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KINETIC THEORY (MAXWELL’S DISTRIBUTION LAW) 
 
 

Introduction 
 
                       Kinetic molecular theory of gases was first developed by Daniel Bernoulli (1738) and subsequent 
progress was made by Joule, Clausius, Maxwell and Boltzmann within 1848 to 1898. 
 
Assumptions 
                             This theory consists of the following assumptions: 
(1) The gas is composed of very small discrete particles, now called molecules. For a gas, the mass and size  
      of the molecules are same and different for different gases. 
(2) The molecules are moving at random in all directions with variety of speeds. Some are very fast while  
      others are slow. 
(3) Due to random motion, the molecules are executing collision with the walls of the container  
     (wall-collisions) and also with themselves (intermolecular collisions). These collisions are perfectly 
     elastic and so there occurs no loss of kinetic energy or momentum of the molecules by these collisions. 
     Speed of the molecules remain same due to wall-collisions but may change in intermolecular collisions.  
(4) The gas molecules are assumed to be point masses i.e., their size is very small in comparison to the  
      distance they travel. 
(5) There exists no intermolecular attractions specially at low pressure i.e., one molecule can exert pressure  
      independent of the influence of the other molecules.  
(6) The pressure exerted by a gas is due to the incessant and uniform wall-collisions of the molecules. Higher  
      the frequency of the wall-collisions, greater will be the pressure of the gas. This explains Boyle’s law  
      since when  volume is reduced, wall-collisions becomes more frequent and the pressure is increased. 
(7) Though the molecular speeds are constantly changing due to intermolecular-collisions, average kinetic  

      energy    of the molecules remains fixed at a given temperature. This explains Charle’s law that when 

      temperature is increased,   is increased, velocities [as 2(1/ 2)mc  ] are increased, wall-collisions  
      become more frequent and violent, so pressure is increased when volume is kept constant or volume is  
      increased when pressure is kept constant.  
 

Idea of root-mean-square speed  RMSc  

                                                                   Let in a gas of N molecules, N1 have speed c1, N2 molecules have speed 
c2,  N3 molecules have speed  c3 and so on, then  
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The term within the bracket is called 2
RMSc  (mean-square-speed, 2c ) and root-mean-square speed is defined as  
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Concept of Temperature and Kinetic Theory 
                                                                                  This speed  RMSc  is more fundamental than average speed, 

c since it originates spontaneously from the average kinetic energy of the molecules and it depends on the 
thermodynamic parameter, temperature (T) 
( Postulate 7 ). 
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 Thus kinetic theory of gases can provide a concept of temperature (T). Average kinetic energy    is a measure of 

temperature. Higher the average kinetic energy of a gas, greater will be its temperature. When the molecules are at 
rest (i.e.   = 0), the temperature will also be 0 K. 

Formulation of kinetic equation, 21

3 RMSP V m N c   

                                                                    These postulates are used to formulate the above kinetic equation   Let us 
take a cube of edge length l containing N molecules of a gas of molecular mass m 
and RMS speed is c at temperature T and pressure P. Let N1 molecules have speed c1, N2 molecules have speed c2 , 
N3 molecules have speed c3  and so on. 
Let us concentrate our attention to a single molecule among N1 that have resultant speed c1 and the component 
velocities are u, v and w along the x-, y- and z-axes respectively, so that        

                                                              2 2 2 2
1c u v w                                                                                    

  
 
 

                                                            Volume of the cube, V = 3l  

                                                            Total surface area = 6 2l  
 
 
 
 
 
 
 
The molecule will collide walls A and B with the component velocity u and other opposite faces by v  and w . 
Change of momentum of the molecule along x - direction for a single collision = ( ) 2mu mu mu   . 

The number of collisions suffered by the molecule in one sec between the two opposite walls = 
u

l
 and so the rate 

of change of momentum for the above type collisions =
22

2
muu

mu
l l

  . Similarly along y- and z- directions, 

the rate of change of momenta of the molecule are 
22mv

l
 and 

22m w

l
 respectively. 

Total rate of change of momentum of the molecule =  2 2 22m
u v w

l
  =

2
12mc

l
. For similar N1 molecules, 

the rate of change of momentum = 
2

1 12mN c

l
. Taking all the molecules of the gas, the total rate of change of 

momentum = 
22 2

3 31 1 2 2 22 2
.....
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 
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= 
22mNc

l
. 

According to the Newton’s 2nd law of motion, rate of change of momentum due to wall-collision is equal to the 

force developed on the walls of the gas container. That is 
2

2 2
6

mNc

l
P l   but, 3l V , volume of the gas in the 

cube. So the kinetic equation of the gas is  

                                                                21
3

P V mNc             ---------------------------------------------------(1)                                                                               

 

 

 



 

                                KINETIC THEORY AND GASEOUS STATE WITH BURDWAN UNIV. QUESTIONS AND ANSWERS – DR N C DEY   3 
 

Again the equation is 21
3

mN
P c

V
 
 
 

  but, 
mN

d
V

 , density of the gas at the given temperature and pressure. 

So, another form of the kinetic equation is 21
3

P dc . This c is RMS speed of the gas molecules.                                                                               

These equations are also valid for any shape of the gas container other than cubic one.   
                                                                           
Expression of root-mean-square speed 
                                                                     Let us apply the kinetic equation for 1 mole ideal gas. In that case, 
 mN = mNA = M, the molar mass of the gas and the ideal gas equation for 1 mole is PV = RT. 

Putting in the kinetic equation, we have  21

3
RT Mc . So root-mean-square speed,  

                                                       2 3RT
c c

M
   
 

.                                                                                     

This shows that RMS speed depends on the molar mass (M) and temperature (T) of the gas. 
 
Problem: Calculate the RMS speed of O2 gas molecules at 27 oC. [Ans. 483 m/s]  
 
Expression of average kinetic energy (  )       

Again, the kinetic equation can be written as 22 1

3 2
P V N mc

 
   

 
, but 21

2
mc  , average kinetic energy of the 

molecules.                                        So, 
2

3
PV N  .   -----------------------------------------------------------  (2). 

Thus considering 1 mole ideal gas, 
2

3 ART N    or, 3

2 A

R
T

N


 
  

 

   or, 
3

2
kT  ,  ---------------------- (3)  

 

                           where  k is the Boltzmann constant
A

R

N

 
 
 

 =1.38 × 10-16 erg molecule-1 K-1.                                                                                            

                  For 1 mole gas, the KE is  
3

2
E RT  and for n mole of the gas, the KE is  

3

2
E nRT .  

  depends on the temperature only and does not depend on the nature of the gas. Thus, most light gas H2 and very 
heavy gas UF6 both have same average kinetic energy at a given temperature. 
 
Problem: Calculate the kinetic energy of translation of 8.5 gm of ammonia gas at 27 oC.         [ Ans. 450 cal] 
Problem: Which of the following statement(s) is (are) true? 
                 In kinetic theory of gases,   
        (A) Average kinetic energy of the molecules is proportional to absolute temperature. 
        (B) The rms velocity at a given temperature is inversely proportional to the square root of molecular mass. 
        (C) The pressure exerted by the gas is one third of the kinetic energy per unit volume. 
        (D)   If the pressure is isothermally doubled, rms  speed is doubled.     [IIT – JAM, 2015, MSQ Type] 
Correct Options are (A) and (B). 
 
 
 
 
 
 
 



 

                                KINETIC THEORY AND GASEOUS STATE WITH BURDWAN UNIV. QUESTIONS AND ANSWERS – DR N C DEY   4 
 

Deduction of the gas laws from kinetic equation: 

                   From kinetic equation (2), we have 
2

3
PV N    but, T   (Postulate 7) or, k T   

or, 
2

3
PV N k T

 
  

 
= constant × T. This equation provides necessary deduction of the gas laws such as Boyle’s 

law, Charle’s law, etc. Deduction of the Avogadro’s law is given here only. 

Let us consider two gases under same T, P and V. Thus, 2 2
1 1 1 2 2 2

1 1

3 3
PV m N c m N c    

                                                               or, 2 2
1 1 1 2 2 2m N c m N c .                                                                           (a) 

Again, the two gases have the same average KE at the given T, so 1 2    or, 2 2
1 1 2 2

1 1

2 2
m c m c   

                                                               or, 2 2
1 1 2 2m c m c .                                                                                    (b) 

So dividing the equation (a) by the equation (b), we have N1 = N2. 
It means that equal volumes of all gases at the same T and P contain equal number of molecules and it is 
Avogadro’s law. 
Graham’s law of diffusion can also be deduced. The rate of diffusion of a gas (rd) is directly proportional to the  

speed of the gas. That is, dr c  but,  
3RT

c
M

   so, 
3

d

RT
r

M
 . This shows that at a given T, 

1
dr M
 . 

Thus, at a given temperature, the rate of diffusion is inversely proportional to the square root of molar mass of the 
gas and this is Graham’s law of diffusion. 
 
Problem (1): For one mole of a monatomic ideal gas, the relation between pressure (P), volume (V) and average 

molecular KE    is  

(A) A
N

P
V


        (B) 

3
A

N
P

V


      (C) 

2

3
A

N
P

V


       (D)

2

3
A

N
P

V
                                          [GATE 2000]  

Answer: (C). 
Problem (2): Two gases A and B have equal volume, equal number of mole and equal r m s speed but unequal   
                       molar masses MA > MB.  Which gas has higher pressure and why?            [Burdwan Univ. 2008]     

Solution:      Hints: We have for ideal gas, PV = nRT  and 
3

rms

RT
c

M
   or, 2

3 rms

M
RT c .  

                      Thus 2

3 rms

M
PV n c    or, 

2

3
rmsc

P n M
V

 
  
 

 = constant × M.  

                       This shows that the gas A has higher pressure than the gas B. 
Problem (2): At what temperature will the r m s velocity of oxygen gas be one and half times its value at NTP? 
Solution:  Temperature is 619.25 K                                                                                   [Burdwan Univ. 2015] 
Problem (3): Compare the rates of effusion of methane and of sulphur dioxide through the same pin-hole at the  
                       same temperature if the pressure of sulphur dioxide is four times than of methane.  
                                                                                                                                            [Burdwan Univ. 2015] 

Solution:  
4 16e CH

T T
r

M
    and  

2 64e SO

T T
r

M
  . Thus    

4 2
: 2e eCH SO

r r  .  

                  [Rate of effusion does not depend on the pressure of the gas.] 
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      Molar heat capacities of gases 
                                                    Heat capacity (C) of a substance is defined as the amount of heat required to raise 
the temperature of the substance by one degree. Heat capacity per gram of a substance is called specific heat and 
per mole is called molar heat capacity.  
Thus                                             molar heat capacity = molar mass × specific heat. 
For gases, there are two heat capacities at constant volume and at constant pressure.  
So for gases V VC M c   and P PC M c  , where VC  and PC  are the molar heat capacities at constant  

volume and at constant pressure respectively. Vc and Pc  are their specific heats. 

 
 
 
 
 
 
 
  
 
 
 
 
 
From the above two schematic descriptions, it is clear that P VC C , since for PC , some mechanical work  

is required as additional energy to absorb for lifting the piston from V1 to V2.  
Thus, P VC C  = mechanical work = P dV = P (V2 – V1) = PV2 – PV1 = R (T +1) – RT = R.  

                             Thus, P VC C R  . This is valid for ideal gas only as PV = RT is taken for 1 mole gas. 

Now let us find the expression for CV from the stand-point of the kinetic theory of gas. 
 CV = energy required to increase translational kinetic energy + energy required to increase intramolecular  
          energy of 1 mole gas for 1 degree rise in temperature. 

Increase of translational KE of 1 mole gas for 1o rise in temperature = 
3 3 3

( 1)
2 2 2

R T RT R   .  

Let the intramolecular energy increase for the gas for 1o rise in temperature = x , then CV = 
3

2
R x   

The value of x  is calculated from the law of equipartition of energy and this will be discussed later.  

Thus,  CP = 
5

2
R x . The molar heat capacity ratio (Poisson ratio), P

V

C

C
  = 

5
2
3
2

R x

R x





 = 
5

3

x

x




,   

when expressed in calorie unit and R = 2 cal mol-1 K-1.  
For monatomic gas, x  = 0, for diatomic gas, x = R = 2 cal mol-1K-1,  
and for polyatomic gas,  x  = 3

2
R = 3 cal mol-1K-1. 

Thus,   = 5/3 = 1.66 for monatomic gas, = 7/5 = 1.4 for diatomic gas and = 4/3 = 1.33 for polyatomic gas. 
For a gas,    can be determined from the measurement of velocity ( v ) of sound passing through the gas using the 

relation, 
RT

v
M


 . The value of   thus provides the atomicity (molecular complexity) of the gas. 

Problem: The specific heat at constant pressure and at constant volume is 0.125 and 0.075 cal gm-1 K-1 
respectively. Calculate the molar mass and atomicity of the gas. Name the gas if possible.  
                                                                                                 [M = 40 gm/mole,   = 1.66 (monatomic), argon]  
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Simple concept of probability 
                                                   When a coin is tossed, either head or tail may be upwards. The probability of the 
coin for head being up is ½ or 50 %. It means that if we toss the coin twice, then one time the head will be up. 
However, this may not happen always and hence the idea of probability will be applicable only when large number 
of operations will be made. Another condition for applicability of the probability is that the two sides of the coin 
(events) must be equally likely and mutually exclusive. Therefore, the probability (P) is defined as,  

                                                  
( )

( )

number of favourable events m
P

total number of events n
 . 

Or,  
( )

( ) ( )

number of favourable events p
P

number of favourable events p number of unfavourable events q



  i.e. P  

p

p q



. 

