velocity of the steel ball.
[ Burd. Univ. 2006]

2

212 2(2><10’3m)
Solution: v==—(p-p )g=o~— 1
ution: v =3 (P=A)9=5 5 7Nm?s |

=(2x4x10°x6.82x10°x9.8) /(9x0.7)m/s=0.085m/ s

Temperatur e — dependence of viscosity coefficient of liquid

It is our common experience that viscosity varies with temperature. Honey, syrup,
coal tar flow more rapidly when heated. Engine oil and hydraulic fluids thicken appreciably in winter
season and significantly affect the performance of cars and other machinery.
Qualitative aspect of T-dependence: In general, viscosity of liquids decreases with rise of temperature.

As temperature increases, average speed of the molecules isincreased

resulting higher trandational kinetic energy and this allows overcoming intermolecular attractions more
easily.
Quantitative aspect of T- dependence: Dependence of 7 on T is quantitatively expressed as

7.8-0.98)x10% kg/m’x9.8ms™?

n=Ae™"  where e = activation energy of viscous flow and A is

constant for the liquid. The above reation can be formulated as follows:
In order to move, amolecule in aliquid must escape from its equilibrium position so it needs a minimum

energy. The probability that it can acquire at least energy E, is proportional to € 5/%" (assuming two
dimensional flow in layer). The mobility (fluidity) of the liquid should follow the Boltzmann energy
distribution law and fluidity (¢ ) oc e &R Since viscosity (77) is reciprocal to fluidity,

s0 770c €F or, = Ae™™  where A is proportionality constant, characteristic property
of theliquid. E, isthe activation energy of the viscous flow per moleand it is also the characteristic
property of the liquid.
When T - 0K or,E, = , 7 = o, theliquid ceases to flow in ether of the two cases.

1
Again, taking logarithm of both sides, we have In7 = InA+ %[;j :
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Thuswhen In7 isplotted against (1/T ), astraight lineis obtained
from the slope of which E, can be determined.

o
o

Again, INnA =In7,when YT -0 i.e T >oo. i o ;Inw:_{‘
However, in drawing the plot, problem is that data points obtained are very Siechrighcfinbind *
closefor small range of 1/T. intercept = | A

LT

-

So the slope and intercept obtained from the plot are liable to uncertainties.
The above equation in two temperatures gives In(&j = 5[1 —1] .

m) R{T, T
Thisrdationis also used to calculate E, of aliquid.

Problem: The viscosities of water are 0.018 and 0.009 poise at 0°C and 25°C respectively. Calculate the
average value of the viscous activation energy assuming it to be independent over this
temperature range. [Burd. Univ.]

Solution: Putting the valuesin the relation, |n[ﬁ]=5(i__]
m R\T, T,

0.018 E, 1 1), E, 25
In = — - K In2= -
0.009) 2calmol"K™\273 298 or 2cal mol "\ 298x 273

E, =(2x298x 273xIn2)/ 25¢al mol * = 4511.22cal mol

Pressur e- dependence of viscosity of liquids:

The viscosity of aliquid isincreased with the pressure over the liquid is increased.
With increase of pressure, number of holesis reduced and it is therefore more difficult for liquid to
move. [Exception: water, its 17 decreases with increase of pressure over it.]
Addition of solutes:

Stronger the cohesive forcesin aliquid, higher will be its viscosity. The factor that
reduces cohesive forces, should lead to the decrease of viscosity of theliquid. lonic salts reduce cohesive
forces and hencein general it lowers the viscosity of the liquids.

Factorsthat increase n of apureliquid:

Viscosity of aliquid is found to increase with the increase of molecular weight of
the liquid and also with branching of the organic liquids.

Liquids having H-bonding have also high viscosity such as, glycerol, water, etc.
Deter mination of molar mass of a polymer:

Viscosity measurement of a polymer solution can be used to determine the molar
mass of the polymer. When a polymer is dissolved in a suitable solvent, its viscosity (77) is increased.

Let 7 and 77, arethe viscosity coefficients of the polymer solution of conc. ¢ (gnvL) and pure solvent,
then relative viscosity (77, ) = 17/1, and specific viscosity (17, ) = (7—1,) /7, -
The reduced viscosity, 77, =77, /C . Thus the reduced viscosity (77, ) =[(77 —11)/Mo :'/C .

If reduced viscosity (7,4 ) is plotted against conc. (C), astraight line is obtained.
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The extrapolated intercept is called intrinsic viscosity, [7] which

is[nsp/c] <0~ It may be called as the fractional changein the

viscosity of a solution per unit conc. of polymer solution at infinite T

di I.uti on. Ny (nafe)| =" _[n /
This [17] depends on the molar mass of the polymer. The empirical mtercept [ e,
relation proposed by Flory is [7]=KM?® called intrinsic viscosity
K and aare constants depending on the solvent, polymer-type and c(@gl)——

temperature of the solution.
If a =1, M isweight average molar mass (Mw) of the polymer.

{MW:V\&M1+W2M2+W3M3+ ........ }:sz |

where W, W,, W, arethe weights of polymers having molar masses M, M,, M, etc.
and f. =weight fraction of the polymer of molar mass M.

When a<1, M lies between Mw and Mn , and sometimes called viscosity average molar mass of the

s = nM; +n,M, +nM, +........
AN, + N+ e,
where X = molefraction of the polymer of molar mass M, .

polymer. M, = number average molar m
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SURFACE TENSION OF LIQUIDS

Origin of the property:
Surface tension of aliquid is the surface property and it can be related to the
intermolecular attraction present in the liquid.
Let us consider amolecule A inthe bulk of theliquid. It is uniformly surrounded
by other molecules and on an averageit is attracted from all
directions and the resultant force on it becomes nil. But the molecule B on liquidd suriiee

— —

the surfaceis partially surrounded by other molecules and experiences a — B —
resultant inward pull as aresult of which, molecules on the surfacetry to R e

|
B
leave the surface and enter into the bulk of the liquid. Theliquid surfaceis Tﬂ
under tension and tries to contract to get minimum surface area. T e
This unbalanced force of attraction on the surface molecules of aliquid is Bulk
the origin of the property, surface tension. Higher the intermolecular Forces on 4 molecide at
attraction force (cohesive force), greater is the magnitude of surface tension The: surisce and in

fhe bulk of the Hypud

of theliquid.

Demonstration of inward pull of silk thread:

Inward pull on surface molecules towards the bulk of theliquid
can be demonstrated by the stretching of a silk thread in aliquid
film of a circular wire when one side is punctured.
Consequences of surface tension of liquids:

Liquid assumes a shape that has a minimum surface area, because
that enables the maximum number of molecules to remain in the
bulk rather than on the surface of the liquid.

For this reason, droplet, when it falls fregly, takes the spherical shape since this shape has surface/volume
ratio minimum. If we drop some olive oil into a mixture of water and alcohol having same density as the
oil, oil drops take spherical shape and float freely in the mixture. Lead shots are made by allowing molten
lead to fall into a pool of water through a sieve at the top of the tower.

Other consequences of the property are the formation of bubbles of gasin a
liquid, floating of needles on water surface, capillary-rise and capillary-fall of liquid, etc.
Definition of surfacetension () :

Sincethe surface is under tension, any attempt to make a penetration along any
line on the surface will require an application of force to hold the separate portions of the surface
together.

Thisforceis called surface tension and is denoted by ¥ (gamma). It is expressed as force per unit length

acting at right angles to the line along the surface of the liquid. Its unit is dyne/cm in CGS system and

Nm™ in Sl system. The dimension of y is MT 2.

Sretching of a liquid film: The meaning of surfacetension is better understood by the following
experiment. Theforce, f required to stretch the film

is found to be proportional to the length of the piston (| ). Since there are two
surfaces of the film, thetotal length of thefilmis2l .So f o« 2l or, f :y(ZI).

The proportionality constant, 7 is known as surface tension of the liquid and it
can be looked upon as force exerted by a surface of unit length.

Thisincrease of surface area of the liquid film against its natural tendency to
contract will require performance of work.
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Thework required = f x displacement
e w=(yx2)xx= yx(2xx)=yxAA andso, y =WAA.
So wis also the surface ener gy associated with the surface area, AA.
Thus the surface tension () may also be defined as the work required to increase the surface of unit
area. y isequivalent with the surface energy per unit area though unit of latter is erg cm™? or Jm? but
both have the same dimension MT 2.
Ther modynamics of the property:
Surface work is additional to PV-work so weregard it asa contribution to the

Gibbs free energy of the system. The free energy change due to change in surface area (dA) of aliquid
is given by

dG =—-dT +Vdp+ ydA for one-component closed liquid system.
Atconstant Tand P, dG; , = ydA. For spontaneous process, dG; , <0, andso dA <O0.
This means that surfaces has natural tendency to contract as a system tends to attain smaller free energy
(G), soit tends to acquire smaller surface area of theliquid.
Problem: A liquid drop of radius R and surfacetension y breaks up into n tiny droplets of equal size.

Show that the change in surface energy is given by 47rR27/(n%’—1) . [Burd. Univ. 2008]

Solution: %;zRg = n><%;zr3 or, R =nr® or, R=n®r or, r = R/n%
Increase of surfacearea= Nx4xr? —4zR? = n><47z(R/ny3) —47RP = 47Z'R2(%— j

Soincrease of surface area = 47R? (' —1) and increase of surface energy = 47R° (n*-1).

Problem: 1 cc of water is broken into droplets having a radius of 10™° cm. Calculate the surface energy of
the droplets rlative to that of water. Given surface tension of water = 72.7 dyne/cm.

[Answer : 2.18x10" erg]
Wetting and non-wetting liquids:

Definition of angle of contact:  Liquids can be classified into two types depending on their ability to wet
the solid surface . Let usfirst define the angle of contact (@) that measures the extent of wetting of the
liquid. It is defined as the angle between the tangent to the liquid surface at the point of contact and the
solid surfaceinside the liquid. Greater the angle of contact less is the wetting.

Difference of behaviors of wetting and non-wetting liquids:

hﬂmd

u uid
,A/f'“fldj solid surface H‘x._-—-f :)\, Scrhd surface
Wetting liquid (&< 90°) Non-wetting liquid (£ - 90¢)

For example : water on glass surface, (0 =18°)  For example : mercury on glass surface (€ = 140°)
(1) Wetting liquid has tendency to spread on the (1) Non-wetting liquid has a tendency to remain

solid surface. detached from the solid surface.
(2) Theliquid meniscus in the capillary tubeis (2) Theliquid meniscus is convex upwards and so
concave upwards and so thereisrise of liquid thereis fall of theliquid in the tube
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on the tube.