The range of probability is from 0 to 1. That is,  0 1P    
For a well-shuffled packet of cards, probability of drawing a diamond is 13/52 =1/4 (P1) and probability of drawing 
a king = 4/52 = 1/13 (P2). 
But when both conditions are imposed simultaneously i.e., to draw a card which will be a king and also diamond, 
the probability (P12) = 1/52 = (1/4) × (1/13) = P1 × P2, i.e., it is the product of two individual probabilities. Thus, the 
probability follows multiplicative rule.  
                    For instance, it might be important to know the probability that a system has both the value ix  of some 

discrete property x  and the value iy  of some other discrete property y . If the properties are independent of each 

other, the probability of the system having both value ix  of the property x  and value iy  of the   property y  is  

                          ,( ) ( ) ( )i i i iP x y P x P y   , where ( )iP x  and ( )iP y are the individual probabilities. 

For example, in a country if the probability of a person being man is 0.495, and the probability of a person (man or 
women) being left-handed is 0.01, then the probability of selecting a left-handed man by random choice from a 
crowd is  0.495 × 0.01 = 0.00 495 or, 495 in 1,00,000 (one lakh). If, however, left-handedness were male 
characteristics, this calculation would be false.  
 
Distribution function and averaging of physical properties of a system 
 
Distribution  
                      A distribution is the division of a group of things into classes on the basis of a certain property of the 
system. If we have a thousand balls and five boxes, and place the balls in the boxes in any particular way we like, 
the result is the distribution. If we divide the people of a country into classes according to age, the result is an age 
distribution. Such a distribution shows how many people are between the ages (say) of 0 to 5 years, between 5 to 10 
years, 10 to 15 years and so on. Similarly we can divide the students in class according to the marks they obtain in 
an examination within a certain range. 
 
Choice of range or width of the interval 
                                                                    While we distribute a group of things in classes, we generally use range 
or width of the classification for better computation of the average value. This range or width must be small and not 
very large. In the above example, let us consider the age distribution in which the range is taken 5 years. Clearly it 
is absurd to choose 100 years as the width of the interval then the people could not be divided into classes at all. So 
the width must be small. On the other hand, if we choose a very small interval width say one day, and then in any 
small group of people, say of 10 people, we find that one person falls in each of the ten intervals and zero falls in all 
the others. For any large group, the time required to write down such a detailed distribution is just impossible. 
Therefore, the interval width to be chosen must be wide enough to eliminate details of no interest but narrow 
enough to display meaningful aspects so that it allows calculating more accurate average value of the property. 
 
 
 
 
 



 

                                KINETIC THEORY AND GASEOUS STATE WITH BURDWAN UNIV. QUESTIONS AND ANSWERS – DR N C DEY   7 
 

Averaging of a property 
                                           The distribution is used to compute average value.  From the distribution mentioned 
above, we can compute the age of the people of the country or average marks of the students they obtain, etc. 
Let us cite an example to see how the distribution is helpful in averaging the properties of a system. For the average 
value of a property x , let us take 1x  (outcome of the observation) occurs 1n  times, 2x  occurs 2n  times, 

3x  occurs 3n  times and so on. The mean value ( x ) of the property x  is the weighted sum of all the outcomes 

divided by the total number of observations.         

                        x  = 1 1 2 2 3 3 1 1 2 2 3 3

1 2 3

..... .....

.....
i i i i

i

n x n x n x n x n x n x n x n x

n n n n n

       


   
.  

We can write the computation in different way in terms of probability (P) also.                               

 x = 31 2
1 2 3 1 1 2 2 3 3........ ( ) ( ) ( ) .... ( ) ( )i

i j ji i
n nn n

x x x x P x x P x x P x x P x x P x x
n n n n

      
                

       
 , 

where ( )jP x  is the probability of outcome of the property, jx  in the sample. 

But if the outcome of an experiment may take continuous values like the case of height of a population or in the 
speed of gas molecules, then the definition of the mean value has to be modified. Summation will be replaced by 
integration and the mean value can be written as 

                                                        ( )
all possible
values of x

x x f x dx  ,  

where ( )f x dx = P( x ), the probability for the outcome of x  lies some where within the infinitesimal range dx at 

x  i.e., from x  to x + d x , where  ( )f x  is the distribution function. 
Distribution function:  
In the above, this analytical expression ( )f x is called distribution function or probability density of the property, 

x . It may be defined as 
( )

( )
P x

f x
dx

  but, ( ) xdn
P x

n
 . Thus the distribution function is written as 

1
( ) xdn

f x
n dx
 

  
 

. It is defined as probability of the outcome x  within unit range at x .  

For the mean height of a population, 
0

( )h h f h dh


  , because only (+ve) values of h are possible and thus, the 

limit of h ranges from 0 to  . If we consider the mean velocity of molecules in x - direction, then   

                                                                   ( )u u f u du




  . 

For example, ( )f h dh  = ( )P h , probability of a person to have height h  to h dh  and 
1

( ) hdn
f h

n dh
 

  
 

. Thus 

( )f h tells us the probability of a height h  within unit range at h . 

If 1(180 ) 0.12f cm cm , we would know that the probability of the height of a sample of population falling in 
the range 180 – 181 cm is approximately 0.12 or 12 % and that for the range 180 – 182 cm is approximately 0.24 or 

24 %. However, if the height chosen at 200 cm, then it may be that 1(200 ) 0.01f cm cm  which means that the 
probability of the height in the range 200 – 201 cm is only about 0.01 or 1 %. So the distribution severely depends 
on the location of the value. 
This suggests that the distribution function ( )f h  depends strongly on the location of the value,  here h . 
Multiplicative nature of the probability can be shown for continuous properties also. If the probability of x  lying in 
the range dx at x  is ( )f x dx , and the probability that an independent property y lies in the range dy  at y is 
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( )f y dy , then the probability of x lying in the range x  to x dx  and y  in y  to y dy  is the product of 

probabilities : ( )f x dx × ( )f y dy  or  ( ) ( )f x f y dx dy .   
Conversion between Cartesian co-ordinates and Polar co-ordinates   
Description of the co-ordinates: Co-ordinates are used to locate a point in space. There are two types  
co-ordinate systems. These are shown by the adjoining 
diagram. In the Cartesian co-ordinate system, the point P is  
designated by the co-ordinates ( , , )x y z and in the polar  

system, the co-ordinates are  ( , , )r   . 
To identify the co-ordinates of the point P, a perpendicular is 
drawn from point P on the Z-axis and it cuts at z . 
Another perpendicular is drawn on the XY plane and 
it cuts at Q point on the plane.  
Then perpendiculars are drawn from Q on the X-axis and  
Y-axis and these cut at x  and y . These ( , , )x y z  are the  
co-ordinates of the point P in the Cartesian system. 
In the polar system, the point P is designated by ( , , )r   . 
The distance between O and  P is r , called radial distance. 
This radial distance OP makes an angle,   with Z-axis.  
This angle is called zenith angle. Again, OQ makes an  
angle,   with the X-axis and this angle is called  
azimuthal angle. 
Range of each , ,x y z  co-ordinates are from   to  .  

the range of  r  is from 0 to  ,   from 0 to   and   from  0 to 2 .    
Conversion between the two systems 

cos(90 ) sinOQ OP r    . Now the Cartesian co-ordinates are deduced as follows: 

cosz r  , cos sin cosx OQ r      and cos(90 ) sin siny OQ r      . So conversion from polar 

co-ordinates to Cartesian co-ordinates is given as, sin cosx r   , sin siny r    cosz r  ,   
Conversion from Cartesian co-ordinates to polar co-ordinates is given as follows: 

Radial distance, 2 2 2r x y z   , zenith angle, 1

2 2 2
cos

z

x y z
 

 
 
   

 and azimuthal angle 1tan
y

x
   
  

 
. 

Conversion of area dxdy and volume dxdydz  
 in polar co-ordinates are shown by diagram only. 
 
                                
 
         
 
 
 
 
 
 
 

                                    Thus,  dx dy r dr d       and      2 sindx dy dz r dr d d   .                                  
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Properties of Gamma function 
Definition 

    A limited definition of gamma   function is given by the integral, 1

0

( ) n tn t e dt


       for  0n  . 

Reduction formula of ( )n  
                                            The Gamma function of n  can be degraded by the following way. 
Integrating by parts it gives 

1 1 2 2

0
0 0 0

( ) ( 1) 0 ( 1) ( 1) ( 1)n t n t n t n tn t e dt t e n t e dt n t e dt n n
  


        

                . 

                                         Thus, ( ) ( 1) ( 1)n n n     . 
Repeated successive integration by parts leads to following cases: 
case I: When n  is (+ve) integer 
                                       ( ) ( 1) ( 1) ( 1) ( 2) ( 2) ( 1) ( 2) ( 3) ( 3)n n n n n n n n n n                 

                                                ( 1) ( 2) ( 3)......3 2 1 (1).n n n        

 Evaluation of (1)  

                              By definition,  0

0

(1) tt e dt


   = 
0

0
1 0 1t te e


 


           , Thus,  (1) 1   

Therefore,             ( ) ( 1) ( 2) ( 3)......3 2 1 ( 1)!.n n n n n          
This leads to the formulation,  

0

(2) 1tt e dt


   ! = 1,  2

0

(3) 2!tt e dt


    = 2,   3

0

(4) 3!tt e dt


    = 6.  

Evaluation of 0!:  The above formulation gives that  0! = (1) =1. 
Case II: When n is half an odd integer 

                               ( ) ( 1)( 2)( 3)...... 3/ 2 1/ 2 1/ 2n n n n       . 

Evaluation of  1/ 2  

                                        For this purpose, let us first evaluate the integral, 
2

0

xI e dx


  . 

Then,  
2 2 2 2 2

2 2 2
2

0 0 0 0 0 0 0 0

x x x y rx y
e dx e dx e dx e dy dx dy e r dr dI e




 
 
 

      
    

 
             .  

The variation of   is limited from  0 to 2
  since x and y are in the range over positive values only 

(first quadrant). Thus,  

2
2

2

0 0

1

2 2 4
re r dr dI



 




       or, 
1

2
I  .  [For the integral, 

2

0

re r dr




 , let  2r x and so 2 r dr dx , 

putting we get the  integral, 
2

0 0 0

1 1 1
.

2 2 2
r x xe r dr e dx e

 

         ] 

Now we find the value of  1/ 2 . We have  
2

0

1

2
xe dx



  , let 2x t  or, 2x dx dt or, 2 t dx dt  
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or, 
1

2

dt
dx

t
 . So, 

1
11

22

0 0

1 1 1 1 1

2 2 2 2 2
t tt e dt t e dt

  
      

    
 

    or, 
1

2


 
  
 

. 

Hence for n = half of an odd integer, we can find the values, 

         ( ) ( 1)( 2)( 3)...... 3/ 2 1/ 2 1/ 2 ( 1)( 2)( 3)...... 3/ 2 1/ 2n n n n n n n               

                 i.e., 1

0

n tt e dt


 

 =    ( 1)( 2)( 3)...... 3/ 2 1/ 2n n n      .  This formulation gives the value,    

                                 (5 / 2) (3/ 2)(1/ 2) (1/ 2) (3/ 2)(1/ 2) (3/ 4)      . 
Case III: When n = (+ve) quantity but other than an integer or half of an odd integer, integration is not so easy.  
                 
Application of gamma function 

(1) Evaluation of the integral, 
0

n axx e dx




 ,  when n  = (+ve) integer. 

      Let ax t  or, adx dt   or, 
1

dx dt
a

 , putting these values, we have integration        

                      
1 1 1

0 0 0

1 1 1 !
( 1)

n
n ax

n n n
t n tt n

x e dx dt dt n
a a a a a

e t e
  



  

  
      

 
   .  

       Thus,                                                 
1

0

!n ax
n

n
x e dx

a






     

Example : When n = (+ve) integer (say 2)  

                                      2
3 3 3

0

(3) 2! 2axx e dx
a a a



 
    . 

(2) Evaluation of integral, 
2

0

n bx dxx e




 , when n  = (+ve) integer or zero. 

      Let 2bx t  or, 2bxdx dt  or, 
1

2

2
t

b dx dt
b
 

 
 

  or, 

1
21

2

b
dx dt

b t
 

  
 

. The integral is thus, 

             

1
2 2

2
1 12

2
1 11

0 0 0 02 2

2 1 1 1

2 22

n

n

n n

n

n bx t t tb
dx dt dt t dt

b t bb

t
x e e t e e

b

 
 

    
 

 

      
     

  
     

                    = 
1

1
2

1
0

1

2

n

n

tt dt
b

e







 =
1

1 1

22 n

n

b 

 
 
 

. Thus the integral is 2

0
1

2

1

2

1

2

n bx
n

n
dxx e

b







 
  

 
 .                      

 
 Example (a):  When n = (+ve) even integer (say 2) 

                                   22
3 33 3

0 2

1 3 1 1 1 1 1

2 2 2 4 422

bxx e dx
bb bb

 


    
         

   
     . 

 Example (b):  When n = (+ve) odd integer (say 3) 
        

                                       
23

2 2 2
0

1 1 1
2 1

2 2 2
bxx e dx

b b b



       . 

Various standard integrals can be done easily by the use of this Gamma function. 
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Maxwell distribution of speeds 
 
Introduction 
                      James Clerk Maxwell (1859) formulated speed distribution of particles in idealized gases where the 
particles move freely inside a stationary container without interacting with one another. Particles refer to gaseous 
atoms or molecules but in this text, we shall use molecules only. 
On the basis of probabilistic idea, Maxwell and later Boltzmann formulated the distribution law as  

                                           

23
2

224
2

c
mc

kTdn m
dc

n kT
e c




 

  
 

   , 

where  cdn

n
 is the fraction of molecules that have speed c  to c dc , m  is the molecular mass of the gas and T is 

the temperature in absolute scale. 
Assumptions 
                       The following assumptions are made for the distribution of the molecular speeds. 
(1) The number density of molecules (i.e., number of molecules per unit volume) is uniform through out the gas  
      assembly in the ideal gaseous system at thermodynamic equilibrium and at given temperature (T). 
(2) The motion of the molecules is complete random. They move in all directions with equal probability. This is  
      isotropic behavior of the molecular motion.  
(3) The resultant speed of the molecule ( c ) can be resolved into three mutually perpendicular component  
      velocities  u , v  and w , such that   

                                                     2 2 2 2c u v w   . 
      These component velocities are equally likely and mutually exclusive. Maxwell also assumed that these   
       component velocities are independent to one another.  
(4) Though the speeds are changing due to intermolecular collisions, yet at a given temperature, definite  
      fraction of the molecules will always have definite speed within a small range. This situation is called the  
      steady state condition of the molecular speeds of the gas at temperature, T.  
(5) The distribution of speeds will be disturbed if any internal force field (such as intermolecular attraction in  
      real gases) or external force field (such as gravitational force field) is operative in the gas. 
                         In brief, it is assumed that the gas molecules remain in complete random and the probability of a 
molecule to have a definite speed within small range is always finite. 
Formulation 
                            Let us first consider the motion of the molecules in the x - direction with velocityu . The 
probability of a molecule to have velocity, u  within range du is given by ( )P u  . This probability is increased with 

the increase of range, du and it also depends on the location of u  at which the range is considered. Thus, the 
probability of a molecule that have velocity u  within range du  is given by,  
                                                                ( ) ( )P u f u du .  

The probability, ( )P u  depends on some function of u  i.e., ( )f u  and this function is some mathematical form 
which contains u .  
Since u , v  and w are equally likely for the molecule, hence the probability of a molecule to have velocity v  and 
w within the range dv  and dw  are respectively, 
                                           ( ) ( )P v f v dv   and   ( ) ( )P w f w dw  

The mathematical format of the functions, ( )f u , ( )f v and ( )f w  are same, except  ( )f u  contains u ,  

( )f v contains v  and ( )f w contains w  only. 
Since, u , v  and w are equally likely and mutually exclusive, the probability of a molecule to have the velocity   
u  to u du , v  to v dv  and w to w dw  simultaneously is  
                        ( ) ( ) ( ) ( ) ( ) ( ) ( )P uvw P u P v P w f u du f v dv f w dw                                                   

 or,                                              ( ) ( )( ) ( ) f v f w dvdwP uvw f u du . 
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But, ( ) uvwdn

n
P uvw   ,    then      ( ) ( )( )uvwdn

f v f w dv dw
n

f u du , where uvwdn is the number of molecules 

out of  total number n  that have velocities u , v  and w  simultaneously within range du , dv  and dw .  

         Thus,              ( , , )uvwdn
F u v w dv dw

n
du , where ( , , ) ( ) ( )( )F u v w f v f wf u   

and ( , , )F u v w  is the probability density or distribution function that contains u , v  and w  terms. 
Isotropic nature of molecular motion 
                                         Now we consider the function, ( ) ( )P u f u du  and ( )P u  is the probability of the 

molecule that have velocity u  within range du in the x - directional motion of the molecule. 
Since the molecular motion is isotropic in nature, the probability of a molecule to have velocity u  to u du  in the 
range 0 to   is same with that in the range 0 to  . This aspect of the molecular motion is possible if the 

function ( )f u  contains 2u  and not u . If the function contains u , then ( )P u  becomes different for the molecule 

to have velocity u  and u  within the same range du . In that case,  
the molecule has not the same chance of going east with certain velocity as it 
has the chance of going west with that velocity. But if the function may  
contain 2u , the probability  of the above motions becomes same and  
isotropicity is maintained and as in the figure, ( )P u must be same with ( )P u . 
Evaluation of nature of the function 
                                                                Considering the isotropicity of molecular motion, the functions may be 

written as 2( )f u , 2( )f v  and 2( )f w . Then, ( , , )F u v w  will be 2 2 2( , , )F u v w and it is the probability density or 
distribution function of molecules to have velocities u , v , w .  
In the adjacent velocity space diagram, let the point P is  
the position of molecules that have component velocities  
u , v , w and the resultant speed c  such that   

                     2 2 2 2c u v w   . 
The molecules that have velocities u , v  and w  within  
range du , dv and dw  must have the velocity points  
within the rectangular box of volume, dvdwdu  at that 
point P. 
Thus the probability density or distribution function, 

2 2 2 2 2 2 2( ) ( ) ( ) ( )( ) f v f w F c F u v wf u      

or,  2 2 2 2 2 2( ) ( ) ( )( ) f v f w F u v wf u      
This mathematical condition can only be satisfied  
by the exponent function [such as ( )a b c a b ce e ee     ]. 

Then let each function may be written as
2

( ) buf u Ae , 
where A and b are constants dependent on the nature of the 
gas and temperature. 
Velocity distribution in Cartesian co-ordinates 
                                                                                 Again, ( )f u  is the probability of the molecule to have  
velocity virtually u , hence it can have only finite value. 
But, if (+ve) sign in the exponent term is taken, then when u  , ( )f u  becomes infinite which is not possible. 

Thus, only (ve)  sign is allowed and the function is 
2

( ) buf u Ae . Other functions are 

thus
2

( ) bvf v Ae and  
2

( ) bwf w Ae . Then the distribution law in Cartesian co-ordinates is given as  
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 2 2 2

3( ) ( )( )uvw b u v wdn
f v f w

n
f u dvdw A e dvdwdu du

  
   

or,                                                   
23uvw bcdn

A
n

e dvdwdu . 

 
Distribution function in polar co-ordinates 
                                                                                The above equation can be converted into polar co-ordinates 

by replacing 2 sindc d ddvdw cdu     and thus the distribution in polar co-ordinates is 

                                                      
23 2 sinc bcdn

A dc d d
n

e c
   ,  

where cdn   is the number of molecules that have speed c to c dc within the angle   to d   and   to 

d  . If we consider the magnitude of the speed only irrespective of direction, then angle terms are to be 

integrated with the full range of   and   i.e.,  

                                                     
2

2
3 2

0 0

sinc bcdn
A dc d d

n
e c

 

     , 

where cdn  is the number of molecules out of n that have speed c to c dc  in any direction. Integrating and 

putting the limits, we have      
23 24c bcdn

A dc
n

e c   = F (c ) d c , 

where  F (c ) = 
23 21

4c bcdn
A

n dc
e c   and it is the speed distribution function or probability density function that 

have speed c  within unit range of c  i.e., c  to 1c  . Since 1c  , so F(c ) is practically the fraction of molecules 
that have speed c . 
Evaluation of constant A in terms of b 
                                                The value of A can be obtained by the use of normalization condition of F( c )  

and the condition is         ( ) 1
all values of c

F c dc   or, 1c

all values of c

dn

n
      so,     

23 2

0

4 1bcA dce c


   

or,            3
3

2

(3/ 2)
4

2
A

b



  = 1     or,        3

3
2

1 1
4 .

22
A

b
  = 1     or,        

3
2

3 1A
b

 
  
 

.  

The value of A in terms of b is then 

1
2b

A


 
  
 

 and the speed distribution is 
2

3
2

24c bcdn b
dc

n
e c


 

 
 

    

Evaluation of b  

For evaluation of b, let us borrow the value of mean-square speed, 2c  = 3kT
m  from kinetic theory of gas   

and equate it with the value obtained by averaging from the distribution law. 

2
3

2
2 2 2 2

0 0

4c b cdn b
c c c dc

n
e c



 

 
    

 
  = 

2
3

2
4

0

4 bcb
c dce





 
 

 
  =

3
2

5
2

(5 / 2)
4

2

b

b




 
 

 
  

     = 

3
2

5

3
4

8

b

b






 
 

 
 = 

3 1

2 b
  and this is equal to 3kT

m . Thus, 
3 1

2 b
  = 3kT

m    or,   
2

m
b

kT
 . 

Putting the values of A and b we get the Maxwell distribution of molecular speeds         

                                                
23

2
224

2
c

mc
kTdn m

dc
n kT

e c


 
  

 
 = ( )F c dc  
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The law can also be written as 
2

3
2

224
2

c
Mc

RT
dn M

dc
n RT

e c


 
  

 
= ( )F c dc , 

where 
23

2
22( ) 4

2

mc
kTm

F c e c
kT




 
 
 

   or, 
2

3
2

22( ) 4
2

Mc
RTM

F c
RT

e c


 
  

 
 and 

1
( ) cdn

n dc
F c  

 
 

 , it is 

the probability of a molecule to have speed c  within unit range. 
                       
Distribution and dependent factors 
 
                                                           From the expression of ( )F c , it is seen that it depends on the nature of the gas 

which is characterized by molar mass (M) and the temperature (T). More precisely, ( )F c  depends on  

 M
T   of  the gas. Thus, ( )F c of O2 gas molecules at 300 K is same as that of SO2 gas molecules at 600 K as 

M
T  value is same for both the gases at these temperatures. It means that fraction of O2 molecules at 300 K have 

the same velocity with that of SO2 gas at 600 K. Similarly, ( )F c of N2 gas and CO gas is same at any temperature 
as both the gases have same molar mass. 
 
Salient features of the speed distribution law 
                                                                                    It is possible to calculate ( )F c of a particular gas at a given 
temperature with different speeds ranging from small value to high value. The calculated values can be put in a 
table and then it can be projected in a figure, ( )F c   vs. c  . These are shown below. 
                                                     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Various conclusions can be drawn from the mysterically hidden information in the ( )F c vs. c curve. 

(1) When c  = 0, ( )F c  = 0 and it means that there is no molecule that have zero speed i.e. no molecule  
      is at rest at any temperature, all molecules are moving in the gaseous phase. 

(2) The expression of ( )F c contains two factors, one is exponential term, 
2

2
mc

kTe


 and the other is  

      non-exponential term, 2c . Thus with increase of c , the exponential term decreases the value of ( )F c   

      while the non-exponential term increases the value of ( )F c . So the net effect on ( )F c depends on the  
      relative magnitude of these two factors. At low c , the non-exponential term dominates while at high c ,  
      exponential term dominates. Thus, the value of ( )F c  starts from zero at c = 0, increases, then attains  
      maximum and finally decreases  towards asymptotic value with increase of c . 
      The value of ( )F c  again becomes zero at c . 
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(3) Maximum fraction of the molecules have a common speed and it is called most probable speed ( mpc ). 

(4) The fraction of the molecules that have speed  c  to c dc  is given by the area, ( )F c dc   (shaded area 
      in the curve).  Total area of the curve is unity i.e., fraction of molecules that have speed 0 to   is one. 
(5) The fraction of molecules having speed c  is obtained from the area of the right-hand side of the ordinate  
      drawn at  c . Similarly, the fraction of molecules having speed c  is obtained from the area of the  
      left-hand side of the ordinate at c . 
 
Effect of temperature on the distribution                                                                         

(1) ( )F c also contains two factors which are dependent of T, one is the exponential term, 
2

2
mc

kTe


 

      and the other is  non-exponential term,  
3

2

2
m

kT
. At low T, exponential term is low and  

      non-exponential term is high, but at high T, exponential term is high and non-exponential term is low.  
      Thus at low T, as c  increases, ( )F c  increases more due to increase of non-exponential term initially but  

      as c further increases, the exponential term dominates due to presence of T and 2c , and the value of  
      ( )F c decreases sharply. 

      Now at high T, ( )F c  decreases due to decrease of non-exponential term initially but as c is further  

      increased, the exponential term dominates due to presence of T and 2c ,and the value of ( )F c decreases,  

      attains maximum and then drops to zero slowly as c  for the presence of 2c  in the term. But due to  

      high T, the exponential term increases and due to 2c  the term decreases. Overall the exponential term  
      lowers the value of ( )F c  but the lowering is less than that at low T.  
 
 
 
 
 
 
 
 
 
 
       
       
 
 
 
 
      Thus, when the temperature of gas is increased, the distribution curve is broadened and it becomes more 
      uniform. 
      The most-probable speed is increased with rise in temperature though the fraction of molecules having  
      most-probable speed is decreased. 
                  i.e., if 2 1T T ,  then 2 1( ) ( )mp mpT Tc c   but,    2 1mp mpat atF T F Tc c . 

(2)  The fraction of molecules having speed c  is increased with rise in temperature and the fraction of  
      molecules having speed c is decreased. 
(3)  The fraction of molecules having speed close to mpc  is also large as the curve is flat at higher T. 

(4)  If T is more increased, the curve becomes more and more flat and when T   (very large), the curve  
      lies on the c -axis indicating that the speed distribution is totally uniform. All the molecules have same 
      speed and in fact distribution is lost.  
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(5)  If T is decreased, the curve becomes narrow. More and more T is lowered, the curve becomes more and  
      more narrow and when 0T K , the curve lies on  the ( )F c - axis. All the molecules have speed zero 
     and so again the distribution is lost. 
(6) However, the total area in both the cases of 1T   and 2T  is same and it is unity.  

 
Effect of molar mass on the distribution 
 
The molar mass (M) and temperature (T) remain 
in the expression of ( )F c as  M

T
 so, the effect of M  

is just the opposite to that of T. Thus the effect of M at  
constant T, the curve of ( )F c vs. c  will be similar to that 
of the effect of T at constant M but in inverse fashion. 
This is shown in the adjoining figure. 
The curve for the gas of lower molar mass (such as helium) 
 is wider than the gas of heavier molar mass (such as argon). 
  

Expression of most-probable speed  mpc  

( )F c attains maximum value at a certain speed in the ( )F c vs. c  curve and this speed is called  

most-probable speed, mpc . Using the condition of maxima and minima, 
( )

0
dF c

dc
 , it is possible to 

find the expression of mpc . 

23
2

22( ) 4
2

mc
kTm

F c e c
kT




 
 
 

  = 
2

22
mc

kTA e c


 . 

So, 
2 2

22 2( ) 2
2 0

2

m c m c
kT kTdF c mc

A e c c e
dc kT

   
      

  
 

or, 
2 2

22 1 0
2

mc
kT mc

A c
kT

e
  

   
 

.  

Three options may be considered to find c  at which ( )F c  attains maximum value. 

(1) When c  = 0, the expression is zero and it is the minimal condition of ( )F c . 

(2) When 
2

2
mc

kTe


 = 0 or, c   , the expression is zero. This is also the minimal condition of ( )F c . 

(3) When 
2

1
2

mc

kT
  = 0, the expression is again zero and it is the maximal condition of ( )F c  and this c is mpc .  