(3) Intermolecular attraction between the liquid (3) Intermolecular attraction between the liquid
molecules (cohesion) is|ess than that between molecules (cohesion) is greater than that
the liquid molecules and solid molecules liquid molecules and solid molecules

(adhesion) (adhesion)
i.e. cohesion < adhesion. i.e. cohesion > adhesion.

It isinteresting to note that water cannot wet feather of birds so they can fly in therain also.
Water also cannot wet the leaves of |otus on the ponds.
Condition of wettability:
When aliquid drop remains stable of asolid surface, the following forces are balanced
with themselves along the line of contact.

Yo =7a g cos¢ or, cosf = (ng -7 )/7/,g
_"_.--;-:_....:__ Fiquid drop

(1) When the liquid wets the solid surface, € < 90°and -
solid syrince P

cosf >0, sy >y andtheliquid spreads over e T A,
EES o

o s

the solid surface. That is, lower theinterfacial tension
74, Smaler thevalueof @ and greater isthe wettability of the liquid over the solid.

(2) When the liquid does not wet the solid surface, & >90°, cosf <0, so y4 > 7. That is higher the

interfacial tension (7/5, ) between solid and liquid, less is the wettability of the liquid on the solid

surface. Theliquid does not spread more.
The equation does not hold if g, > 74 + 7.

In that case, (759 —74 ) > 7,4 and cos@ >1 whichis not possible.
Again, when (ysg —74 ) =74, C0s@=1 or, @ =0°i.e solidiscompletely wet.
(3) Similarly, if yq > (7’sg +%q ) , then cosf <—1  cos6 > cos180° or, 8 >180°and liquid does not

wet at all. The equation does not hold.

Excess pressur e on the concave side of a bubble:

Difference among bubble, cavity and drop: Bubbleis either athin liquid film in which air and vapor are
trapped or cavity that contains full of vapor in aliquid. Former has two surfaces while cavity has only
one. The treatment of both is much the same, but factor 2 in the case of bubbleis to be added. The drops
are spheres of liquid in equilibrium with the vapor.

Bubble insde a liquid:

Let acavity insidealiquid of radius r is decreased to radius r —dr .

The surface energy is decreased = —ydA=—yd (47zr 2) =—8xrydr. T -~ _
Theamount of work done by the cavity to do so AN

opp

=—P_xdV =-Pd (gﬂ'ﬁ] =—Px4zrdr.

P = Excess pressure
inside the bubble
Equating thetwo we have —Px4zrdr =-8zrydr  or, P, =2y/r .

excess

So the excess pressure inside the cavity (concave side) withintheliquidis P, =2y/r .

When we consider the bubble suspended in air, P, =4y/r sinceit has two surfaces.
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Alternative formulation: The bubble inside the liquid remains in equilibrium (r remains time-invariant).
Thisis dueto the fact that the tendency to decrease their surface area is balanced
by excess pressureinside. The cementing force that tends to decrease the surface area is for surface

tension of the liquid forming the film and for the outward pressure, P, .. We know work required to

out

stretch the surface of the bubble through radius dr isgiven by, w= ydA=y xd (47zr 2) =8xrydr.

But work is force (opposing) x displacement. So the force opposing stretching through the distance, dr at
theradiusis 8zry . Thus cementing force = 4xr ZRM +8zry . Thedisrupting force is dueto the inward

pressure, P andit is equal to 471 *P, . Since the bubble is stable, these two forces are equal and so
Arr?P. = 4xnr®P

n out

+8rryor, 4xr?(P,—P,)=8xry or, B, =2y/r .

Excess pressure over plane surface: Thus we seethat pressure inside a curved surface is always greater
than the pressure outside, difference drops to zero as the radius of

curvature tends to infinity (for flat surface). Since P oc1/r for aliquid, smaller bubble requires higher

pressure for its formation and maintenance. Thisis in agreement with our experience of blowing a
balloon. It is difficult to blow initially but becomes easier as the size of the balloon increases.

The excess pressureishigh as r issmall. For example, P, . inabubble of radius 0.01 cm,

P, ... = 14,600 dyne/cm? which is enough to sustain about 15 cm column of water.

2y 2x 72dynecm ™
pgr  1gmem > x980cmsec *x 0.01cm

[h= =14.7cm].

Problem: A soap bubble is suspended in air with volume 7/6 cc. Calculate the excess pressure inside
the bubble if interfacial tension of soap solution and air is 27 dyne/cm.
2y _ 2x27dynecm™
- 2cm
Problem: Two limbs of a vertical U-tube haveinternal diameters 0.5 mm and 0.3 mm respectively.

Itispartialy filled with aliquid of density 0.3 gnv/cc. The surface tension of the liquid is

60 dyne/cm. What is the differencein the levels of the liquid in the two limbs?
2y 2 11
Solution: The difference of pressure between the two limbs, AP = Ty _r_}’/ = 27/(? - Fj

Solution: g;;re‘:%cmC* o, r’=8cm*orr=2cm.So, P, __ =

excess

= 27 dyne/cm?.

or, AhpngP=2}/[1—1J or, Ah:ﬁ(l—lj
r r pgLr r’

1
or, Ah= 2x60dynecm [ 1 1 j =10.87cm

0.3gmem®x981cmsec? ( 0.015cm  0.025cm
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Explanation of capillary-rise and capillary-fall phenomena:

Capillary-risefor wetting liquid: When a glass capillary tube isimmersed in water or any liquid that

wets, there occurs arise of liquid inside the capillary. It is called capillary action.

Explanation: The liquid wets the inner wall of the capillary and thereby
surface areais increased. To decrease of surface area, the

liquid must rise within the tube. As soon as this happens, however, the

- :_f % -4 F-f{-4 9lassisagainwet and againtheliquid drawsitself upwards. The process

————— 7 [~—-—-71 stopswhentheforce of surfacetension acting upwards becomes equal

Before rising Afternismg  t0 theforce dueto column of liquid acting downwards.
f,, = 27Ty (approx. for wetting liquid) and f,,,, =7zr*hpg.

The process stops when they are equal.
Equating, 271y = 1 *hpg or,h=2y/(pgr) or, ¥ =(hpar)/2.
hr =2y/(pg) = constant for aliquid at a given temperature.
Thus, h vs. r plot isarectangular hyperbola.

Capillary-fall for non-wetting liquid: In similar way, it can be shown that there will be capillary-fall for
the liquid that does not wet the solid surface, such as mercury in glass tube.
The formulation also helps to determine the surface tension () of aliquid.
Deter mination of Surface Tension of a Liquid:
(a) Capillary-rise method: Riseand fall of liquid in a capillary tubeis due to surface tension. Let us take

awetting liquid and it rises in the capillary tube until the vertical component
of thelifting forceis balanced by the weight of the liquid in the capillary tube.

T Lifti ng force (upward force) = 271 x ¥ c0S@, where r is radius of
ey thetube and it is also the radius of the curvature of the liquid

meniscus [ =T, /cos@ and cosé ~ 1for wetting liquidso r ~1,].

\ Theweight of the liquid (downward force) = 7r’hpg+vpg,

whereVvis the volume of the liquid in the meniscus itself
= volume of the cylindrical tube of radius r and length r
— volume of empty hemisphere within the meniscus

s ] | = 212 x1 = (Y2 x (43 xr° = (Y3) 2r®

So the downward force= 71 *hpg+ (1/3)zr®pg = 7zr2(h+%r)pg

h+r/3 r
At equilibrium, the two forces are equal, so 27zr><ycos6’:7rr2(h+£)pg or, y:—( 3)p9 ,
3 2cosd
h+r/3 - r
For more accurate, p issometimesreplaced by p —p, thus, 7/=( /Z)(p'g'ov)g )
cos

However, for most wetting liquids, cos@ ~1 and h>>r,s0 » =(2)h(g —p,)0or .
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Problem: For water-air interface at 25°C and 1 atm, calculate therise in a capillary tube with inside
diameter 0.2 mm. The surface tension of water at 25°C is 72 dyne/cm. The density of air
and water at 25°C and 1 atm are 0.001g/cm® and 0.997 g/cm™. (g = 981 cm sec?).

Solution: 7=1h(p|_pa)gr o, po 2 = 2><72§yne/cm _
2 (n—par  (0.997-0.001) gcm x 981cmsec 2x 0.01cm

=14.74cm.

Approximate working formula: Again, p, >> p, and so for approximate measurement, working formula,

7 = (¥2) hogr.
Since @ is not accurately determined, so this method does not give very accurate resullt.
For non-wetting liquids, h is depression of theliquid level in the capillary tube.
For determination of 7, his determined by travelling microscope, p is determined by specific gravity
bottle, r is determined by inserting a mercury-pellet and determining the mass of the pellet.
Precaution: Only precaution of the method is that the capillary must be well-cleaned and immersed
vertically.
Relative surface tenson: Relative surface tension of a liquid with reference to water using same capillary
tube can be determined more easily.

% =rux(A/Pu)x(M/h,).
7., and p,, are obtained from the Text Book of Physical Chemistry at the temperature of the experiment

(b) Drop-weight or drop-number method:
Theory of the method: The liquid whaose surface tension is to be measured is allowed to pass very
slowly through a capillary (called stalagmometer) tip. Theliquid falls as
cylindrical drop at the mouth. Just at the point of detachment of the drop from the capillary tip, the
upward force (271 y) is balanced by the downward force which consists of the weight (Mg ) of the

drop and the excess pressure (/1 ) inside the cylindrical drop for its curved surface. Thus,

27[!’}/:rng+7rr2><Z or, y:m
r r
Though the formulation is approximate, yet the relative value with respect

to areference liquid (usually water) works well.

V ml

AM ooy M

YTw M, m, capillary
Drop-number method: However this can be replaced by drop-number

method. The number of drops obtained for the drop
same volume, say V ml of theliquid and water are counted. (Stalagmometer)
\
Thus’ ﬂ:m, 0 ¥ :ywx[ﬂjx(&j
m, (V/n,)p, Pu) Ny

Precautions. Theliquid is allowed to drop slowly and stalagmometer must be cleaned. During the fall of
theliquid, air current or mechanical jerking is avoided to get accurate result.
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Effect of Temperature on Surface Tension:
y decreases with riseof T and vanishesat T_: Asthetemperature of aliquid, in equilibrium with its

vapor, is raised, the phases becomes more and more alike. The number density of both the phases tends
towards the same value. Inward pull on the surface molecul es towards the bulk decreases, so the surface
tension of the liquid is also decreased.