Thus, 
2

1
2

mpmc

kT
  = 0 or, 

2
mp

kT

m
c    or, 

2
mp

RT

M
c  . This is the expression of most-probable speed, mpc . 

Problem: Calculate most-probable speed, mpc  of oxygen gas molecules at 300 K temperature. [Ans. 394.7 m/s]  

 
)( mpF c  is less at higher temperature 

                                                            The fraction of molecules having mpc is decreased with rise in T and this  

can be shown by diagram and also by mathematics. In the diagram as shown earlier, it is clear that )( mpF c  is 

decreased at higher T.  Now we show it by mathematics. 
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23
2

22( ) 4
2

mc
kTm

F c e c
kT




 
 
 

 . But when c = mpc , then 
2

2

3
2

2( ) 4
2

mp

mp mp

mc
kTm

F c e c
kT




 
 
 

  

Putting the value of 2
mp

kT

m
c  , we have 

3
2

1 2
)( 4

2mp

kT

m

m
F c e

kT



   

   
  

  or, 

1
2

1( ) 4
2mp

m
F c e

kT
 

 
 

  

 or, ( )mp A TF c    or, 1)( mp T
F c  .  This shows that )( mpF c  decreases with rise in T for a given gas. 

Problem: For an ideal gas obeying the Maxwellian distribution of molecular speeds in three-dimension, 

                 find the maximum value of 
1 dN

N dc
 
 
 

 for a gas of molar mass 4.0 gm mol-1 kept at 127 oC. 

                                                                                                                                             [CU 2012, Q5 (a), m = 3] 

Solution: When c = 2
mp

kT

m
c  , 

1 dN

N dc
 
 
 

  attains maximum value and it is 4×

1
2

1

2

M

RT
e



 
 
 

(See the above 

expression after proper simplifications). Putting the data given, we get maximum value of 

           1 dN

N dc
 
 
 

= 4 × 

1
1 2

7 1 1
14.0

2 3.14 8.31 10 400

gmmol

erg mol K K
e



 

 
 

    
 =  

166.44 10 /seccm
 . 

 
Expression of average speed ( c ) 

                                                     Using the process of averaging, we have    
0 0

( )cdn
c c c F c dc

n

 

       

Inserting the expression of ( )F c and integrating, 
2

0

3
2

224
2

mc
kTc c dc

m
e c

kT





 

   
 

  

= 
2

3

0

3
2

24
2

mc
kT dc

m
e c

kT





 

 
 

 = 
 

2

3
2 2

2
4

2 b

m
kT




 
 

 
 = 

23
2 1 2

2
4

2
kT

m

m
kT




   
   

  
=

8kT

m
. 

Thus, the average speed of the molecules, 8kT
c

m
    or, 8RT

c
M

 . 

Problem: Calculate the average speed , c  of oxygen molecules at 300 K temperature 

Solution: 
1 1

3 1

8 8.314 300
445.5

3.14 32 10

J mol K K
c m s

kg mol

 

 

 
 

 
 . 

Expression of root-mean-square speed, 2c  

                                                             Earlier we have calculated mean-square speed, 2 3kT
c

m
 . 

Thus, root-mean-square speed, 2 3kT
c

m
   or, 2 3RT

c
M

 . 

 
 
Problem: Calculate the root-mean-square speed ( RMSc ) of oxygen molecules at 300 K temperature. 

Solution:  
1 1

2
3 1

3 8.314 300
483.4

32 10

J mol K K
c m s

kg mol

 

 

 
 


. 
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Thus it is seen that  2
mpc c c  . The ratio of the speeds are given as below 

                 2 2 8 3 8 4 3
: : : : 2 : : 3 1: : 1:1.13 :1.22.

2mp

kT kT kT
c c c

m m m  
     

Problem: A hypothetical molecular speed distribution is 
2

3
2

21
4

2

mc
kTcdn m

N dc kT
e



   
   

  
, where c goes  

                from 0 to . (i) Draw the function graphically taking  
1 cdn

N dc
 
 
 

 as y – axis and c as x - axis. 

                (ii) Calculate the average speed of the gas molecules using the above distribution.  
                                                                                                                                              [Calcutta Univ. 2010] 
 
The position of these three speeds in the ( )F c vs. c  curve are shown. 

The difference in the value of mpc  and c  originates due to the 

fact that the distribution curve is not symmetrical. The peak of the curve  
is inclined towards the ( )F c -axis and hence mpc  has lower value.  

2c contains sum of square terms and this is why its value is highest. 
 

Expression of standard deviation of molecular speeds, 2  
                                             Since the speeds of the molecules are distributed, we can talk about the deviation of the 
speed of the molecule from the mean value, c c   . The average deviation from the mean value is zero. 

However, the root-mean-square deviation (which is called standard deviation of speed) c = 2  is non-zero.  

Let us now find the standard deviation of speed of the molecules in a gas assembly at a given temperature. 
We have discussed that in a given gas under steady-state, definite fraction of molecules has definite speeds. 
So, let 1n  molecule have speed 1c , 2n  molecules have speed 2c , 3n  molecules have speed 3c  and so on. 

Thus, deviation of speeds for 1n  molecules from its average value is 1  = 1c – c , for 2n  molecules is  

2  = 2c – c , for 3n  molecules is 3c – c  and so.  

Mean-square-deviation,  
2 2 2 2 2 2

2 1 1 2 2 3 3 1 1 2 2 3 3... ( ) ( ) ( ) .....n n n n c c n c c n c c

n n

  


        
   

      = 
     2 2 2 2 2 2

1 1 1 2 2 2 3 3 32 ( ) 2 ( ) 2 ( ) ....n c c c c n c c c c n c c c c

n

        
 

      = 
 2 2 2

1 1 2 2 3 3 21 1 2 2 3 3 1 2 3
2 ...... ...

( )
c n c n c n cn c n c n c n n n

c
n n n

        
   

 
=    

2 22 2c c c   

 or, 2  =  
22c c = (+ve). Thus  

22c c   or,   2c c .    

This shows that RMS speed is greater than average speed of the molecules. 

Putting the values of these speeds, we get 2 3 8 8
3

kT kT kT

m m m


 

 
    

 
, Thus root-mean-square deviation 

which is called standard deviation  of speed is c  = 2 8
3

kT

m




 
  

 

 or, 2 8
3

RT

M




 
  

 

 = 0.67
RT

M
 . 

This quantity gives us a measure of the breadth of the distribution.  
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Problem: Calculate the difference between RMS speed and average speed for an ideal gas exhibiting  
                 Maxwellian distribution of molecular speeds, given the molar mass is 2.0 gm mol-1, density is  
                 0.089 gm L-1 and the pressure is 1.0 atm.                                                          [CU 2012, Q 1(a)]    

Solution: For ideal gas, 
dRT

P
M

  or, 
RT P

M d
 .  We have 

3 8 RMS

RT RT
c

M M
c


   

= 8
3

RT
M

 
  

 
  =.0.136

RT
M

 = 0.136
P
d

 . Putting the values, we have 

2

1 3 3 14,516
76 13.6 9811.00.136 0.136

0.089 0.089 10RMSc
dyne cmatmc

gm L gm cm



  


 
    


 cm/sec. 

problem: The standard deviation of speed ( c ) for Maxwell’s distribution satisfies the relation 

                  (1) c T      (2) c T       (3) 1
c T        (4) 1c T            [NET (CSIR - UGC), 2013] 

Expression of average time required to travel unit distance    
                                                                                  Average value of any property can be done if that property is 
directly related with the speed of the molecules. Thus the time required to travel unit distance is directly related to 

the speed as 
1

t
c

 . So, the average value of t  is  
0

1
( )t F c dc

c



    

or, 
 

2
3 3

2 2

0

2 (1)

2
2

4 4
2 2

mc
kT

m
kT

m m
t c dc

kT kT
e 

 


    

     
   

 =

3
2 1 2

4
2 2

m kT

kT m




 
  

 
= 2m

kT
  . 

Thus, average time required to travel unit distance by the molecules, 2 2m M
t

kT RT 
  . 

Problem: Calculate the average time required to travel 1 m distance for O2  gas at 27 oC . [Ans. 2.86   10-3s/m] 
 
Distribution of momentum of the gas molecules 
                          Any property which is directly linked with speed can be made under distribution from Maxwell 
speed distribution law.  Such properties are momentum and kinetic energy. 
For momentum, p mc , the speed c is now replaced by p in the speed distribution and we get the momentum 
distribution. The speed distribution is  

23
2

224
2

c
mc

kTdn m
dc

n kT
e c



 
  

 
. Now,  

p
c

m
 ,  

2
2 p

mc
m

 , 
2

2
2

p
c

m
 and 

dp
dc

m
 .  

Putting these values, we have the Maxwell momentum distribution  
23

2
221

4
2

p
p

mkT
dn

p dp
n mkT

e


 
  

 
. 

 
Distribution of kinetic energy of the gas molecules 
                           This distribution is important one and this can also be done by replacing c  by kinetic energy,  

using the relation, 21

2
mc  . Now, 2 2

c
m


  so 

2
2cdc d

m
  

or, 
1 1 1

2 2
dc d d d

mc m
m

m

  
 

   . Putting these values, we get the Maxwell KE distribution as 

3
2 2 1

4
2 2

kTdn m
d

n kT m m
e

 
 

 

   
    

   
  or,       

3
21

2 kTdn
d

n kT
e


  



 
  

 
. 
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One important point of difference from the speed distribution is that it does not contain the molecular mass of the 
gas. This means that KE distribution only depends on T but does not depend on the nature of the gas. 
Thus, all gases have same KE distribution at a given T. 

KE distribution function, 
1

( )
dn

F
n d




   or, 

3
21

( ) 2 kTF
kT

e


  


 
  

 
. 

Since,   is fraction and small so,   >   and non-exponential term (  )  
dominates more, so the plot of ( )F  vs.  gives the KE distribution curve that  
rises more steeply but falls more slowly than the speed distribution curve. 
 
Expression of average KE of molecules 
                             Average KE of molecules can be obtained by the process of averaging 

 

3
2

5
20 0

3 3
2 2 (5 / 2)

2 2
1/

1 1kT d
kT

dn
e

n kT kT


    

 

 
    

      
   

   =  
5

2

3
2 3 1

2
2 2

1
kT

kT



  

 
 
 

 

 

or, 
3

2
kT  . Thus, the expression of average KE shows that it depends on T only and does not depend on the 

nature of the gas. So, the most light gas H2 and most heavy gas UF6 both have the same average KE  at a given 
temperature,   i.e., 

2 6( ) ( )H g UF g  . 

 
Expression of fraction of molecules having KE 1  

                                                                       The fraction of molecules having KE 1  is calculated as below: 

1 1

1

3
212 kTdn

d
n

e
n

n kT


 


 



 
 

   
 

  . Let 2kT x   so,  2d kT d x  ,   

When, 1  , 1x kT


   so,  
2

1

21

3
2

2
1 x

kT

e kT x kTd x
n

n kT









 
   

 
  =  

2

1

22 x

kT

x e d x






  

                                                                                              

or,         
2 2

1

1 1

12 11 2 2 2x x

kT
kT kT

x kTx d xe e dx
kT

e e
n

n 

 

 

  

 


  

 
 

     
 
  

  . 

Generally, 1 kT   so, 1

kT


 is very large and 

12x kTe e


   is very small, and the second term is neglected. 

So, the fraction of molecules having KE 1  is  
1

11 2 kT

kT
e

n

n

 




 .  

When KE is expressed per mole, 1  is replaced by E1 and the fraction is   1
1

1 2E
E

RTE

RT

n
e

n 


 . 

RHS of the equation varies quite rapidly with temperature particularly at low temperatures. 
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The adjoining figure shows such variation of 1
n

n


 with 1  at  

different temperatures, calculated by using the above expression. 
The figure also shows graphically that the fraction of molecules  
having KE 1  increases markedly with rise in temperature,  

particularly if 1 is in the high energy range. This is fundamental 

especially in the domain of chemical reactions. 
Problem: Calculate the  % of oxygen molecules having  
                 KE  60 cal mol-1 at 27 oC.          [Ans.   32.28 %] 
 
Maxwell distribution law in one dimension 
                                                                         The probability of a molecule that have x - component velocity  

u  to u du  is ( ) ( )P u f u du , but ( ) udn
P u

n
  so, ( )udn

f u du
n

 . The function is already evaluated and it is 

exponential in nature. The function contains 2u  and not u  for the isotropic behavior of molecular motion. 

Thus, the function is 
2

( ) buf u A e . Therefore,  
2u budn

A du
n

e . The value of A can be obtained from the 

normalization condition of the function, ( ) 1f u du




  so,  
2

1buA due




   or,  
2

0

2 1buA due


   

or, 
1

2

1 (1/ 2)
2 1

2
A

b


   or, 1A

b


   or, b

A


 . The distribution is thus    
2u budn b
du

n
e



 . 

Now evaluation of b can be done from the value of mean-square x - component velocity from the distribution 
equation and equated with the value obtained from kinetic theory of gas. 

2 22 2 2 2
3 3

2 20

(3/ 2)1 1 1 1
( ) 2 2

2 2 2
bu bu b b

u u f u du A u e du A u e du
bb b


 

  
 

 


           . 

But from kinetic theory, 21 1
2 2x mu kT    or, 2 kTu

m
  so, 

1

2

kT

b m
  or,  

2

m
b

kT
 . 

Thus, Maxwell distribution law in one dimension is 
2

1
2

2

2
u

mu
kTdn m

n kT
e du



 
  
 

. 

Expression of average value of x - component velocity,  u  

2

0( ) buu duu u f u du A e
 

 

    . [Since,
2buu due







 = 0.] This result is due to the fact that a molecule is 

equally likely to be moving in a (+ve) direction as in a (-ve) direction. If u  had a value other than zero, this would 
correspond to a net motion of the entire mass of gas in that particular direction. 
 

Graphical representation of x -component velocity function,  f u  

       The above function is  
21 u budn

f u A
n du

e  .  

The distribution function,  f u when plotted against u  of a gas at  

a given T, the curve becomes symmetrical and average x -component  
velocity, u = 0. 