At the critical temperature, the liquid-vapor interface disappears and the surface tension of

theliquid vanishesi.e, when T =T_, y =0.
Eotvos equation: R. Von Eotvos found that molar surface energy [k’(Mv)% 7/:| varies linearly with

temperature in degree celsius (t°C), assuming the molar volume of the liquid as spherical shape.
[Formulation of molar surface energy: Using spherical shape, the molar volume, Mv=(4/3)zR’,

where R = radius of the spherical mass and v the specific volume of the liquid, so R= {%(Mv)m} .
JT

73
The molar surfacearea= 47R* = 47r(4ij (MV)Z/3 = K'( MV)Z3 andk’( Mv)z/3 y isthe molar
Vs

surface energy.]

Thus, Eotvos observation is k’(Mv)z/3 y=-kt+c or, (Mv)a3 y =—kt+c, where k=Kk"/K'.
When t=t_, y=0,s0 —kt,+c=0 or, c=kt,. Thus Eotvos relation is (Mv)2/3y =k(t,—t).
But Ramsay and Shield found that y drops to zero approximately at t, —6. So the modified relation is
(MV)**y =k(t,—6-t).

Value of k: For normal and non-associated liquids, k = 2.1 when ] ‘

y is measured in the cgs unit. For water, alcohol, carboxylic acid (M4 y

(associated liquids) K islessthan 2.1 and K increases with

temperature.

Empirical relation: When specific volume (V) is assumed to be t°c—= te=6

temperature independent, then (Mv)z/ ® is constant. Again, if temperatureisin Kevin scale, the
t°C =T —273 and t, =T, — 273, the empirical relation becomes  y =k(T,-T).
Problem: Surface tension of ethyl acetate (T, = 523K ) is 25 dyne/cm at 0°C. Find its value at 50°C.
Solution: y =k(T,—T) or, 25dyne/ cm=k(523—-273)K
or, k =(25/250)dynecm 'K ™ = 0.1dynecm 'K ™,
so y=0.1dynecm ‘K™ (523-323)K = 20dynecm™*

THE LIQUID STATE - DR N C DEY 16



Vapor Pressureover a Curved Surface (Kelvin Equation):
To derivethe effect of curvature of liquid surface on vapor pressure, we may recall
the expression of dG of a system that includes the change in surface area (dA) also.
dG =-T +VdP +ydA+XZudn .
For one component (pure substance) open system, dG =—-SdT +VdP + ydA+ udn.
Last term ( dn) in the equation gives the changein G when dn moles of the substance are added to the
system at constant T and P without changing the surface area of substance (planar surface).
So for planar surface, wecan write  dG; p o = fpane AN
or, we can define chemical potential of the substance at constant T, P having planar surface

:uPIanar = (aG/an)T‘p’A '

It is the chemical potential of the component substance when it has planar surface at constant T and P.
However, when dn moles of the substance are added to the spherical droplet, there occurs an increase of
surfacearea (dA). [For asphere, dV =4zr?dr and dA=8zrdr , so dA=2(dV/r)]
Thus, addition of dn moles of the substance increases the surface ares,
dA= Zﬂ = 2\@ = [ZMJ dn, where p isthe density of the substance.
r r pr
So the free energy change of a substance including surface area is given by

dG=-T +VdP+(2Mr dn}y + Myjane AN Or,dG =—dT +VdP+[M+ﬂp|anar ]dn -
p Pr

At constant T and P, free energy change of the substance, dG; , = [% + Hparer j dn
: or

Thus the chemical potential of the substance (liquid) when it isin droplet (convex curved surface)

(@j o (M,
ludrop an p ' /udrop ,Or :uplanar '

NOW, £tgr0p = Hpjanar = My , bUt sy 00— Mo = RT In2 [vapor obeys ideally]
pPr Po
It is the change in chemical potential of the substance when 1 moleis transferred from planar surface

(vapor pressure, P, ) to the droplet (vapor pressure, p ). Therefore,

RTInE:w or, Inﬁzﬁﬂ (Kelvin equation)
Po por P prRT

Sinceall thetermsinthe RHS are (+ve), so P> p, i.e., vapor over adrop (convex surface) is greater

than the planar (flat) surface. Smaller the radius of curvature, higher will be p than p, .
The vapor pressure of water as a function of radius of curvature of the surface is shown below at 25°C,

r(cm) P/ Py r(cm) P/ Py
10* 1.001 10° 1.111, P, = 23.75 mm at 25°C
10° 1.011 107 2.88
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But when the liquid is transferred to the concave surface, the surface area is decreased and free energy

change dueto surface tensionis dG = —ydA. The Kevin equation becomes
or, |n£:_ﬁ_ﬂ , SO InP - (-ve) and p<p,.
Bo pr RT Po
That is, vapor pressure of the concave surface of awetting liquid in a glass capillary tube or in small
bubbleis less than that of the flat surface of theliquid.
Thefigure shows that vapor pressure of a small droplet

5

exceeds that of plane surface of the liquid, and vapor b3 Droplet (couves serface)
pressure of a concave surface of aliquid is|ess than that g
of a plane surface. It is assumed that surface tension does (i) | p—— rm

not depend on the radius of curvature of the surface. a
Thisis obvious that small droplets are having vapor pressure

higher than the bulk liquid because molecules are not drawn 0.1 10 106 1000
into the interior by so many near neighbors.

And concave surface of awetting liquid in a capillary has lower vapor pressure than the bulk liquid
because the molecules are drawn into theinterior by more neighbors than in a flat surface.

Bubble {concave surface]

. The consequence gf the eguation is that b, P R )
higher vapor pressureis required to condense ey E, P
vaporsinto small droplets as dew drops. { ) | | P
- . . . -t _—
Similarly, Ilq.u.l ds have atendency to N i i e
superheat (boiling delayed) at their boiling not dessen on e surface to dramm on the surfice to
avodd biserease of surface srea OSCTEass SUTH0s ared

points. If asmall bubble starts to form at the
boiling point, the equation is not satisfied.
The bubble will be squeezed out of existence by the force of surface tension. There occurs then bumping.
At atemperature above the boiling point, vapor pressure will be enough high and the bubble of certain
radius will be thermodynamically stable. Theliquid will be superheated in absence of foreign substance.
Problem: Calculate the vapor pressureinside the bubble of water vapor and outside a drop of water,
in each case taking the radius as 10 nm. At 298K, the surface tension of water is 72 dyne/cm
and the vapor pressure over aflat surfaceis 23.76 mm of Hg.
Solution: Inthe Kelvin equation,

2y M _ 2x72dynecm’ y 18gmmol
pr RT  1gmem®x107cm  8.31x10”erg mol 'K ™ x 298K
For drop of water, In p/ p, =0.1046 or, p/ p, =1.11and vapor pressure, p=1.11x23.76 mm of Hg.

= 0.1046.

So the vapor pressure of water over drop of water, p = 26.37 mm of Hg
Again for bubble, In p/p, =—0.1046 or, p/p,=0.901 and p=0.901x23.76 mm of Hg
So the vapor pressure inside the bubble of water, p = 26.37 mm of Hg.

Problem: Calculate the vapor pressure of awater droplet at 25°C of radius 2.0x10°m.
The vapor pressure of aflat surface of water-air interface at 25°C is0.072 N m™.
Density of water at 25°C is given as 10° Kg m.  [Answer: 5344.59 Pa]
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Alternative derivation of Kelvin equation:
Let dn mole of theliquid is transferred from flat surface having vapor pressure p, to the
spherical droplet at vapor pressure p . Thefree energy change p
. . Po dn
for thistransfer is given by
dG=dnRTIn(p/p,)-
For this transfer, there occurs increase of surface area of the
drop by dA.

Theflat surface has no change of surface area dueto this transfer. So the increase of free energy dueto
thisincrease of surface areais

dG = ydA,
(while other controlling factors for the free energy change remain fixed)

Equating thetwo, we have dnRT In( p/ p,) = 7dA. But, dA:deg:(ngjdn.
r p I
M 2 M 2 2y M
So, dnRT In =y| —x— |dn or, RT In =y| —x—=| or, In =—x—.
(p/p)=7[ 2] (0/p)=7| M2 o (/) =2t
For transfer to the concave surface, there occurs decrease of surface areaand dG = —ydA.
2y M

The Kelvin equation in such case will be In =—— x—,
g (p/po) or RT
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PROPERTIES OF SOLIDS

I ntroduction:

A substance can remain in three states — gas, liquid and solid. But solids
differ from liquids and gases by their high density and low compressibility. Solids have
definite shape, mechanical strength and rigidity. Thisis dueto close proximity of moleculesin
solids and hence high attractive forces.

Classifications:
Solids are classified generally into crystal and amorphous. The crystals
have flat surfaces, sharp edges and pointed corners, arranged symmetrically.
Crystals have definite melting point at a definite pressure.
Complete ordered arrangement of constituent particles (atoms, molecules or ions) in the crystal
gives definite geometric shape.
The crystals have definite melting point at a definite pressure.
Crystalline solids (other than belonging to cubic class) are anisotropic. Magnitude of some

Anisotropicity  properties depends on the directions along which it is measured. Refractive index, thermal and
of the crystals  electrical conductivities, coefficient of thermal expansion are of such properties.
For example, refractiveindex (i = sini / sint) of AgNO;s crystal at 20°C along X, Y and Z
axesare 1.73, 1.74 and 1.79 respectively for Na D-light (A = 5890 and 5896 A).
Inacrystal of Agl, the coefficient of thermal expansion is observed to be (+)ve in one direction
and (-)vein other direction.
This directional nature of the properties (anisotropicity arises due to different fixed
arrangement in different directions
A Fig. Arrangement of particlesis
different in different directions
Origin of the O o Olo O so the value of some physical
anisotropicity in the o0 Ole O propertiesis found to be
crystal M different in different directions.
o o 0O Anisotropic nature of the property
}@/O o O developsin the crystal.
O 0 Ol O
B
On the other hand, amorphous (Greek word, amorphos meaning no form) solids though they
Isotropicity ~ have definite shape, hardness and rigidity, but have no sharp melting point. They melt (soften)
of the over arange of temperature and they can be moulded or blown into various shapes.
amorphous These amorphous solids are isotropic and the properties do not vary with the directions along
substances ~ Whichitis measured. Glass, pitch, rubber, plastics belong to this class.

The isotropy- nature of the amorphous solids originates due to the lack of ordered structure of
the constituent particles (random arrangement).

One striking exampleisthat quartz is a crystalline structure while quartz glass is amorphous
having no long range order arrangement.