Again, the function,  f u attains maximum value when u  = 0   
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so, the most-probable x -component velocity, mpu  = 0. 

When T is increased, the curve becomes more flat and the distribution 
is more uniform. The peak of the curve is lower but it is broadened.  
However, the area of each curve is unity. 
Expression of root-mean-square of x - component velocity  
We have already formulated mean-square x -component velocity using 
the process of averaging from the distribution law in one- dimensional  

motion as 2 kT
u

m
 .So, the root-mean-square velocity, 2 kT

u
m

   

or, 2 RT
u

M
 . Comparison of different average x -component velocities are:  0mpu u   and 2 kT

u
m

 .  In 

2u , each  velocity term ( u ) is squared up so it becomes (+ve). 
Question: Show that total probability of a molecule to have velocity u  to u du within the range   to   
                  is unity. 

Answer: 
2 2

1
20

1 (1/ 2)
( ) ( ) 2 2 1

2all values of u

bu bu b b
P u f u du A du A du

bb
e e



 

  

 

  
            . 

 
Expression of average x - component velocity in the range 0  to   

When all the molecules are moving in one direction only, the expression of the function, 
2

( ) 2 buf u A e . 

This expression can be easily obtained from the normalization condition, 
0

( )f u du


 1. 

Thus, the average value of x -component velocity in the range 0 to   is calculated as below (All the molecules 
are moving in one direction so it is multiplied by 2): 

2

0 0

1 1 1 2
( ) 2 2

2
bu b kT

u u f u du A u du A
b b mb

e
 

 

           or, 
2RT

u
M

 . 

 
Problem:  
A sample of caesium is heated to 500 oC in an oven. In one wall, there is a small hole and the atoms emerge to form 
an atomic beam. Find the average velocity of the atomic beam.   

Solution:   
1 1

1
3 1

2 2 8.314 (273 500)
175.5 .

3.14 133 10

RT J mol K K
u m s

M kg mol

 


 

  
  

 
   

KE distribution in one dimension 

  Maxwell x -component velocity distribution is  
21

2
2

2
u

mu
kTdn m

n kT
e du



 
  
 

 . Now, 21

2x mu    

so, 
2

2 x
x

xd mu du m du m du
m




      or, 1

2 x

xdu d
m

 . Replacing u by x , we get the  

distribution in one dimension, 
1

2 1
2 2

x
x

x

kT
x

dn m
e d

n kT m









 
 
 

    = 

1
21 1 1

2

x
kT

x
x

e d
kT




 

 
 
 

  . 

Thus, KE distribution law in one dimension is   
1

21 1 1
2

x
x kT

x
x

dn
e d

n kT





 

 
 
 

          .  

This KE distribution is also independent of molecular mass ( m ) of the gas but dependent of T.    
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Expression of average KE of molecules in one dimensional motion                                         
1

2

0 0

1 1 1
2

2

x
x kT

x x x x
x

dn
e d

n kT




   
 

 
 

 
 

        [Since the molecules move in one direction only] 

      = 

1
2

0

1 x
kT

x xe d
kT



 



 

 
 

  = 

 

1
2

3
2

(3/ 2)

1

1

kT
kT

 
 

 
  =  

1
2 3

2
1

2

1
kT

kT




 
  

 
 = 

1

2
kT . 

This average value can also be calculated from mean-square x - component velocity by the relation,  

                                        
21

2x m u   = 21 1

2 2
udn

m u kT
n





 .  

 
Speed distribution law in planar motion (2-D motion) 
                                                                                             The molecules in this type of motion have both 
x - component and y -component velocities simultaneously. Thus, the probability of a molecule that has velocity 

u to u du  and v  to v dv  simultaneously is 
                             ( ) ( ) ( ) ( ) ( ) ( ) ( )P uv P u P v f u du f v dv f u f v du dv     . 

But, ( ) uvdn
P u v

n
 , so the fraction of molecules that have velocity u  and v simultaneously within range  

du  and dv  is ( ) ( )uvdn
f u f v du dv

n
 =

2 2bu bvA A du dve e   = 
2 22 ( )b u vA du dve   = 

22 bcA du dve . 

But, 
b

A


   and  
2

m
b

kT
 , putting the values, we get       

2

2

2
uv

mc
kTdn m

n kT
e du dv



 
  
 

.  

Converting the distribution in polar co-ordinates, we have  
2

2

2
c mc

kT
dn m

c dc d
n kT

e




 
  
 

.  

 
When only speeds are considered, d  is to be integrated within full limits and it is  

2 2

0

2

2
c

mc
kTdn m

c dc d
n kT

e





 
  
 

    or,  
2

2c
mc

kTdn m
c dc

n kT
e
 

  
 

 Thus, Maxwell speed distribution law of 

molecules for planar motion is 
1

( ) cdn
F c

n dc
 , so the distribution function 

2

2( )
mc

kTm
F c c

kT
e
 

  
 

. 

 The curve, ( )F c  vs. c  rises more gently but falls more rapidly than the curve in three dimensional motion. 
 
Expression of most-probable speed of molecules in planar motion 
                               Differentiating the speed distribution function, ( )F c  with respect to c , we have  

2 2

2 2( ) 2

2

mc mc
kT kTdF c m mc

c
dc kT kT

e e
     

      
    

 = 
2 2

2 1 0
mc

kTm mc

kT kT
e
   

   
   

. 

When 
2

2
mc

kTe


 = 0, c  and this corresponds minimal value of c  and  
2

1
mc

kT
 = 0 corresponds to the 

maximal value of c . Thus, 
2

1 0mpmc

kT
    so, the most-probable speed   mp

kT
c

m
   or, mp

RT
c

M
 . 
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Expression of average speed of molecules in planar motion 
 

                     We have distribution function,
2

2( )
mc

kTm
F c c

kT
e
 

  
 

. So the average speed, 

 
3

2

2 2
2

0 0 0

2 2 (3 / 2)

2 2

( )
mc mc

kT kT

m
kT

m m m
c c F c dc c c dc c dc

kT kT kT
e e

  
       

     
     

           

                              

3
22

4

m kT

kT m

   
     
   

 = 
2

kT

m


 so,  

2 2

kT RT
c

m M

 
  . 

 
Expression of root-mean-square speed of molecules in planar motion 

                           This expression can be formulated from the distribution law,
2

2( )
mc

kTm
F c c

kT
e
 

  
 

. 

The mean-square speed, 

 
2

2 2
2 2 2 3

0 0 0

2 2 (2)

2
2

( )
mc mc

kT kT

m
kT

m m m
c c F c dc c c dc c dc

kT kT kT
e e

  
       

            
     

    

      = 

2
1 2 2

2

m kT kT

kT m m
   

     
   

. So, RMS speed, 2 2kT
c

m
 = 2RT

M
. 

Thus, the comparison of different average speeds are made from the above expressions     

                      2 2
: : 1: : 2 1:1.253 :1.414

2 2
: :mp

kT kT kT

m m m
c c c

 
  . 

 
KE distribution of molecules in planar motion 
 

                                              The KE, 21

2
mc   so, d mcdc  . Putting in the speed distribution law, we get  

the KE distribution equation. kTm d

kT m

dn
n

e
  

  
 

   or,  
1 kT

kT

dn
d

n
e




 
  
 

.  

Thus, KE distribution is independent of molecular mass but it depends only on T. 
Fraction of molecules having KE 1  in the planar motion 

1

1

1 kT

kT

n
d

n
e



 



 

  
 

 = 

1

11
1

kT
kT

kT
kT

e e








 
      

  
 

. Thus, fraction of molecules having KE 1  is 

                             1
1
kT

n

n
e


 . When KE is expressed per mole (E1),  it is     1

1E
E

RT
dn

n
e


 .    

Problem: Calculate % of oxygen molecules having KE   60 cal mole-1 at 27 oC.  [Ans.   90. 5]   
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Principle of equipartition of energy 
                                                           The principle is based on classical theory and it is much helpful to calculate 
average energy ( ) of a molecule and also molar heat capacities of the gas.  
 
Statement of the principle        
                                             If the energy of a molecule can be expressed as sum of terms, each of which is 
proportional to either square of velocity component or square of position, then each of the square term contributes 
1

2
kT  to the average value. 

Verification of the principle: 
                                                  Maxwell velocity distribution law can be used to justify this principle from the value 
of x - component translational KE ( x ) that contains square of velocity ( u ) term. 

2 21 1
( )

2 2x m u m u f u du




   , but 
2

( ) buf u A e , where 
b

A


   and 
2

m
b

kT
  

     = 
22

0

1
2

2
bum A u due



  = 
 

3
2

3/ 2

2

b
m

b


  = 

1 1 1 1

2 2
m

b



    = 

1 2 1

4 2

kT
m kT

m
  . 

This shows that the square of x - component velocity term will add 
1

2
kT  value. 

Molecular motion 
                                 A molecule can execute three types of motions – translational, rotational and vibrational. 
The latter two constitute internal motion while former one is external motion. 
Translational motion can be executed by a molecule in three independent axes (three degrees of freedom). So, 

2 2 21 1 1 1 1 1 3

2 2 2 2 2 2 2trns x y z mu mv mw kT kT kT kT                or,  
3

2trns kT  . 

Rotational motion: A linear molecule can rotate in two axes independently. If bond axis is taken as x - axis, the 
molecule can rotate along y - axis and z - axis independently with centre of mass is at the origin. When it rotates 
along x - axis, there is no positional change of the molecule in space so, it is not counted. Thus, 

2 21 1 1 1

2 2 2 2y zrot I I kT kT kT       , where I = moment of inertia = 2r  and y and z  are the angular 

velocities of the molecule along y - axis and z - axis respectively so, for linear molecule, rot  = kT . 

Non-linear molecule can rotate along the three axes independently and so rotational KE, 

2 2 21 1 1 1 1 1 3

2 2 2 2 2 2 2x y zrot I I I kT kT kT kT          . So for non-linear molecule, rot = 
3

2
kT . 

Vibrational motion: For each mode of vibration (say along x - axis) 2 21 1 1 1

2 2 2 2vib mu k x kT kT kT      . 

It means that each mode of vibrational energy consists of two square terms so it posses energy, kT . 
 
Degrees of freedom 
                                  The degrees of freedom of a particle may be defined as the number of co-ordinates necessary 
to describe the position of the particle in space. 
                                 Thus, for an atom, 3 co-ordinates are required to specify its position. So for a system 
containing N atoms, there requires 3N co-ordinates or degrees of freedom. Even when these atoms are in motion, 
still then 3N independent degrees of freedom are required to define the system. 
                                  If, however, the atoms are connected by covalent bonds, a molecule is formed but total 
degrees of freedom (3N) remain conserved. 
                                  Out of 3N degrees of freedom, the molecule execute 3 degrees of translational motion, 2 
degrees of rotational motion (for linear molecule) and (3N – 5) degrees of vibrational motion. 
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Thus, for a linear molecule containing N atoms, we have total 3 +2 + (3N – 5) degrees of freedom. 
 Since each degree of vibrational energy constitutes two square terms, so a linear molecule has total 
                                                   3 +2 + 2(3N – 5) square terms in its energy value. 
For non-linear molecule, it has  3 +3 + 2(3N – 6) square terms. 
 
Calculation of average energy of a molecule 
                                                                           The principle is used to find the average energy of a molecule. For a 
linear molecule consisting of N atoms, the average energy  

                                 
1

3 2 2 3 5
2tran rot vib N kT             . 

Thus, for CO2 which is triatomic and linear, the average energy of the molecule in gaseous state is     

                                           
1 13

3 2 2 3 3 5
2 2

kT kT         = 6.5 kT . 

The average energy per mole is, 6.5E RT  and for n  moles it is 6.5E nRT . 
So for 1 mole CO2  gas at 27 oC, the average energy can be calculated as      

                                                    1 1 3 16.5 6.5 2 300 3.9 10E RT cal mol K K cal mol        . 
 For a non-linear molecule consisting of N atoms, the average energy                                                                                                       

                                
1

3 3 2 3 6
2tran rot vib N kT             .   

Thus, for H2O which is triatomic and non-linear, the average energy of the molecule in gaseous state is   

                                        
1

3 3 2 3 3 6 6
2

kT kT         . 

The average energy per mole of H2O gas is, 6E RT  and at 27 oC,   

                                                              1 1 3 16 2 300 3.6 10E cal mol K K cal mol       . 
For monatomic gas like He, Ne, Ar etc, the molecule has only translational KE and no rotational and vibrational 
energy are there. So, the average energy of these molecules is 

tran  = 
3

2
kT and per mole, E =

3

2
RT  and at 27 oC, 1 1 2 13

2 300 9 10
2

E cal mol K K cal mol       .  

 
Molar heat capacity 
                                 This energy constitutes the translational, rotational and vibrational energy of the molecules, 
hence it is the internal energy of the system (U). The constant-volume molar heat capacity, VC  =  

V

U
T




 

     and thus,      
1

3 2 2 3 5
2VC N R         for the gas constituting linear molecules.  

            and       
1

3 3 2 3 6
2VC N R        for the gas constituting non-linear molecules. 

For monatomic gas, (N = 1) there is no rotational and vibrational motion so these motions do not contribute to the 

energy. Thus,  
3

2VC R and 
5

2PC R , and molar heat capacity ratio 5 1.663
P

V

C
C    . 

This shows that for monatomic gas, there is excellent matching with the experimental value of  . 

For diatomic gas, 7

2
U RT  so, 

7

2VC R , 
9

2PC R  and 
9

1.3
7

   .  

But the experimental value is 1.4 when determined at ordinary temperature 
This discrepancy is much more pronounced for more complex molecules (for higher value of N). 
The limitation originates due to the fact that the principle is derived from classical theory in which energy changes 
continuously. There occurs no limitation for monatomic gas in which translational energy changes continuously.  
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For polyatomic molecules, if contribution from the vibrational motion is not considered, then calculated value 
matches the experimental value. As for diatomic gas, it is then CV  = (5/2)R, CP = (7/2)R and   = 7/5 = 1.4 
which matches excellently with the experimental value.  
Limitations:  
(1) CV value is found from the law is independent of temperature (T), but CV increases with increase of T.  
     Thus when T decreases, CV decreases and when 0T K , 0VC   (Experimentally found). 