In many ways, amorphous solids closely resemble to liquids and thereby called ‘super-cooled
liquids’. Like liquids, they have tendency to flow though very slowly due to high viscosity.
Glass panes fixed to windows and doors of old buildings are invariably found to be dightly
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Thermodynamics
of formation of a
crystal

thicker at the bottom than at the top. Thisis, because the glass flows down very slowly and
makes the bottom dlightly thicker.
Hence forth by solid, we always mean the crystalline substance and not amorphous substance.

Crystalline solids:
Highly ordered arrangement of constituent particlesis
accompanied by alowering of internal energy of system. We have combined equation of 1%
and 2 |aw of thermodynamics as,
du =TdS — PdV
For this order arrangement, the entropy (S) is minimum and the volume (V) is maximum.
This makesthe internal energy of the system (U) minimum.
Crystals are bound by flat surface or face (f), sharp edges (€) and pointed corners (c).
Two faces when intersect, edge is devel oped, and when two edges meet, a corner is formed.
These external features of acrysta arerelated as,
f+c=e+2

L

Cube HexadonaT
(f =6, c =8 and & = 12) (f =8, c =12 and & = 1&)

First law of crystallography:

The size and shape of a crystal depend on the conditions
under which crystal grows. If the rate of deposition isslow, abig size crystal isformed, each
face has got sufficient time for its proper devel opment.

Again, if someimpurity is present in the solution from
which the crystal is formed, the shape may be different. For example, NaCl crystallizes as
cubes from aqueous solution while as octahedral from 15% urea solution.

One substance Brel /% fae2
can take different \‘\)\(

crystalline
shapes

interfacial angle

Cube
(ctahedral

The angle between two facesisthe interfacia angle.
Interfacial angle isthe angle between the normal to the two intersecting faces. Thisangleis
measured by the instrument, called Goniometer developed in 1780.
The first quantitative measurements on crystals were made by Niel Stensen, professor of
Anatomy at Copenhagen in 1669. He measured the angles between the corresponding faces of
quartz crystals of different shapes and stated the first law of crystallography.

“The angles between the corresponding faces of various

crystals of the same substance are same”.
Interfacial angleisthus a characteristic property of a solid in spite of its different possible
crystalline geometric shapes.

PROPERTIES OF SOLIDS — DR N C DEY Page 2



One-
dimensional
lattice point

The points in
2-d lattice can
be arranged
only in
5 different

Six cell
pparameters
are required to
describe a 3-d
lattice.

One unit cell
retains all the
characteristics

of the crystal

Crystal lattice and unit cell:
The internal regularity of the particles reminds the idea of lattice.
The 3-dimensional ordered structure is called space lattice.
Due to difficulty in representing the constituent particlesin the crystal lattice, points are used
instead of particles. The centre of mass of the particle represents the point in the lattice.
Thus the arrangement of pointsin 3-dimensions gives point lattice.
When the points are arranged in one line regularly at a certain fixed distance, it is called
one-dimensional lattice.

o {3 i’ {r
15 s s

The spacing of the pointsisfixed and is equal to
‘a’, called distance lattice parameter.

When the set of points are repeated regularly on a plane (along two co-ordinate axes), itis
called two-dimensional lattice. The pointsin two-dimensional |attice plane can be arranged in
five and only five different ways on the basis of lattice parametersa, b and ¥.

L 4

—i—=

Six parameters are required to define

the 3-d lattice , three distance parameters, a, b, ¢ and
three angle parameters, o, 5, .

The angle parameters are

LXQOY =y, LXOZ = fand LYOZ =«

If similar points are connected by sets

of paralle lines along the co-ordinate axes,
the space will be divided into alarge number of small symmetrical units.

These basic units of the space lattice are known as “unit cells’. This unit cell isthe smallest
building unit of the crystal. Like molecule in a substance, unit cell retains all the characteristic
features of the crystal. Any point placed in one unit cell must occupy the same relative position
in every unit cell of the crystal.

FA
_._“.-"" A
el d
vl o
.-"'--. i .-'"r.
| |
- ; P4 .
! ;

&
i

¥
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Symmetry
operations are
used to compare
the extent of
symmetry of
different crystals

A cubic crystal
has 13 axis of
symmetry.

A cubic
crystal has
9 plane of
symmetry.

Symmetry in crystals:

Symmetry is akind of regularity in the arrangement of the
constituent particlesin acrystal. Symmetry of acrystal is described in terms of certain
symmetry operations which transform a spatial arrangement into an arrangement that is
virtually indistinguishable from the original one. The crystals can be classified into seven
crystal systems according to their symmetry operations. How much acrystal is symmetrical,
that can be measured by the number of symmetry operations (elements of symmetry). Greater
the number of e ements of symmetry of the crystal, greater isits symmetry.

Generally the three types of symmetry operations are used to describe the symmetry of a
crystal. These are discussed below.
(a) Axisof symmetry:

An axis of symmetry is an imaginary line passing through the centre
of the crystal about which if the crystal is rotated through an angle of 360°, the crystal takes a
number of indistinguishable configurations with the original one. Thisrotation operation is
denoted by C,, where nisthe number of such indistinguishable configurations that appears.
If two such equivalent arrangements will occur in a complete rotation, i.e. through 360°, the
axisissaid to be atwofold (diad) axis of symmetry ( C;).
If the complete rotation leads to the three same result as the original one, the axisis called a
threefold (traid) axis of symmetry ( Cs).
In the cubic crystal, there are three C, axes of symmetry passing through the opposite faces,
four C; axes of symmetry passing through the opposite corners of the cube and six C; axes of
symmetry emerging from the opposite edges.

I

]

[
(b) Plane of symmetry:

A crystal is said to possess a plane of symmetry if it can be divided
by an imaginary plane into two parts such that oneis the exact mirror image of the other. The
plane of symmetry is usually designated by @. When the mirror plane is perpendicular to the
direction of the principal axis (axis of highest order), it is called horizontal mirror planeand is
denoted by . On the other hand, when amirror plane contains the principal axis of symmetry,

it isknown asthe vertical mirror plane and is denoted by ...
In the cubic crystal, there are three principal ~

planes and six diagonal planes of symmetry. /
Thus the cubic crystal contains total nine planes
of symmetry.

(c) Centre of symmetry:

It is denoted by i. Centre of symmetry
of acrysta isapoint such that any line drawn
through it intersects the surface of the crystal at equal distances
in both the directions. A crystal can have only one centre
of symmetry. Thus acubic crystal has one centre of symmetry.
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Crystal systems:
With distance cell parameters a, b, ¢ and three angle cell
parameters, 5, v, it is possible to have seven crystal systems of different geometrical shapes.

These are given bellow:

Crystal systems Cell parameters Elements of symmetry  Examples

1. Cubic a=b=c, a=p=y =9 13 axia,9plane  NaCl.KCl

2. Tetragonal a=b#c,a=LF=y =90° 5axial, 5plane  Rhombic S,

3. Orthorhombic azbzc,a=p=y =90 3axia, 3plane  Whitetin, TiO;
4. Rhombohedra a=b=c, a=f8=y =9° 7 axia, 7 plane Calcite

5. Hexagonal a=b#c,a=4=90°, y=120° ----- do ------ Graphite, Mg
6. Monoclinic azb#c,a=£=90°, f#90° 1laxia, lplane  MonoclinicS
7. Triclinic azbzc a#p+y+90° No axia, Noplane  KzCr.0;

Any other geometrical shape with these six cell parameters gives rise to one that have the
same elements of symmetry with the one of the above seven crystal systems.
Out of these seven crystal systems, cubic system has maximum elements of symmetry — 13
axis of symmetry (3C,, at right angles to each other, 4C3, axes passing through the opposite
corners and 6C;, axes emerging from opposite edges ), 9 plane of symmetry
(3 are principal planes and 6 are diagonal planes) and one centre of symmetry.
3rd Jaw of On the basis of symmetry, 3" law of crystallography is stated as,
crystallography “all the crystals of the same substance have the same elements of symmetry.”
Out of the seven crystal systems, three are having orthogonal axes (a = =y =90°)

and these are cubic system, tetragonal system and orthorhombic system.

Type of crystal - ) ) . .

system can be Examination of the macroscopic shape of asingle crystal helpsto find the crystal system it

identified from ~ Pelongstoand alow ‘&, ‘b’ and ‘c’ axes to belocated. With the use of the instrument, called
external features ~ oniometer, itis possible to find the angle parameters, «, 5,7 .

the crystal These external features of the crystal help to determine the crystal system but it can not
tell usthe interna arrangement of the constituent particlesin the crystal.
Bravaisclass of the crystal systems:

Bravais (1848) showed that considering the position of the lattice pointsin
the different crystal systems
atotal of 14 different Bravais
classes are possible.

These are discussed below:
1. Cubic crystal system: ! .
Three Bravais 3 j;b:= C; o Simple cubic ervstal Bodi-centred cubic crystal - Face-cubic erystal
classes in cubic 4 (P) (1) (F)
system, It has got three
Bravais classes. o L e, R
2. Tetragonal crystal system:
a=b=c,a=0=y =90° o
Two Bravais It has got two Bravais classes.
classes in Oneissimple (P) and other is
tetragonal  end-centred (C) inwhich thelattice &= & -
crystal system. points are on the opposite faces Simple (P ) Body-centred (I)

bound by aand b axes.
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3. Orthorhombic crystal system: a=b=c, a ==y =90° It hasfour Bravaisclasses.

Four Bravais
classes in
orthorhombic B =
crystal system. - = - = -

= -

Simple ( P Bodv-centred ( 1) Face-centred { F ) End-centred ( )

4. Rhombohedral crystal system(a=b=c, a ==y # 90°) hasonly one smple (P)
Monoclinic has Bravais class.
two Bravais 5 Hexagonal crystal system (a=b# ¢, @ = =90°, y = 120°) hasonly onesimple (P)
classes and Bravais class.
6. Monoclinic crystal system (a # b #c¢), @ =y =90°, f = 90°) hastwo Bravais
classes — ssimple (P) and end-centred(C).
7. Triclinic crystal system (a #b# ¢, a # f## y #90°) has only onesimple (P) Bravais

class arrangement.