      1.4VP

V V

C RC

C C



    when determined at ordinary temperature. But as temperature is increased,  

       the vibrational energy begins to contribute to the value of CV and CV  is increased so   of the gas is  
       decreased. At high temperature, thus the value of   from the law attains the experimental value. 
 
Problem: According to equipartition principle, predicted at high temperature limiting value of the molar heat  
                 capacity at constant volume for C2H2 is  
                 (A)  5.5R     (B) 6.0R     (C) 9.0R        (D) 9.5R .   [NET(CSIR – UGC) 2015, Calcutta Univ. 2015] 
 
Collision of gas molecules 
                                       The molecules are moving at random in all directions with equal probability in a gas. So, 
when a gas is confined within a vessel at equilibrium, there occurs collisions of the molecules with the walls of the 
vessel (called wall-collisions) and with themselves (called intermolecular collisions). By frequency of collisions, 
we mean the number of collisions made by the molecules in unit time. 

Frequency of wall-collisions  wZ  

                                                 It is the number of collisions made by the molecules per unit area of the wall in unit 
time. The value of the wZ  can be estimated roughly or can be formulated accurately by using Maxwell one-

dimensional velocity distribution. These are given as follows. 
Approximate estimation  
                              Let us consider a wall of area, s  and the molecules that can hit the wall in unit time must be c  
distance away from the wall.  c  is the distance that the  
molecules can travel on an average in unit time. So the  
volume of the hit cylinder is c × s . 
If N  is the number density of the molecules in the gas at  
temperature T and pressure P, then this cylinder contains  
c × s  × N   number of molecules. Since the molecular 
motion is isotropic in nature, so only (1/6) of the above molecules can strike the wall of area s  in unit time.  

Thus the number of molecules that can collide unit area of a wall in unit time is  wZ  = 
1

6
c N  . 

Accurate expression using Maxwell one-dimension velocity distribution                                                                                                       
                                Let us consider a gas at temperature T and pressure P containing N molecules per unit volume 
( i.e., N = N/V). Now let us take a wall of unit area placed  
perpendicular to the x - axis in the range 0  to  . So, the molecules  
that hit this wall in unit time must have velocity  u  within the range  
0  to  . The molecules having velocity u within range 0 to   are  
moving in the wrong direction and they can never hit the wall of our reference.  
The molecules that hit the wall in unit time must be u  distance away from the wall. Since the wall is of unit area, 
these molecules must be contained within the volume ( u × 1).  
Let udN   is the number of molecules per unit volume out of number density N   that have velocity u  within range 

0  to  . 
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Thus the number of molecules hitting the unit area of the wall in unit time, which is frequency of wall-collision, is           

 
0

1w uZ u dN


   .   But, 
2

u
buN A dudN e , where  

b
A


  and 

2

m
b

kT
 . 

So, 
2

0

1 1 1 2 1 8 1
4

2 4 4 4 4 4w
bu b kT kT

Z N A u du N N N N N c
b b m m

e
   



                  

            Thus, the frequency of wall-collision,   
1

4wZ N c . 

The mass of the gas that strikes unit area in unit time,  
1 1

4 4wZ m N m c d c      ,  

(since N m d  , density of the gas).  

For ideal gas, 
P M

d
RT


  and 8RT

c
M

  so, 
1 8

4 2

P M RT M
P

RT M RT


 

   
      

   
. Thus, 

2

M
P

RT



 . 

 
This relation is used to determine vapour pressure of solid by Knudsen method. This determination is illustrated by 
the problem (4) as given below:   
 
Questions:  
(1) Using the appropriate form of Maxwell’s distribution function in 1-D, arrive at following expression for the 

      collision flux  wZ  in the case of wall-molecule collision in 3-D,  1

4w
NZ cV    collisions/area/time. 

      Where  N
V  presents the number of molecules per unit volume of the gas under experimental conditions 

       and c   represents the average speed in 3-D of the gas.                                        [CU 2007, Q 1(d), m = 4]                     
(2) Calculate the number of wall-molecule collisions per cm2 per sec in O2 gas at 25 oC and 1 atm pressure.  
                                                      [Ans. 12.74 × 1023 collisions per cm2 per sec]             [CU 2010, Q 1(b), m = 2] 
(3) The average speed of H2 molecules is 52 10 cm/sec at t oC. Calculate the number of grams of H2 per sec  
      hitting 1 cm2 of wall, if pressure of the gas is such that the molar volume is one litre.[Ans.100 gm cm-2 sec-1]   
(4) The vapour pressure of solid Be was measured using a Knudsen cell. The effusion hole was 0.318 cm in  
      diameter and there occurred a weight loss of 9.54 mg in 60.1 minutes at a temperature of 1457 K.  
      What is the vapour pressure of Be.  

Ans. to Question (4): We have 
2

M
P

RT



   or, 

2 RT
P

M


  . Putting the values, we get   

                        
 

73

2

2 1 12 3.14 8.314 10 14579.54 10

9.0160.1 60 3.14 0.159
sec sec

K
P gm cm cm



     

  
   

                                      

                           = 2 69.586 9.45 10dyne cm atm   . 
Graham’s law of effusion     
                                             This law can be formulated from the expression of  . The mass of the gas hitting a 

hole of area ds will be effused from the vessel. 

 Thus, 
dw

dt
 = mass of the gas effusing in unit time through the hole = ds   =

1

4
c ds .  

Again, w v    or, 
dw dv

dt dt
   . But,  e

dv

dt
r ,  rate of effusion of the gas. 
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Thus, 
1

4e c dsr   or, 
1

4e c dsr  . But, c  =  
8kT

m
  so, 

1 8 1

4e
RT

ds
M

r


 
   
 

 

 or, 
1

er
M

 for gas effusing from a vessel of definite hole area at constant temperature T . 

This is Graham’s law of effusion. 
Question: How many times does the rate of effusion of a gas through a pin-hole into vacuum change when  
                  pressure is doubled and temperature is increased four times?  (Ans. 2 times) [CU 2011, Q 3(b), m = 2] 
 
Intermolecular collisions  
                                           As the molecules are in random motion so they collide with themselves also. The 
molecules are assumed as rigid spheres, so when the molecules collide,  
the centre of two molecules can not approach beyond a certain distance. 
This distance is called distance of closest approach or  
collision diameter ( ) of the molecules.  
 
Expression of collision number of a molecule in unit time 
                                                                                    Let us find an expression of the number of collisions made by a 
single molecule in unit time in a gas at temperature T and pressure P. 
We count hit whenever the distance ( r ) between centre of two molecules is equal to or less than the collision 
diameter, i.e., r   and we call it a binary collision. The simplest approach to the problem is to freeze the position 
of all the molecules in space except one of our interest which is moving through the gas with an average speed  c . 

In doing so, it swept out a collision tube of area 2  and length c t in time t .  

This 2  is also called collision cross section. The volume of the collision tube is 2 c t  . The molecules with 

centres inside this volume is 2 c t N   , where N   is the number of molecules per unit volume (also called 
number density) of the gas. All these molecules whose centres are within this volume are suffered collisions by the 
moving molecule in t  time. So, the number of collisions made by the mobile molecule in unit time 

is 2
1Z c N  . 

 
 
 
 
 
 
 
 
 
 
 
But we have taken a wrong supposition that only one molecule is moving with average speed, c  and other 
molecules are at rest. To rectify this, we have to use average relative speed ( relc ) of the colliding molecule.  

                                              . 
That is, if all the molecules are moving with average speed, c then the mobile molecule of our interest is moving 

with  relc  which is 2 c . Thus, the expression of number of collisions made by a single molecule in unit time is                                                       
2

1 2Z c N   
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Mean-free path ( ) 
                                   The distance between two successive collisions of a molecule is called free path. 
The free path of a molecule can range for 0 to   as a molecule can collide with the other molecule just 
immediately after the start of its motion or it can move long distance without suffering any collision.  
This is why, we talk of mean-free path ( ) and it is defined as the average distance traveled by a molecule between 

two successive collisions and it is formulated as, 
1

c

Z
  , where 1Z  is the number of collisions made  

by a molecule in unit time when it travels c  distance. Putting the value of 1Z , we get the expression of  

mean-free path,          
22

c

c N






          or,         

2

1

2 N






. 

Frequency of binary collisions among the same molecules  
                        It is defined by the total number of collisions occurring per unit volume of the gas in unit time and it 

is symbolized by 11Z . Its expression is obtained when 1Z  is multiplied by 
1

2
N   and it is 11 1

1

2
Z Z N   .  

The factor, 
1

2
 ensures that the collision .....A A  and .....A A  are counted as only one collision. So, 

2
11

1
2

2
Z c N N    . Thus the expression of frequency 

of binary collisions among the same molecules is  
22

11

1

2
Z c N  . 

 
Frequency of binary collisions among the different molecules  
                  Let us first consider the number of collisions made by a single molecule of 1st type with 2nd type 

molecules in unit time, and it is 2
1(2) 12 1 2Z c N  , where  1 2

12 2

 



 , 1c  is average speed of the 1st type 

molecules and 2N   is the number density of the 2nd type molecules. It is assumed that all molecules are at rest 

except one molecule of the 1st type is moving with average speed, 1c . 

 
 
                                                                                                                             
                                           
                                                                                                            
 
 
  
    
                                                       
 
When the false assumption of one molecule is moving and others are at rest is rectified, the 1c  is replaced by 

relc  and     
2 2

1 2
1 2

8 8 8
rel

kT kT kT
c

m m
c c

   
     , where 

1 2

1 1 1

m m
   and 2

1(2) 12 2

8kT
NZ 


 , 

where   is called reduced mass of the two molecules.   

Thus the frequency of binary collisions among unlike molecules is given by 2
12 12 2 1relZ c N N      
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or,           
2

12 12 1 2

8kT
Z N N 


            or,       

2

1 2
12 1 2

1 2

8 1 1

2

RT
Z N N

M M

 





  

  
   
   

  . 

 
Frequency of collisions for two like molecules – A special case  
                                        When the two colliding molecules are same then  1M  = 2M  = M ,  1  = 2  =   and   

                      1N   = 2N   = N  . Then, 2 2
12  , 

1 2

1 1 2

M M M
    and    

2

2 1N N N    . 

Putting the conditions and multiplying by 1
2  to avoid double counting of collisions for like molecules, we get     

    
22

11

1 8
2

2

RT
Z N

M
 


     

  or,   
22

11

1 8

2

RT
Z N

M
 


   or,   

22
11

1

2
Z c N    

     . 
 Mean-free path in a mixture of two gases     

 Mean-free path of 1st type of molecules is 1
1

1(1) 1(2)

c

Z Z
 


 and of  2nd type of molecules is  2

2

2(2) 2(1)

c

Z Z
 


, 

where 1(2)Z  is the number of collisions made by a single molecule of the 1st type with the 2nd type of molecules and 

2 (1)Z   is the number of collisions made by a single molecule of the 2nd  type with the 1st  type of molecules in unit 

time respectively. 
 
Effect of T and P on 1Z , 11Z  and   

              For ideal gas, the equation is
A

N
PV RT

N

 
  
 

  or, 
A

N R
P T

V N

  
   
  

 or, P N kT  or, 
P

N
k T

  . 

So, 2
1 2Z c N    or,  2

1

8
2

kT P
Z

m k T




 
  

 
  or, 

2

1

2 8k P
Z

k m T





 
  

 
 

 or, 1

P
Z

T
 . 

1Z  is directly proportional to P at constant T and inversely proportional to the square root of T at constant P. 

Again,   
2 2 2

22 2
11 2 3

2

1 1 8 1 8

2 2 2

kT P k P
Z c N

m k T mk T


 

 

   
      

    
  or, 

2

11 3
2

P
Z

T
 . 

So, 11Z  is directly proportional to the square of the pressure of the gas at constant temperature.  

Thus, at constant T, if pressure of the gas is doubled, 11Z  is increased by four times.  

Mean-free path, 
2

1

2 N






 or, 

  22

1

22

k T

P P
kT




 
   

 
  so,  

T

P
  . 

So, if pressure of the gas is doubled at constant temperature, mean-free path of the molecules becomes halved. 
When P is constant, T   and when T and P both vary,  remains constant as P T  at constant V.  
Problem: 
(1) A stream of oxygen molecules at 500 K exit from a pin-hole in an oven and strikes a slit that selects the 
     molecules to travel in a specific direction. 
     Given that the pressure outside of the oven is 2.5 × 10-7 atm, estimate the maximum distance at which the slit  
     must be placed from the pin-hole in order to produce a collimated beam of oxygen molecules.  
     (Radius of O2 = 1.8 × 10-10 m)                                                                                    [IIT-JAM 2008, Q 41(a)] 
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Solution:  
                The maximum distance between the pin hole and slit must be equal to the mean-free path so that  
                within this distance the oxygen molecules suffer no collision and do not scatter from the path. 

                We have mean-free path,
2

1

2 N






. 

                In the problem, 102 1.8 10 m     

                                              = 83.6 10 cm . 

                AP N
N

RT
   

                       = 
7 23 1

3 1 1

2.5 10 6.023 10

82 500

atm mol

atm cm mol K K

 

 

  


= 12 33.67 10 cm  

              Hence, 
 

28 12 3

1
47.3

2 3.14 3.6 10 3.67 10cm cm


 
 

    
cm. 

 
Problem:(2) For O2 gas at 25 oC and 1 atm, estimate the number of collisions made by a single molecule of O2  
                     in 1 sec and total frequency of collisions per cc per sec. The bond distance of O2 = 1.2 Å. 

Solution:  The number of collisions made by a single O2 molecule in one sec is   2
1 2Z c N  . 

7 1 1

1

8 8.31 10 2988

3.14 32

erg mol K KRT

M gm mol
c



 



  



  =  44.44 10 / seccm  = 1598.4 Km / hr. 

AP N
N

RT
   = 

23 1
19 3

3 1 1

1.00 6.023 10
2.465 10

82 298

atm mol
cm

atm cm mol K K




 

 
 


 

The oxygen molecule is neither hard nor spherical, but reasonable  
estimate of   in the hard sphere model might be twice the bond distance. 
Thus,   = 2 ×1.2 Å = 2.4 Å = 2.4 × 10-8 cm. So, 
 
 

 
28 4 1 19 3

1 2 3.14 2.4 10 4.44 10 sec 2.465 10Z cm cm cm          = 9 12.8 10 sec 280 / seccrore  .           

Frequency of collisions, 
11 1

1

2
Z N Z  = 

19 3 9 1 28 3 11
2.465 10 2.8 10 sec 3.4 10 sec

2
cm cm         .                                                                 

Various properties of the gaseous state can be known from the above calculation for O2 at 25 oC and 1.00 atm. 

(i) Mean-free path    

                                      The value of mean-free path, 
4

5
9 1

1

4.44 10 / sec
1.6 10

2.8 10 sec

c cm
cm

Z
 




   


 = 1600 Å. 

(ii) The average time between two successive collisions = 10
9 1

1

1 1
4 10 sec

2.8 10 secc Z

 


   


. 

Special notes 
(a)   is small in comparison to the macroscopic dimension (say, 1 cm) of the container so that the molecules  
      collide with each other far more often than with the walls of the container.  
      If the length of the two walls of the container is taken 1 cm, then the number of intermolecular collisions   

      suffered within this distance    = 4
5

1 1
6.25 10 62500

1.6 10

cm cm

cm 
   


. 

     The molecules suffer sixty two thousand five hundred collisions among themselves before colliding the walls. 
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(b)   is large in comparison to the molecular diameter, as for O2 it is 2.4 Å only. 
      So, a molecule moves a distance of many molecular diameters before colliding with another molecule. 

      Number of molecular diameters moves within
5

2
8

1.6 10
6.67 10 667

2.4 10

cm

cm







   


.                         

(c)   is increased as P is lowered. A good vacuum is 610  torr 910 atm. Since 
1

P
    so, mean-free path of    

     O2  at 25 oC and 910 atm is 
5

4
9

1.6 10
1 1.6 10

10

cm
atm cm

atm






    = 160 m . This is approximately 0.1 mile  

     which is large compared with the usual container dimensions. So in a good vacuum, the gas molecules collide    

     far more often with the container walls than one another. At 910 atm and 25 oC, one O2 molecule makes only    

     an average of 9 9
1 2.8 10 10 2.8Z P       collision per sec with other gas molecules. 

(d) Molar volume of O2 gas at 25 oC and 1 atm is 
1 1

182 298
24,436 .

1

cc atm mol K KRTV cc molP atm

 


     

     Let the gas be in a cubic container. If the gas molecules are distributed uniformly in space with equal spacing  
     between adjacent molecules, the gas volume can be divided into Avogadro number equal sized cubes.  

     The volume of each cube =
1

20
23 1

24,436
4.05 10

6.023 10

cc mol
cc

mol





 


. If each cube contains a molecule at its centre,    

      then the edge length of the cube is distance between the two molecules in the gas. 

    Thus, the distance between two molecules at 25 oC and 1 atm is   
1

20 734.05 10 3.44 10 34.4cc cm      Å.  

      is large in compared  to the average distance between gas molecules.  
(e) The frequency of wall collisions of oxygen molecules under the conditions of  25 oC and 1 atm pressure is 

     4 1 19 3 23 2 11 1
4.44 10 sec 2.465 10 2.74 10 sec

4 4wZ c N cm molecules cm collisions cm           . 
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GASEOUS STATE 

 
Ideal gas equation 
                                  A gas at equilibrium has definite value of pressure (P), volume (V), temperature (T) and 
composition (n). These are called state variables and are determined experimentally. The state of a gas can be 
defined by these variables and hence the name. 
                                   Earlier works of Boyle (1662), Charles (1787) and Avogadro (1811) give  
birth one equation of state for ideal gas. 

                           Boyle’s law:           
1

V
P

  , when n and T are fixed for the gas. 

                           Charle’s law:          V T ,  when n and P are fixed for the gas. 
                           Avogadro’s law:    V n , when P and T are kept constant for the gas. 
When all variables are taken into account, the variation rule states that 

               
1

V T n
P

            or,          
1

V R T n
P

               or,             PV nRT . 

This is called ideal gas equation of state. This equation is found to hold good most satisfactorily when P → 0. 
At ordinary temperature and pressure, this equation is found to deviate about 0.5 %. 
R is universal gas constant and its value is calculated from the statement that “at STP, one mole gas occupies 22.4 

L”. 
Thus, the value of R is calculated as: 

                                      PV
R

nT
  = 

1 22.4
0.082

1 273

PV atm L
R

nT mol K


  


L atm. mol-1 K-1. 

Other values are: PV
R

nT
 . 

or,                        R  =  8.31 J mol-1 K-1   = 1.98 cal mol-1 K-1   2 cal mol-1K-1.         

The above equation can be written as           
w

PV RT
M

 
  
 

,    

                             where w = weight of the gas in gm and M = molar mass of the gas. 

Another form is,                                            w RT
P

V M
 

  
 

 .    

 But, w

V
 = d, density of the gas at the temperature, T and pressure, P. Thus another form is, 

                                                           d
P RT

M
 

  
 

 . 

If the gas contains N number of molecules and NA is the Avogadro number, then N/NA = n,  

so the other form is,      
A

N
PV RT

N

 
  
 

      or,     
A

N R
P T

V N

  
   
  

    or,    P N kT  

                    where, N  = number of molecules per unit volume of the gas  

                        and,  k = Boltzmann constant = 
A

R
N = 161.38 10  erg molecule-1 K-1. 

                   Unit of P is dyne cm-2 in CGS system and Nm-2 = Pa in SI system.  
1 torr = 1 mm of Hg so 1 atm = 760 torr. Again 1 bar = 105 Pa  = 750 torr and 1Pa = 10 dyne cm-2 The moderate 
pressure is measured by manometer. Various gauges are used to measure low P. 
P and T are intensive properties (independent of amount of the gas present in the container), 
while V is extensive property (dependent of the amount of the gas present in the container). 
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Problem: Calculate the number of molecules present per ml of an ideal gas maintained at a pressure of  
                7.6 × 10-3 mm of Hg at 0oC.                                                                                    [Burdwan Univ. 1985]    

Solution: Use the equation 
A

NPV RTN
   
 

 and put 
3 57.6 10 10760P


  atm, 310V  L and 

                 R = 0.0821 L atm-1 mol-1 K-1. .    (Ans. 2.69 × 1014 molecules per ml.) 
 

REAL  GASES 
 

Comparison between Ideal and Real gases 
 
               We may use one equation to distinguish an ideal gas from a real gas and this equation is 
                                                                    PV = n RT. 
The gas which obeys this equation under all conditions of temperature and pressure is called IDEAL GAS and the gas 
which does not obey this equation at all temperatures and pressures is called REAL GAS. 

                       A number of points can be discussed to compare these two types of gases. 
Ideal gas  
                  (1) The ideal gas can not be liquefied. As the gas has no intermolecular attraction so the molecules will 
not be condensed. 
                  (2) Co-efficient of thermal expansion ( ) depends solely on temperature (T) and does not depend on 

the nature of the gas.   is defined as,  1
P

V
TV

 


. 

For one mole ideal gas, PV = RT,  hence     
P

RV
T P

 


,    so  1 1R R

V P RT T
      i.e.  

1

T
  . 

This shows that all gases have the same co-efficient of thermal expansion at a given temperature. 

                    (3) The co-efficient of compressibility (  ) similarly is defined as,  1
T

V
PV

  


 . 

 For ideal gas, PV = RT, so    2
T

RTV
P P

  


  and 
2 2 2

1 1

V

RT RT PV

P P V P V P
  

 
    
 

 or, 
1

P
  . 

                    This shows also that   depends only on P of the gas and same for all gases. 
 
                      (4) When P is plotted against V at constant temperature,  
a rectangular hyperbola curve is obtained as given by Boyles law, 
                              PV = constant at a given T. 
The hyperbola curve at each temperature is called one isotherm  
and at different temperatures we have different isotherms.  
Two isotherms will never intersect. 
 
                       (5) When PV is plotted against P at constant T,  
a straight line parallel to P-axis is obtained. At different temperatures,  
there will be different parallel lines.  
 
                      (6) When an ideal gas passes through a porous plug, 
from higher pressure to lower pressure under insulated enclosure, 
there will be no change of temperature of the gas (J – T expansion).  
This confirms that ideal gas has no intermolecular attraction. 
Real gas 
                        (1) This gas could be liquefied since it has intermolecular attraction which helps to coalesce the gas 
molecules. 
                        (2) The co-efficient of thermal expansion ( ) is found to vary from gas to gas at a given 
temperature and hence it depends on the nature of the gas. 
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                        (3) The co-efficient of compressibility (  ) also is found to depend on the nature of the gas at a 
given pressure. 
                        (4) When P is plotted against V at a constant temperature, a rectangular hyperbola is obtained only at 
high temperature (above a certain temperature, called critical temperature, TC of the gas). Tc is defined as the 
temperature above which the gas could not be liquefied what ever the pressure is applied. But at temperature below 
TC, the gas is liquefied after certain pressure depending on temperature. It is discussed more elaborately under the 
head of critical phenomena.  
                      (5) When PV is plotted against P for real gas, the following plots, called Amagat’s  
curves are obtained.  
 
 
  
                                                      
 
 
 
 
 
 
 
 
 
 
 
Fig. A shows that for most gases, the value of PV decreases, attains minimum and then increases with   
           increase of pressure. Only H2 and He baffle this trend and the curve rises with increase of P 
           from the very beginning. 
Fig. B shows that for CO2 gas, the depth of the minimum shifts towards the PV axis with increase of  
           temperature. At T3 temperature, PV curve runs parallel to P-axis up to certain range of P at low  
           pressure region (P → 0). This temperature is called Boyle temperature (TB) at which the real 
           gas also obeys Boyle’s law up to certain range of pressure at the low pressure region.                       
           The minimum coincides with the PV axis. The mathematical condition for calculation of Boyle 
            temperature (TB) is given by  

                                                           
 

0
T

PV

P

 
 

 
   when,   P → 0. 

The curves obtained for H2 and He at 0 oC is above their Boyle temperature and so with increase of P, value of PV 
increases from the start. 
                                                             An important single parameter, called compressibility factor (Z) is used to 
measure the extent of deviation of the real gases from ideal behavior.  

     It is defined as,  
PV

Z
RT

   where V is the molar volume of the gas at temperature T and pressure P. 

When the value of Z = 1, the gas is ideal or there is no deviation of the gas from the ideal behavior. 
When,  1Z  , the gas is non-ideal and departure of the value of Z from unity is a measure of the extent of non-
ideality of the gas. 
                                When 1Z  , the gas is more compressible than the ideal gas and  

                                 when 1Z    , the gas is less compressible than the ideal gas. 
 
Since V is a function of T and P, Z is also a function of T and P, so Z may be defined as  

                                                  
ideal

V
Z

V
        and    

ideal

P
Z

P
  
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                where, idealV  is the molar volume of an ideal gas at the same T and P as the real gas.  

                Similarly idealP  is the pressure of an ideal gas at the same T and V as the real gas.  

When  1Z  , the gas exerts lower pressure than the ideal gas would and the volume of the gas becomes also lower 
than that of the ideal gas i.e. the gas becomes more compressible.  
Similarly, when  1Z   the gas exerts higher pressure than the ideal gas would and the volume of the gas becomes 
higher than that of the ideal gas i.e. the gas becomes less compressible. 
Amagat curves can also be plotted as Z vs. P and similar curves are given below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                For N2 gas at 50 oC, Z remains close to 1 up to nearly 100 atm.                      
                            (6) When real gases pass through porous plug from higher pressure to lower pressure  
under insulated condition, there occurs a drop of temperature. This is due to the fact that real gases have 
intermolecular attraction and when the gas expands, the molecules have to spend energy to overcome 
intermolecular attraction and so the temperature of the gas drops down. 
 
Problem: Express the coefficient of thermal expansion ( ) of a gas and show that    depends solely on T for 
                  an ideal gas.           [Ans. See the Text.]                                                             [Burdwan Univ. 1993] 
  

Question: Supposing that ,P V are the pressure and molar volume of a real gas and ,id idP V  are those of an  ideal  

                 gas at the same temperature, do you consider that id idP V P V  = constant?       

                 Draw a typical compressibility plot of Z vs. P for a real gas at ordinary temperature. Predict the values of  
                 Z for van der Waals equation of state at the limit  P →   and T →  .                 [Burdwan Univ. 1997]  
 
Question: Two isothermals of a system do not intersect. Why?  (1)                                        [Burdwan Univ. 2001] 
Answer:   When two isothermals (P vs. V curves at two temperatures) intersect, two isothermals have the  
                  same temperature which is not possible. 
 
Question:  Draw curves to show the pressure dependence of compressibility factor (Z) of H2 and He.  
                                                                                                                                                  [Burdwan Univ. 2001] 

Question: What are the units of   and   where 
1

P

V

V T


 
  

 
 and 

1

T

V

V P


 
   

 
 ?  

                 Give reasons for your answer.                                                                                 [Burdwan Univ. 2001] 
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Question:  Remark whether TB should be higher than TC.                                                       [Burdwan Univ. 2002] 
Answer: TB is greater than TC of a gas as at TC, both gas and liquid co-exist but at TB only gas exists.                
 