Trigonal (P
Rhombohedral (P) Hexagonal (C Monoclinic (P) Monoclinic (C

others have one
in each crystal
system

BU 2005. 01/b) How many crystal systems and Bravais lattice are therein crystalline solids? (1)
Show that two dimensional lattice with five fold rotation axis of symmetry is not possible. (5)

50’14/ (i)agg Ans. : See Physical Chemistry Vol. | by K L Kapoor, Page 126.
Assignment of lattice points per unit cell in a cubic system:
Cubic crystal system has three Bravais classes.
1. Primitive cubic system (P):
. ] It has 8 points at the 8 corners of the cube so each point at the corner is equally shared
Primitive cubic . . )
by eight other adjacent unit cells.
e ,Sta]b‘?s one Hence contribution of each atom to the unit cell is (1/8).
lattice point per _ ] _ R
unit cell Total number of lattice points per unit cell = 8X§ =1
2. Body-centred cubic system (1):
bcc has two The lattice points occupy each corner of the cube along with one point at the centre of
lattice points the cube. The body- centre point belongs exclusively to the unit cell.
per unit cell. Total number of lattice points per unit (bcc) cell = 8><% +1=2.
3. Face-centred cubic system (F);
fec has four The lattice points occupy each. corner of the cube along with at the cer'1tre of each face of
lattice points the cube. The fa.ce-c.ent.red point is equal Iy. shared by two adj acenF unit cells.
’ Such type of pointsis six at the centre of six faces of the cube lattice.
per unit cell,

1
Total number of lattice points per unit (fcc) cell = 8x% +6 x > =4,
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Density of the
solid helps to
suggest the type
of Bravais class
of the crystal

Assumptions
for calculation
of packing
fraction in the
crystal.

Simple cubic
crystal is
52.3% packed

Density of cubic system:

Density of asolid can be accurately determined from the
experiments and its value can also be used to unit cell dimensions. Again if the cell dimension
is determined by Bragg’s diffractometer, the type of Bravais class of the crystal can be
ascertained.

For the cube unit cell, the volume = &, where ais the edge-length.

Mass of the unit cell = (ﬁjxn where, M = molar mass of the solid and
A

n = number of the constituent particles per
unit cell..
It isone for primitive (P), two for bce
and four for fcc.

So the density of the solid
M xn
N,xa’

p:

M XN and for orthorhombic solid, o= Mxn

N, xa’b N, x abc

a, b and c are the distance cell parameters of the orthorhombic crystalline solid.

Problems:

(1) K has acubic lattice and at 25°C the density of K is0.856 gm/cc and X-ray diffraction
shows the unit cell edge length is 5.33A. Find the number of formula unitsin a unit
cell of K . What kind of cubic lattice doesK have? [Physical Chemistry — IraLaving]

(Answer — n = 2 and bcc)

(2) Copper crystallisesin the fcc pattern. From X -ray diffraction study, the edge length of
the unit cell has been found to be 0.360 nm. If the density of copper is
8.94 x 10% Kg m3, calculate the Avogadro number Na. [C U, 96]

(Answer — 6.095 x 10% mol)

(3) The orthorhombic crystallised form of an organic compound contains 2 molecules per
unit cell with cell dimensions 12.05, 15.05 and 2.69 A and density of the crystal is
1.419 gm/cc. What will be the molar mass of the organic compound?

(Answer — 208.47) [Civil Service Exam, 1999]

Packing in cubic lattice:

For tetragonal crystalline solid, p =

For the calculation of packing of the constituent particlesin
the crysta, we consider that each particleis (@) rigid sphere, (b) identical with other
constituents and (c) they are touching each other in the unit cell.

(1) Simple cubic cdll:

In thisssimple cubic cell, spheres are at the
corners and they are touching along the side
of the unit cell. Thus the distance between the

centres of two spheres=a
; and radius of each sphere = a/2.
3
The volume of each sphere= 24 ﬂ(ﬂj .

3 \2

Volume of the unit cell = &
e Thus the fraction of the total volume of unit
cell occupied by the sphere

a

4 3
=312) 32 =0.523 = 52.3% and the void volume = 47.7%.
a

The structure isrelatively open since only 52.3% of the space is occupied by the constituent
particles and the rest 47.7% remains empty.
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(2) Body-centred cubic cell:
Besides the eight corners of the cube, one
sphere occupies at the centre position.
The body-centred cube contains two spheres.
becis 68% \ SR ' The spheres are touching along the body-diagonal
' / vk A of the cube which isequa to

packed o o o S
rdl Y \/( facediagonal )* +(edgelength)” =3 a
i‘ e~ N \
\ _,“’ Thus4r=+/3a or,r= %.
R g The fraction of the total volume of the unit cell
4 (J3a)
2x 37[[4&1]
occupied by the spheres = — /= 0.68.
a
So the volume occupied = 68% and void space = 32%.
In this arrangement, each sphere has eight nearest neighbours and thus the
Soft el ik co-ordination number (equidistant nearest neighbour) = 8.
Z( ]6_' eme’;tsbl € About 22 elements crystallise with bce. In this cubic crystal, the constituents do not
aika ,1 metals have occupy the highest fraction of space so these are very soft. Alkali metals have this bcc.
this structure.

In the crystals of elements all the congtituent particles are atoms and

same. But there are compounds with body-centred | attice, the particle at the centre

is different from that at the corners. Caesium chloride (CsCl) is such an example.

Inits unit cube, corners are occupied by the Cl- ionsand Cs" ion is at the centre or

vice versa. In fact it may be regarded as a case of two simple cube lattices

(one of Cl-ions and one of Cs' ions) interpenetrating.

Caesium chloride has a body-centred cubic lattice. Find the number of Cs* and Cl- ions

per unit cell. (2)

(3) Face-centred cubic cell :

In this Bravais class of cubic system, besides
eight corners of the cube, six spheres occupy
at the centre of each face. The cell contains
total 4 spheres and the spheres are touching
each other along the face diagonal.

Thus, 4r=+2a, = .
us, 4 =+2a,s0 t %\/5

Co-ordination
number =8

BU,2006, Q 2(a)

The fraction of the total volume of the unit cell occupied by the 4 spheres

Ax —7| —=
packed - 3 2\/§
a3
Thus, in general, the packing fraction (fraction of volume occupied) is independent of the
radius of the sphere and depend only on the nature of the Bravais class of crystal system.
This packing is more common for uniform spheres and is indeed closest packing possiblein
cubic system. Thusiit follows that the density of substances increases from simpleto bce to
fcc.
Most metals are either face-centred or hexagonal. Many el ements such as the solidified inert
gases, or metalslike Cu, Ag, Au, Ni etc possess this type of structure.

feccis 74% 4 [ a

j3
=0.74. So the packing = 74%, and void space = 26%.
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Greater point
density plane
forms the face
of the crystal.

A plane is
indexed in terms
of the intercepts
it makes with the

axes.

Sodium chloride (NaCl) crystal has thistype structure and two fcc units one of Na* ions and
other of Cl” ions are interpenetrating.
The co-ordination number (equidistant nearest neighbours) is 12 in both face-centred cube and
hexagonal structure.
Problem:
(1) Al crystallisesin acubic closed packed structure. Its metallic radiusis 125 pm.

(i) What isthe length of the side of the unit cell?

(i) How many unit cells are therein 1.00 cm? of Al?

[Answer: a=3.54x10"° cm, number of unit cell = 2.25x10%].

(2) Gold crystallizesin fcc lattice. The atomic weight and density of gold are 196.97 and
19.4 gm/cc respectively. Thelength of the unit cell is
(@ 2563A  (b) 3230A  (c) 4070 A  (d) 8.140 A  [GATE] [Ans. ()]

(3) Sodium metal crystallizes in the body-centred cubic | attice with cell edge a.
Theradius of the sodium atomis

a a3 a3 a
@ Y5 O 0 © ¥ ©aE A

Crystal cleavage and development of its faces:
A series of large number of parallel and equidistant planes, called lattice planes

can be drawn through the | attice points.
Among these large number of planes, only few
planes represent the faces of the crystal.
Only those planes that have large point density
can form the crystal faces. Greater the point density
of aplane, greater isthe probability of that plane to
form the crystal face. Planes passing through the
crystallographic axes have highest density of points,
so these planes generally form the crystal faces.
Thus, natural fractures of a crystal will contain the
planes parallel to these faces so the cleavage planes

Y

would correspond to the naturally developed !
crystal faces.
It can also be shown that the planes with the highest density are also planes with largest
distance of separation (d) so that interatomic attraction
between the planes would be minimum.
Lattice planes and their designations: b 1
& « o A
el X -
Let us consider the set of parallel and equidistant —1 Bg Y & _'.fj’ .
planes (set A, set B, set C and set D). These sets of b A R oa o
planes make intercept with the crystallographic i IR
axes X and Y (passing through maximum lattice points) W HAE NS
and parallel to the Z-axis. ! . “_._.
The designation of the planesis . \ W=
expressed in terms of the intercepts they make ) ™ 3 1™ T,

with the crystallographic axes. The orientation of the planes
are useful to discuss the structure of crystals
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Intercepts of any
plane along the
axes are either
the unit
Intercepts or
small whole
number multiples
of them.

(i.e. arrangement of lattice points in space within the crystal). The unit intercepts with X-and
Y-axesare ‘a’ & ‘b’.
Set A planes: Consisting of 3 planes which are parallel
& equidistant. The intercepts of the 1% plane= a,b, ),
the intercepts of the 2" plane=2a, 2b,c0 and the intercepts of the 3" plane= 3a,3b, .
Sincethe planeis paralel to Z-axis & henceit cuts Z-axisat .
Theratio of theinterceptsfor the set A planes a:b: oo = samefor all three parallel equidistant
planes under set A. Similarly, the intercept-ratio of
set B planes= a:2b: o,
set C planes have intercept-ratio = a:oo: oo and
set D planes have intercept-ratio = —a:b:oo
This shows that any plane can be designated in terms of the intercept-ratio with the
crystallographic axes, and all the planes under a given set (which are parallel & equidistant)
can be named by the same intercept-ratio. This can be better understood by the Hauy's laws of
rational intercepts or indices.
Law of rational indices: The law states that the intercepts of any plane of a crystal, with
crystallographic axes, are either equal to the unit intercepts (i.e. intercepts made by unit plane,
which are denoted by a, b, ¢) or some small whole number multiples of them. Such aratio of
three intercepts of any planeis given by pa: gb: and rc where p, g, r are small whole numbers
and a, b, c are the intercepts made by the unit plane with the crystallographic axes.
Thislaw also meansthat al planes cut a given axis at distance from the origin that bears a
simpleratio to one another.
These coefficients, p, g, r are called Weiss indices of the plane & these members
characterise and represent any plane of the crystal. The corresponding plane is designated as (p
gr) plane. Usually the Weiss indices are small whole members but in some cases they may be
fraction & infinity.
The numbersin the Weiss indices are replaced by Miller indices (h k I).
W.H. Miller introduced (h k I) for indexing the planes & they are
obtained by the following way.
The Miller indices of aplane are obtained by the reciprocals of Weissindices
(i.e. the coefficients of unit intercepts a, b, ¢) & when it isfound necessary, the reciprocas are
to be multiplied by smallest number (i.e. least common multiple, LCM) to make all reciprocals
as simple small integers.
Thus, the sets of planes under discussion are designated as
Set A intercept ratio— a: b: oo, Weissindices — (11 ), Miller Indices (110)
Set B: intercept ratio— a: 2b: oo Weissindices (12 ), Miller indices (210)
Set C: intercept ratio— a: o0 : o0, Weissindices — (1oo0 o), Miller indices (100)

Set D: intercept ratio~ —a:b:oo , Weissindices — (—110), Miller indices { 1 10).

Let OX, OY & OZ represent three

crystallographic axes and ABC is one plane that

cutsthe crystallographic axes at A, B and C. Thus

OA, OB and OC are the intercepts a ong the axes.

Thus according to the law, OA = pa, OB = gb,

A OC =rc wherethe of the unit intercepts of the
unit planesare a, b, c.
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Three type of
planes are
possible in cubic
crystal.

Interplanar
ratio in simple
cubic class.

Larger the value
of Miller indices,
smaller is the
Intercepts.

The Miller indices (h k |) are defined as
hel_oa 1. b g2l c
p OA q OB r OC
3 a K- b
intercept of the planealong X —axis’ intercept of the planealong Y —axis

c
int ercept of the planealong Z —axis
So, larger the value of Miller indices, smaller isthe intercept made by the plane.
Thus (222) plane has intercepts which are one-half of those of (111) planes. However both the
planes are parallel and equival ent.
Problem: The planesin acrystalline solid intersect the crystal axes at (2a, b, ¢), (-a, b, ¢),
(a, 2b,3c), (3a,2b,c) and (-a, b,=). Find the Miller indices of the planes.

Answer: (122), (1 11), (632), (236), (1 10).

Lattice planes in cubic system:
The planes are defined by Miller indices (hkl) and
Miller indices do not define merely a particular plane but define a set of parallel and
equidistant planes. It isthe ratio of the Miller indices which are important for the planes.
For examples, the (222) plane isthe same as (111) plane, the (200) plane is same as (100)
plane. Only the interplanar distances are different. The (200) planes have half interplanar
distance of the (100) planes.
(a) Simple cubic crystal: [Lattice points occupy the eight corners of the cube.]
Let ‘a’ is the edge length of the cubic cell and d is interplanar distance.
One plane is passing through the origin.

1 i i ﬁi.'"*-, & ; T‘\ < il
ﬂc..-'I. | _.-"'l _// / "-,_\Iff/‘ll : E ; | “xf X ':.:__
q I . 1& | T | ! "y
I - 'l' .--__ . .--_.- H\, o~ o
.rf ,,/ n v '1.||If"’ ‘m-"f « \\_/ w"‘s :
{10mylimes 110y planes {111jplanes
dlnl- - A = .-'3:;.'_: oy = jr’::lg
Theratio of the interplanar distances are given as.
a 1 1
: =1.—: =1:0.707:0.577 .

- 0 - a
leO'dllO'dlll:a'ﬁ'ﬁ ,\/Eﬁ

crystallographic axes.
Thus according to the law where the intercepts
of the unit plane are a, b, c.
0A =pa, OB=gb,0C=rc.
The Miller indices (h k1) are defined as
a 1 b 1 c

p OA q OB r OC
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ratio of fcc.

(b) Body-centred cubic crystal: [The lattice points occupy the centre of the cubein
addition to the eight corners.]

/ / AW &?lﬁ T \_<\ N
&3 ™
I |
(200) planes (110) planes
[ % =% i = %ﬁ
Theinterplanar ratio of the three planesis given as:
a a 1
Qoo Ooig 1O = 5253 \/_ JET_l 1.414:0.577.
(c) Face-centred cubic crystal : [The lattice points occupy the centre of six facesin
addition to the eight corners of the cube.]
P [
P
> N
""‘\..: 1
(200) planes (220 planes ~ (111) planes
dy, =4 iy, =
= /5 / LLL yﬁ

a.a.a ,.1.2 14507115

d,y:d,,,:d :
200 220 11 = 2 2\/_ \/— \/E \/§
Theinterplanar distance (d,,, ) of acrystal is determined by Bragg X-ray diffraction
measurements. This helps to find out the Bravais classto which a crystal system belongs.

Expression for calculation of interplanar distance (dpy)) :

The crystal systems belonging to the orthogonal axes (having a set of perpendicular axes)
are cubic, tetragonal and orthorhombic. For these crystal systems, the interplanar distance can
be calculated by the use of certain formula.

Miller indices that define the set of parallel planes, i

taking one of which passes through the origin.
If aperpendicular isdrawn from the origin

to the nearest plane of Miller indices (hkl),
then the perpendicular distance, represented by
drni; becomes the interplanar spacing between
the planesindexed by (hkl).
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If 6,6, and 6, are the angles which this perpendicular makes with the three axes, then

d,,, =OAcosd, = % cosé,

d,, = OB cosd, = E cos@, and d,,, =OC cosé, = IE cosd;.

Interplanar
distance of hkl Therefore, cosg), = (Dj Ay COSO, = (Ej d,, and cosd, = (I—j Oy -
planes in terms a b c
of unit distance  gince , cos 6, , cos 6, and cos 6, are the direction cosines of the perpendicular line, so
parameters in 5 5 5
crystals having ~ cos’ 6, + cos” 0, +cos’ 6, =1 or, {h—zj d?, + (k—ZJ d3, + (I—Zj d?, =1.
orthogonal axes. a b c
1 h k* I? . o . !
So, — =— +— +— . Thisrelation is applicable to any crystal having orthogonal axes.
d> a® b ¢
For cubic system, a=b = ¢, hence 1 :M or, d,,, I Ca. \N
Ao a’ Jh? +k2 +12
2 2 2
For tetragona crystal system,a=b #c, 1 1 h+k® +|_.
d?, a
h* k* |?
For orthorhombic system, a=b = C, —=—t—=+.
cooa bt oc
2 2 2
It can be shown that 21 =n2(h—2+k—2+|—2] or, 21 =n?x 1 .
nhnknl a~ b c o i i
Problem : Calculate the separation of (@) the (123) planesand (b) the (246) planes of an
orthorhombic unit cell witha= 0.17 nm, b =0.93 nm and ¢ = 0.75 nm.
Solution : d,,; =0.13 nm and d,,; =0.065 nm. [Civil Service Exam. 2003]
Some regions of electromagnetic radiation :
Electromagnetic radiation is generally
classified into several regions depending on the wave length. It is given below:
Name of the regions Wave length range
Cosmic rays 10*°A—102%A
y —rays 10°A—10"A
Clan'Iﬁca{tion X - rays 10 A—> 50A
of light into
regions on the Vacuum UV 50A — 2500A
basis of wave uv 2500A — 4000A
length range. __
Visible 4000A — 8000A
IR 8000A — 1,25,000A
Far IR 1.25x10° A—10°A
Microwave 102cm— 3cm
Radio wave 3cm—300cm
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Diffraction of
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same frequency

and amplitude
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two light rays
for being in
phase giving
constructive
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Diffraction of electromagnetic radiation :

Electromagnetic radiation consists of a
wave that propagates in space with the velocity of light. The wave is characterised by
frequency (v) or by wave length ( A ) and amplitude (displacement of the wave in a direction
perpendicular to the direction of its propagation).

The frequency (v) and wave length (4 ) of the light are related as

v =2 wherecisthe velocity of the light.

Two waves of same wave length and amplitude from two different sources reinforce each other
when their maxima and minima coincide. These results as constructive interference and forms
as bright point (B) on the screen placed to the path of the rays (in phase).

On the other hands, they may

interfere and exactly cancel R |
each other when their maxima " et
and minimado not coincide

(out of phase). 5 1-;’:__'3- G T -

Thisis destructive interference Fi e T :

and appears as dark point (D) ] i

on the screen. N : ‘;::.:5 | Sereen
) :;:H - Dt of phase

These interference phenomena form the basis of diffraction of light by diffraction grating.
The diffraction grating consists of atransparent medium (such as glass) on which areruled a
large number of very fine, equidistant parallel opague lines. When alight ray from a
monochromatic source isincident perpendicular on the grating, al the clear spaces will emit
light wavesin al directions radially outwards. The wave length and amplitude of the diffracted
light rays are same as the incident light rays. The waves from two apertures will cross at some
point beyond the grating. If the screen is placed at this crossing point, a series of bright and
dark spots will be observed on the screen.
Condition of bright spot is that when both the waves are in phase and for that, extra distance
travelled by one of the waves must be an integral multiple of wave length (A ) of light

i.e. FG = nA,wheren=1,23, €tc.

FG=dsind sodsind=nA.

For the two waves forming bright spot, dsin 8=nA.
Thus, maximum value of A = d, since maximum value of sin@ = 1 and minimum value of
n = 1. For crystal planes, d ~ 10® cm so the maximum wave length of the light used for
diffraction from crystal planesis also about 108 cm. Thislight fallsin the region of X- rays.
Thus, X-rays and not UV light is used for the diffraction by crystal planes.

but,

Diffraction of X-rays by crysal :

In 1912, Max Von Laue predicted that since the
distances between the particlesin acrystal are of same order of magnitude (~10°® cm) asthe
wave length of X-rays, the former could be used as three dimensional transmission grating. He
also obtained a diffraction pattern when a beam of polychromatic X-rayswas passed through
the crystal.
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Laue diffraction pattern

crystal
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Bragg’s
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with
monochromatic
X-rays.

Path difference
of two X-rays
must be
integral
multiple of
A for the rays

Minimum value
ofnis 1and
maxm, value is
such that
nA must not
exceed 2d

Bragg ’s diffraction equation: (2dsind=nl).

B H Bragg and W L Bragg employed a crysta not only as atransmission grating asin the Laue
method, but also areflection grating. The series of equally spaced lattice planes will serve as
grating. Asthe interplanar spacing (d) is Wave 1
comparable with the wave length (4 ) of X-rays, § Wavel

latter is diffracted by crystal planes.

When X-rays areincident on acrystal face,
they penetrate into the crystal and suffer
reflections on striking the constituent particles

in successive planes. - 5 .

If the reflected waves from successive layers are out of phase then due to destructive
interference, no diffraction will be observed. If, however, the reflected waves are in phase, then
due to constructive interference, a diffraction bright spot will be observed. The condition for a
reflection to give constructive interference is that the path difference between the two waves
must be integral multiple of wavelength of light.

Let @ betheincident angle of amonochromatic X-rays of wavelength (A ) with the paralle
equidistant planes of particles of interplanar spacing d. The waves are in phase before striking
the planes. Two such waves labelled as wave 1 and wave 2 are shown. After reflection, two
waves will bein phase provided the extra distance travelled by wave 2 is an integral multiple
of 1.

The extra distance can be obtained by dropping perpendiculars BG and BH from B to wave2.
Therefore, AB = DGandBC = HF. Again, GE=HE=dsnéf.

Thus, the extradistance= GE+ HE =2dsinf.

In order to wave 1 and wave 2 are in phase, the condition to be satisfied as,

2dsind =nA

where, n=1,2,3, etc and is called order of reflections.
Critical discussion on Bragg’s equation (2dsnf = nAl):

(1) Restriction of the value of n: niscalled order of reflection and it is equal to the
number of wave lengths in the path-difference between waves reflected by adjacent
planes. n cannot take the value zero in such case two rays are same as path-difference
becomes zero.

n can take only integral values with limitation that sin@ must not exceed one, in such
case, N A must not be greater than 2d.
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(2) Again, Sihd = n(%d) . This shows that the crystal planes cannot produce reflection

at any angles but at those discrete angles such that sin@ becomes integral multiple of

For maxr. reflection (% d)' Thus, we have more than one reflection at angles 6,, 6, ... corresponding to the

of two rays,
sin@ must be vauesof n=1, 2, -- respectively for fixed valuesof A and d. The equation shows that
integral multiple of  higher order reflectionswill occur at larger values of siné, and hence at larger angles.
( ,y ) Experimentally it is found that lower order reflections are more
2d intense and intensities of higher order reflection drop off rapidly.
(3) In dealing with X-rays diffraction, it is customary to express higher order reflections
) interms of the first order reflection from planes of higher (hkl). The equationis
Higher order . _ . .
) 2 dna SiN@ = nA, where dn = interplanar distance of (hkl) planes.
reflections can be
expressed by the But we have seen that % = nn -
Ist order reflection n
from planes of Now, rearranging the Bragg’s equation, we get, 2 % sné=Aor, 2d,,,SnN0=A41.

higher (kD). n ]
This means that a second order reflection (n = 2) from (111) planes may be
considered to be equivalent to the first order reflection from (222) planes.
Similarly, athird order reflection from (100) planesis equivalent to first order
reflection from (300) planes.

: 2dsiné
(4) Maximum value of A : Bragg’s equationis A= .

So for max". valueof 1,

ing
A = Zd%, but (sin@) _ =land n,; =1. Hence, | ‘ma =2d.

min

This means that the wave length of light used for Bragg’s diffraction must not exceed
Wave length of twice the interplanar spacing of the crystal studied. '-I'hls.shows-that sinced = 1A, .
X-rays used must thus A isof 108 cmrange. so X-raysand not UV light isrequired for crystallographic

not exceed twice g dies, When, 4 ) 2d, sing ) L ) 1 and there will be no diffraction.
of interplanar 2d
distance of the Smilarly, d ;, = % , that isin order to obtain diffraction pattern, the lattice planesin
crystal.

the crystal should have a separation of % or greater.

(5) Diffraction from different sets of planes:
So far, we have considered the reflection of

X-rays from identical sets of planesi.e.. the planes that containsidentical constituent
particles of having same particle density.

For reflection from two different sets of planes, let us consider that one set is
represented by AA and BB and other set by A'/A’, B'B’ of interplanar distance d.

If Xisthe distance between AA and A'A’ or between BB and B'B'and nA isthe path
differencefor therays from AA and BB planesthen for the same angles of incidence

6, the path-difference for the rays reflected from AA and A’/A’'or BB and B'B'is xn% .

Condition of two
reflected rays to be
in phase from two
different set of
planes.

If thisisaso an integral multiple of wave length then the rays reflected from
AA and BB planes will be reinforced by the raysfrom A'/A’ and B'B’ planesand a
strong reflection maximawill be obtained.
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Sketch of
Bragg’s
experimental
set-up

However, if X:% , XW%I :n%

So, whenn =2, 4, 6 (i.e. n = even numbers), the reflection beam will be in phase and
strong reflection occurs between the planes AA and A'A'.
Forn=1, 3,5, (i.e. n = odd numbers), the reflection will be in opposition, reflection
beam will be lessintense.
It means that one identical set of planes are interposed at the midway of the other
identical planes, then 2™ and 4" order reflections are more intense and 1% and 3
order reflection intensity will be less.
Planes of high particles density produce better scattering of X-rays which gives amore intense
beam. If more than one kind of particlesis present in the crystal, the particle with greater
number of electrons has greater scattering power for light elements. Between Na* and Cl-ions,
latter ions have more scattering power while K* and Cl- have same scattering power as both the
ions are iso-electronic.
Similarly, from X-rays diffraction, it is not possible to distinguish between atoms which differ
only by the possession of one addition electron, such as nitrogen and carbon.
The scattering power of H-atom is very small and over-shadowed by the effect of neighbouring
atoms containing large number of electrons and is not deduced by X-ray method.
problem: (i)Derive Bragg’s equation to show that 2dsind = nA for the reflection of X-rays
from the faces of the crystal.
(i) Calculate the interplanar spacing (d-spacing) in a cubic crystal of the second
order refection from such planes are obtained
sin & =0.38, when X-raysof A =154 pm are used. [IAS’ 2010, m=20]
Solution: (i) Seethetext note.
ni  2x154 pm
2sin@ 2x0.38
Experimental set-up of Bragg ‘s diffractometer : (2dsind = nA)
In the Bragg’s equation, @ is measured for various order of maximum
reflections and the interplanar spacing (d) is calculated by the X-ray diffractometer.
The whole experimental set-up consists of three parts.
(1) X-raysgenerating component (2) reflection arrangement of X-rays by crystal
(3) Determination of reflected X-ray intensity.

(i) d= =405.3 pm.

T grvstal{x)
—_ 1) > e W ¢ 1 table
i | o _-cathode F £ L\ B rifate B crvstal plane
1l F"I‘- h b ,l'll"f-h ey X _"-"-'rf
1 AU | [ {1 7 e b | vemier seale to messurs the angle of
R ) . [JJ{ [ % J Ry 1
B 4 W) imm I I l'u;':k (A 1S
e MATY e/
U ) antcathode o A
L/ (larget) H"H-}E T A \
=} '-\II AV \
]'k \ \
\ I"\ \ IONISATION CHAMBER
\ N \ Ceomaiir 50, ORI
A - vales o.f Y _./(- e
\ oot
Cu—15414 i WA«;:“ '~\H
Mo — 0709 4 \ R
£FT
Cr =2 2904 i
Eiectrometer
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The X-rays generated in the X-rays tube are passed through a series of dlitsto give a sharp and
monochromatic beam. The beam is then directed to strike the face of a crystal whichis
mounted on a graduated rotating table (turn-table). The rays reflected from the crystal are then
allowed to pass through a detector, called ionisation chamber, filled with vapours of methyl
bromide. The chamber is rotated co-axially with the crystal table. The crystal table and the
chamber are so adjusted that when the crystal rotated through any angle, the chamber rotates at
twice of that angle so that the reflected rays always enter the chamber. The extent of ionisation
produced by the reflected beam is measured by the electrometer.

Thevalueof @ (theincident angle) is gradually increased from 0° by rotating table.
Theintensity of the reflected X-rays for various anglesis determined. Strong reflections are
obtained from those planes which contain larger number of particles (larger particle density)
and for those values of @ which satisfy the Bragg’s equation. The process is repeated for each
plane of the crystal. The intensity of the reflected raysis plotted against € and the lines are
indexed.

Braggs themselves used NaCl crystal and took Pd metal as anticathode (4 = 0.58 A) in the
X-rays tube. They examined the maximum intensity of the reflected X-rays from (100), (110)
and (111) planes for which the incident X-raysis directed normal to face, edge and corner of
the NaCl crystal.

Application of Bragg ‘s equation to determine the structure of NaCl crystal

To determine the structure of a crystal, we need to
know the pattern of the regularly repeating spatial distribution of the constituents (atoms,
molecules or ions). Thisis possible from the determination of spacing of some suitably chosen
|attice planes of the crystal. The spacing are determined by the use of Bragg’s equation

(2dsind =nA).
Braggs themselves used X-ray diffractometer to determine the crystal structure of NaCl.
They used Pd anticathode (A = 0.58 A) in the X-rays tube and examined the maximum

intensity reflection of the X-raysfrom (100), (110) and (111) planes of NaCl crystal.
From the graph of reflected X-rays intensity vs. incidence angle (&) given below,

n=1 = =
ﬂn M kll_ (1[%0) plame | Intensities of X-rays by different planes
5.00 11.0° 1897 Planes n=1 n=2 n=3
h=1 h=3 (100) 100 199  4.87
SN0 (0 plene | (110) 504 610 071
247 17.0° (111) 9.0 331 058
n=1 =12 =
g 1=3 (1i1) plane
5.8 105" 1.7°
§ ——
the interplanar distance ratio of these planes can be calculated for n = 1.
dloo:dllo:dul: - 4 P A P 4 5= 1 : 1 : 1 =1:0.705:1.14.
sin5.9” sn84” sn52° 0.103 0.146 0.091
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Theratio is also obtained for 2™ order (n = 2) reflections.
The observed ratio of interplanar spacing shows that NaCl crystal is a face-centred cube.
Sincein the NaCl crystal, the constituent particles are Na* and ClI- ions, the two
face-centred cubic lattices of Na* and Cl- ions are interpenetrating.

-3

7 e
] L] >
O ] B L s
2 o | 2
WP
07 ban face-cenmed cubdc crostal N doem dace-cemtred cubic crystal g~ 2N

Intensity of X-rays reflected by (100) and (110) planes decreases as usual with increase of n,
which supports the structure that these planes have both Na* and CI-.

But for the planes (111), the intensities of n =1 and n = 3 are low but for n=2 ishigh
indicating that these set of planes are not identical, either containing Na* or Cl- entirely.

Asthe Na' ions planes are interposed half-way of Cl-ions planes, (X= d/2), so 1% order and 3"
order intensities are less while 2™ order reflection intensity is high (n = even).

From the structure given, we can calculate the number of NaCl unit per unit cell.

Number of Na* ions= 8xé+6x% =4, and number of Cl-ions = 12><%+1: 4,

Thus, there are 4 NaCl units per unit cell of the crystal. These support the fcc structure.
It isaso possible to calculate the interionic distance between Na™ and Cl- ions.
ni  1x0.58A
2sn@ 2sin5.9°
Pd anticathode. Thus the interionic distance between Na“ and Cl- ionsare 2.82 A.
This can again be supported from the density measurement of NaCl substance.
58.48gmmol " x 4

% %
Theedgelength, a=| X1 |~ _ Sodmr | =563A.
6.023x10~ mol ~x 2.17 gmcm

Nyxp
So the interionic distance between Na® and Cl- ions=a/2=5.63/2 A = 2.815 A.
All these determinations support the face-centre cubic structure of NaCl crystal.

The spacing of (100) planesis d,, = = 2.82A for 1% order refection with

Crystal defects:
So far we have discussed the perfect crystalsin which al the constituent

particles occupy the right positions as required for the particular geometrical shape.
But crystals with perfect lattice are very rare and amost all crystals suffer from imperfections
of various kinds. Theimperfectionsin the crystal in many cases determine the electrica
properties (such as conductivity), optical properties (colour), transport properties (rate of
diffusion) and mechanical properties (compressibility) of the crystal.
At thermal equilibrium, the imperfect crystals suffer more decrease of Gibb’s free energy due
to increase of disorder in the structure. G=H — TS, Sincreases and so G decreases.
These crystal defects are of various types.
(A) Line defects: The constituent particles are not arranged in lines as it would be in

perfect crystals.
(B) Point defects : It may be of following types.
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site defect.

(1) Impurity defects: If molten NaCl containing little BaCl. is crystallised, each Ba*?
ion displaces 2 Na' ions. One site is captured by Ba? ion and other site remains
vacant.

(2) Non-stoichiometric defects: It is of two types.

(a) Metal excess defects: When NaCl is heated in presence of Na-vapour, Na atom
deposits on the surface, and Cl- ion in the crystal moves to the surface and one
electron from Na-atom entersinto the Cl- ion position. These acts as F-centre or
colour centre.

LiCl crystal becomes pink when heated in presence of Li-vapour and KCl in
presence of excess K- vapour becomes violet.
(b) Metal deficiency defects:
(3) Stoichiometric defects:
(a) For non-ionic crystd, it is vacancy defects and interstitial defects.
(b) For ionic crystal, it ismainly of two types.

(i) Frenkel defects:

In thistype of defects, someions usualy cations enter the interstitial positions, leaving a
corresponding number of normal |attice sites vacant. The density amost remains same. This
defect occurs when oneion (usually cations) is much smaller than the other. Asit creates a
vacancy defect at itsoriginal site and interstitial defect at its new location it is sometimes called
didlocation defect.

For example, AgBr and AgCl crystals have such type of defects.

@O@ee0)®
OGS @ (o)

Oe(OoCrs Oa
OO ESEION:

(i) Schottky defects: This defect arises when positive and negative ions move to the
surface leaving corresponding normal sites vacant. Density of the substance decreases for this
type of defect.

This defect normally occurs when anions and cations are of same size.

NaCl, KCI normally contains this type of defect.

Number of Schottky defectsinionic solidsis quite significant. For examples, in NaCl there are
approximately 10° Schottky pairs per cc a room temperature. In 1 cc, there are about 10?2 ion
pairs

58.5 6x10%

(Molar volume of NaCl = 17 27 cc thus 1 cc contains = 2x10% ion pairs.)

22
2x10 =2x10" ~10" ions.

Therefore, one Schottky defect is created per 0

Thus, Frenkel defect isamisplaced ion and Schottky defect is avacant ion site.

PROPERTIES OF SOLIDS — DR N C DEY Page 20



O®
Schottky defect @ @@ @ @ @ @

IS vacant ion
site defect.

fce and hep are

the most closed

packed crystal
structure.

There are two
types of holes -
tetrahedral and

octahedral in fcc
crystal.

fee crystal
contains eight
tetrahedral
holes.

DORO0OO®
S0 ololoele
LOCOOHO®
DEOOCEO

Tetrahedral and octahedral holes in FCC crystal :

The closed packing of identical spheres
occurs in hexagonal closed packed (hcp) and face-centred cubic (fcc) structures. Most of the
metal crystals belong to one of these structures. The co-ordination number (equidistance
nearest atoms) is 12 in both hcp and fcc. We shall discuss the fce crystals only.

In the above closed packed structures, two types of
holes (voids) are generated. While the number of octahedral holes present in alatticeis equal
to the number of closed packed particles (4), the number of tetrahedral holesistwice the
number (2x 4 =8) per unit fcc cell.

Inionic solids, the bigger ions (usually anions) form the closed packed structure and smaller
ions (commonly cations) occupy the holes. If the latter ion is small enough, it occupies
tetrahedral holes and if it is bigger, then it occupies octahedral holes. In a given compound, the
fraction of octahedral and tetrahedral holes that are occupied depends upon the chemical
formula of the compound.

L ocating tetrahedral holes:
Let us consider afcc unit cell /

and this unit cdll isdivided into / /

eight small cubes.

AT

/ B P

>

Each small cube has atoms at alternate corners. In al, each small cube has 4 atoms. When
joined to each other, they make aregular tetrahedral. Thus there is one tetrahedral hole in each
small cube and eight tetrahedral holesin total.
But fcc crystal unit cell has 4 atoms and so number of tetrahedral holesistwice the
number of atomsin the unit cell.

i.e. number of tetrahedral hole = 2 = number of atoms per unit cell.
It is possible to calculate the diameter of the largest atom to be accommodated in tetrahedral
holein fcc unit cell of edge length ‘a’.
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Calculation of
the diameter of
largest atom to

be
accommodated
in tetrahedral
hole

There are four
octahedral
holes in the
fece crystal.

Calculation of
the diameter of
largest atom to

be
accommodated
in octahedral
hole

Atoms 1 and 2in small cube arein contact as shown in the figure, so the atoms are touching
along face diagonal of the small cube.

2r=\2(%) = ¥

Again the centre atom (M) of diameter d isjust between the cross diagonal, the length of which
is ﬁ(%) . Now the two atoms and the centre atom are touching each other along the body

diagonal, so 2r+d:J§(%) o, d :ﬁ(%)_zr:\/é(%)_yﬁ.
Thus, d =(J§—J§)% o, d=016a

L ocating octahedral holes:

Let us again consider afcc unit cell, centre of the body of the
cube isnot occupied but it is surrounded by six atoms on the face centres. If these face centres
atoms are joined, an octahedron is generated. Thus, this unit cell has one octahedral hole at the
body centre of the cube.

L s ol

[ b

- Fi 1.
] - -

/ - 5

i

N

/
S

i )

Besides the body centre, there is one octahedral hole at the centre of each of the 12 edges. It is
surrounded by six atoms, four belonging to the same unit cell (2 on the corners and 2 on each
face centre) and two belonging to two adjacent unit cells. Since each edge of the cube is shared
equally between four adjacent unit cells, so the octahedral hole located on it is also shared by
four unit cells. Only % th of each hole belongs to a particular unit cell.

Thusin cube closed packed (CCP) structure,

Octahedra void (hole) at centre of the body of the cube = 1

12 octahedral voids located12 edges and shared between four unit cells = 12 x % = 3.

Total number of octahedra (voids) holes=1+3=4.

In ccp (fce ) structure, each unit cell has 4 atoms and so number of octahedral holesis equal to
this number.

Calculation of the diameter of largest atom to be accommodated in the octahedral hole of fcc
unit cell of edge length ‘a’ is given as,

3 atoms are touching along the face diagonal and so 4 r = V2 a

The atom, M to be accommodated at the hole has the diameter, ‘d’ . Then two face centre
atoms of the cube and the atom, M in the octahedral hole are touching each other. So,

2r + d = a, theedgelength of thecube or,d =a — 2r = a—ﬁfy:a(l—}{/i)
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The largest atom that fitsinto the hole has diameter, d = a(l— }(/ﬁj =0.293a

Problem: Copper has a face-centred cubic lattice with a unit cell edge length of 0.361 nm.
What is the diameter of the largest atom that could fit into the
(i) octahedral and (ii) tetrahedral holes of this lattice without disturbing its structure.
[BU’2007, Old pattern]. { Answer : (i) 0.105 nm, (ii) 0.058 nm }

[ISC Entrance’  Problems (1): Shown below the three different crystallographic planes of aunit cell of a

2003]. hypothetical metal. The circles represent the atom position.
L ———
OO (i) Towhat crystal system does the unit
o0 - belong?
404
(if) What would be the crystal
EETYRS 1 © 9o © structure?
(001) (L10) (101)

(iii) If the density of the metal is
8.9 gcm?3, determineits atomic
weight
Ans: Ans: (i) Orthorhombic.
(ii) Body-centred.
(iii) 160.8.

CU, 2001 3(a) What is meant by a (110) plane? Draw the (110) plane of asimple cubic crysta. (2)
(b) A crystal having simple cubic lattice has the length of its unit cell a, pm. One of its
planes show afirst order Bragg reflection at an angle of 60°. Taking the wave
length of the X-ray as a pm, find the Miller indices for the plane. (3)
3(a) What are the Miller indices? (2)
(b) Potassium crystallises with a body-centred cubic lattice and has density of
0.856 g cm . Calculate the length of the unit cell and the distance between (110)
planes. (3)
CU, 2003 3(a) Isit possible to obtain Bragg reflection from (100) plane of asimple cubic crystals
with edge length 1.5 A by using X-rays with wavelength 3.5 A? (2)
(b) The density of Lithium metal is 0.53 g.cm! and the separation of the 100 planes of
the metal is 350 pm. Determine whether the lattice isf.c.c. or b.c.c.
[M of Li =6.94 g.molY]. (3)
CU, 2004  3(a) With the help of adiagram show that for a cubic lattice the spacing between the
a

ﬁ , ‘a’ is the edge length. 3)
h +k* +I

CU, 2005 (2)(b) The smallest observed Bragg diffraction angle of the reflection from (111) planes of
apotassium crystal is =6.613 when X-radiation of wavelength A =70.926 pmis

used. Given that potassium exists as body-centred cubic lattice, determine the length
of the unit cell and density of the crystal (At. wt. of K =39). (2+2)

CcyU, 2002

adjacent (hkl) planesis d =
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3(a) Calculate the closed distance between the atoms placed in aface-centred unit cell.
Civil Service (c) For identical experimenta conditions the first order Bragg reflection from a plane of
Exam. 2000, acubic crystal comes up at 5.9° and 5.85° respectively at 20°C and 50°C.
Calculate thr coefficient of cubic expansion of the solid. (3)
4(c) A unit of NaCl crystal contains 14 chloride and 13 sodium ions and yet it contains
‘four’ molecules of NaCl . Explain.
1(d) Calculate the wave length of X-raysif the reflected angle for NaCl with density

CSE, 2001 )
2.163 g/ccis5.9°.
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