Question:  Define compressibility factor. Draw the volume – temperature diagram  
                   for an isothermal expansion of a gas.   (1).  
Answer:  For 1st part, see the Text. 
               When V is plotted against T, the curve is a straight line parallel to V-axis. 
                                                                  
 Reasons for deviation of real gases from ideal behavior 
                                                                              First in 1873, J.H. vander Waals, a Dutch scientist tried to explain 
the reasons for deviation of real gases from ideal gas equation. He modified the two assumptions in kinetic theory 
which are not exactly true. These incorrect assumptions are: 
(a) The molecules are point-masses and thus molecules have definite masses but no volume. 
(b) There is no intermolecular attraction in the gases.                 
                                        Vander Waals suggested that the gas molecules have definite size and he considered each 
molecule as rigid sphere. The volume of the gas molecules cannot be neglected especially when the gas is under 
considerable pressure. At N.T.P, the gas molecules occupy at least (1/1000) fraction of the total volume of the gas. 
But if pressure of the gas is raised to 10 atm, the gas molecules occupy (1/100) fraction of total volume of the gas 

(using molecular radius = 82 10 cm ). 
                                        The gas could be liquefied and also be solidified. It is possible only if the molecules have 
strong cohesive forces. Joule-Thomson’s porous-plug experiment definitely proves the existence of intermolecular 
attraction of the gases. Further if the gas molecules have no volume then when they condense to liquid or solid, 
how the liquid or solid acquire volume.                                         
                                       Definite size of the gas molecules results from the repulsive forces acting on the gas 
molecules when they are approaching close to make collisions. When two molecules approach to each other, they 
cannot reach closer together beyond a certain distance   , called the distance of closest approach and it is also 
called collision diameter. 
Higher the intermolecular repulsion, greater is the value of  . 
The Vander Waals radius =  /2. 
                                  Thus, it is obvious that gas molecules  
have both attraction and repulsion among themselves.  
If there were no repulsion, the molecules would coalesce  
when they collide and the existence of gaseous phase would  
be at stake. 
It is suggested that molecules initially attract each other as they approach and they repel each other when they 
collide. This happens due to the fact that attractive potential is long-range  

potential  6
1

attractionV
r

  while the  repulsive potential is short-range one  12
1

repulsionV
r

 ,  

where r is the intermolecular distance between  
the molecules. 
Qualitative explanation of Amagat’s curves      
                         The above concept of molecular  
attraction and repulsion can be used to explain the value 
of compressibility factor (Z) at least qualitatively. 
(i)   At low P (P → 0), the volume of the gas is large and 
      so intermolecular distance (r) is large, both attractive  
      and repulsive forces are negligibly small so it  
      can not affect the ideal behavior. Z becomes one. 
(ii) At moderate P, the molecules are not very close and 
      long-range attractive potential dominates over the 
      short-range repulsive potential.  
      The gas becomes more compressible and 1Z  .  
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(iii) At high P, the intermolecular distance (r) is small,  
       the molecules are at very close to each other. At this condition, short-range repulsive potential  
       dominates over the long-range attractive potential. The gas becomes less compressible than ideal  
       gas (where there is no intermolecular interaction) and 1Z  . 
                                                 For H2 and He gases, attractive potential is very small in comparison  
       to repulsive potential so 1Z   always except when T  is very low. 
       These intermolecular forces are popularly called van der Waals forces and these are responsible 
       for the deviation of real gases from ideal behavior.   
 
Formulation of van der Waals’ equation   
                                                                      In 1873, van der Waals modified the ideal gas equation for 1 mole 

id idP V RT    by incorporating the size effect and intermolecular attraction effect of the real gases. These above 

two effects are discussed under the volume correction and pressure correction of the ideal gas equation. 
Volume correction  
                                   In real gas, the molecules suffer strong repulsive forces when they come close and collide 
with each other. This repulsive force gives rise to definite size of the gas molecules. They have been assumed as 
rigid spheres.  

                            The available volume for free movement of the molecules in real gas is less than V . Let us take 

available space for free movement of 1 mole gas molecules ( idV ) = V  – b . 

Where, V is molar volume of the gas and ‘ b ’ is volume correction term due to definite size of the gas molecules. 

            idV  is  the molar volume of the ideal gas where gas molecules are regarded as point-masses. 

It can be shown that ‘ b ’, called effective volume is four times the actual volume of one mole gas molecules.  
Let us take   is the collision diameter and r is the radius of each  
rigid sphere molecule and 2r  . 
When two molecules encounter each other, the distance between  
the centre of the two molecules would be  .They can not  
approach beyond this distance.  
Thus, the sphere of radius   (shown by dotted lines) will occupy  
a space unavailable for a pair of molecules.  

Thus excluded volume = 34

3
   for a pair of molecules. 

Thus effective volume of a single molecule = 
31 4

2 3
   = 

32

3
   and 32

3 Ab N   which is the  

effective volume of Avogadro number of molecules present in 1 mole gas. Thus, 

                                              
32

3 Ab N           or,      34
4

3 Ab N r   . 

                     That is, ‘b ’ is the four times the actual volume of one mole gas molecules. 
The value of b  is a measure of the size and it helps to calculate the radius of the gas molecules. 

The van der Waals equation after volume correction becomes,  idP V b RT  . 

Pressure correction 
                                     Pressure of a gas is developed due to the wall-collisions of the gas molecules. Magnitude of 
pressure of a gas depends on both the frequency of molecular collisions with the walls and the force of each 
collision. The magnitude of both the factors is reduced by intermolecular attraction. Thus, pressure exerted by the 
molecules in the real gas (P) will be less than that if there had not been intermolecular attraction as in the ideal gas 

 idP .  

Thus,                                 idP P                    or,                  id aP P P  . 
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Where,  aP   is the pressure correction term, called internal pressure originating from attractive forces between the 

molecules. Higher the intermolecular attraction in a gas, greater is the magnitude of aP . 

This reduction of pressure (Pid – P = aP ) acts with magnitude proportional to the density of the gas molecules. Both 

the frequency and force of each collision are reduced by intermolecular attraction, so the pressure is reduced in 
proportional to square of the gas density.  

But density of gas is proportional to 1
V

 so 2
1

aP
V

  or, 2a
aP

V
 , where a  is constant for the gas. 

Greater the intermolecular attraction of the gas, higher will be the value of ‘ a ’.  Thus ‘ a ’ is a measure of 

intermolecular attraction of the gas. 
Incorporating both the volume correction and pressure correction, the equation formed is called van der Waals 
equation for one mole gas.   

                                                    2
aP V b RT

V
   . 

To convert the equation for n  moles, V is to be replaced by  V n , where  V is the volume of n moles of the gas. 

Thus, van der Waals equation for n mole real gas is  

                                                  
2

2
anP V nb nRT

V
   . 

The reason for changing the volume is that it is an extensive property so it is changed when the amount is changed. 
The gas which obeys the van der Waals equation is called van der Waals gas. 
 
Units of ‘ a ’ and ‘ b ’ in the equation: 

                 From the van der Waals equation, we get   
2

2a
anP

V
    or,   

2

2
aP Va

n


  

                           where,  Pa is a pressure correction term and it has the unit of atm.  

Thus,                                 unit of  
2 2 2

2
atm La atm L mol

mol
  . 

Again,                             nb  = unit of volume,         so       ‘ b ’ = L mol-1. 
          In SI system, unit of   ‘ a ’ = (N m-2) m6 mol-2 = N m4 mol-2 and unit ‘b ’ = m3 mol-1. 
 
Significance of ‘ a ’ and ‘b ’ 

                                    ‘ a ’ term originates from the intermolecular attraction and
2

2a
anP

V
 . 

Thus ‘ a ’ is a measure of internal pressure of the gas and it measures the attractive forces between the molecules. 

Higher the value of ‘ a ’, greater is the intermolecular attraction and more easily the gas could be liquefied. Thus, 

2

2 23.95COa atm L mol   and   
2

2 20.22Ha atm L mol . CO2 is more easily liquefied than H2 gas. 

Another constant, ‘b ’ measures the molecular size and also a measure of repulsive forces.  
The value of ‘ b ’ can be utilized to calculate the molecular diameter ( ). The greater the value of b , larger is the 

size of the gas molecule. Thus, 
2

10.04COb L mol   and   
2

10.02Hb L mol . 

                             Let us consider two hypothetical cases to show the size effect and attraction effect on the pressure 
of the gas. 
(a) For the real gas, a = 0 (i.e. no intermolecular attraction exist) but 0b  (size is considered). 

      We have, van der Waals equation,   
2

2
anP V nb nRT

V
   , but a  = 0,  

       so,                               
nRT

P
V nb




 idP       since,   
id

nRT
P

V
 . 

       It means that the molecular size (repulsive interaction) creates higher pressure than that observed 
       by the ideal gas where molecules have no volume. 
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 (b) Again for a real gas, 0a   (intermolecular attraction exists) but b  = 0 (no size of the molecules) 

      The van der Waals equation, 
2

2

nRT an
P

V V
  idP , since b  = 0 and 

id

nRT
P

V
 . 

                            Thus intermolecular attraction effect reduces the pressure of the real gases. 
 
Problem: Calculate the pressure of 2 moles of N2 gas occupying 10 L volume at 27 oC using vander Waals  
                 equation. Given, a  = 1.4 atm L2 mol-2 and b  = 0.04 L mol-1. 
                Also calculate the pressure of the gas using ideal gas equation and find the extent of deviation from 
                ideal behavior. [Ans. P = 4.904 atm, Pid = 4.92 atm and deviation = 0.325 %].  
 
Calculation of Boyle Temperature (TB) 

      Mathematical condition for calculation of Boyle temperature is,  
0

T

PV

P

 
 

 

, when P → 0. 

         The vander Waals equation is,       
2

RT a
P

V b V
 


    or,     RTV a

PV
V b V

 


. 

Thus    

 
2 2

T TT T

PV PV V RT RTV a V

P V P V b V PV b

          
             

             

 

                            =   

 
2 2

T

RT V b RTV a V

V PV b

    
    

   

= 
 

2 2
T

RTb a V

V PV b

   
     

   

. 

When T = TB,  
0

T

PV

P

 
 

 

  but  0
T

V

P

 
 

 
,  hence,  

 
2 2

BRT b a

VV b



 or,  

2

B

a V b
T

Rb V

 
  

 
. 

                     Since P → 0,  V is large and 1
V b

V


 . Therefore, B

aT Rb  

     This is the expression of Boyle temperature for a gas obeying van der Waals equation. 
 

Problem: Calculate a
b  for a gas for which TB = 500K.  

Solution:  The Boyle temperature, B
aT Rb  so,  a

b  RTB = 0.082 L atm mol-1 K-1 × 500K = 41 L atm mol-1. 

 
Problem: Explain the significance of Boyle temperature and hence deduce an expression for it from vander  
                Waals equation. Comment on the possibility of defining a Boyle temperature if a  = 0 and a  = b  = 0. 
 
Solution: Last part of the question:   
                When a  = 0, the van der Waals equation is, P (V – b ) = RT  or, PV = RT + Pb . 

                Differentiating with respect to P at constant T, we have    
 

T

PV
b

P

 
 

 
. 

               But 0b  , hence 
 

0
T

PV

P

 
 

 
 at any temperature hence  the gas have no Boyle temperature. 

              Again, when a  = b = 0, the van der Waals equation is, PV = RT    or, 
 

0
T

PV

P

 
 

 
 . 

             This is zero at any temperature so any temperature is Boyle temperature for this gas. 
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Boyle temperature for several gases 
 

Gases He H2 N2 Ar CH4 CO2 C2H4 NH3 

TB/K 23.8 116.4 332 410 506 600 624 995 

 
A quite accurate two-parameter equation of state for gases is the Reddlich-Kwong equation  
[O. Reddlich and J.N.S. Kwong, Chem. Review.44, 233 (1949)] is given as: 

                                    
 

 
a

P V b RT
V V b T

 
   

  

 for 1 mole gas. 

Which is useful over wide range of T and P. The Reddlich-Kwong parameters ‘ a ’ and ‘b’ differ in value for any 

gas from the van der Waals ‘ a ’ and ‘ b ’. 
Explanation of Amagat’s  Curves in the light of van der Waals equation 
 
                                                              We have Amagat’s curves, Z vs. P in two Figures: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

van der Waals equation for 1 mole real gas,   2
aP V b RT

V
   or, 2

a abPV Pb RTV V
    . 

Neglecting the small term  2
ab

V
, we get  the equation as,  aPV RT Pb V   . 

Replacing V in the correction term by ideal gas equation as  a aP
V RT , and taking PVZ RT , 

the expression of compressibility factor is 1
1

a
Z b P

RT RT
 

   
 

. This shows that Z = f(T,P). 

This equation can be used to explain Amagat’s curves quantitatively at low P to moderate P region.  
Fig. A:  For CO2 gas, ‘ a ’ is very high as we have seen that the gas is easily liquefiable.  

             Thus,
a

b
RT

  in the equation and. ( )
a

b ve
RT

    Intermolecular attraction effect  

              dominates over the size effect.  
              i.e.  the slope of Z vs. P curve is (–ve)  for CO2 at moderate pressure  region. This shows  
              that the value of Z  decreases with increase of P and it is found also in the curve. 

              For H2 gas, ‘ a ’ is small as it is not easily liquefied
a

b
RT

 and the slope of Z vs. P curve  

              for H2 is (+ve). The value of Z increases with increase of P. 
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Fig. B: (i) When BT T ,  
a

T
Rb

   or,
a

b
RT

  and ( )
a

b ve
RT

   . It means that when BT T ,  

                the value of Z decreases with increase of P at the moderate pressures. The effect is due to the 
               fact that intermolecular attraction dominates over the size effect. 
                So for CO2,  1Z   and the gas is more compressible. 

          (ii) When T = TB = a

Rb
 or,  a

b
RT

    or, 0
a

b
RT

  and so Z = 1, the gas shows ideal     

                behavior. The size effect compensates the effect due to intermolecular attraction of the gas.  
                Z  runs parallel to P-axis up to certain range of pressure at low pressure region. 

         (iii) When, BT T  means 
a

T
Rb

  or, 
a

b
RT

  and ( )
a

b ve
RT

    i.e. Z increases with  

                increase of P when BT T . The size effect dominates over the effect due to intermolecular  

                attraction and  1Z   and the gas is less compressible. 
For H2 and He, 0 oC is greater than their TB values and so Z vs. P slope becomes (+ve). 
                     At very low P (P → 0) and at high T, volume is very large and both the size effect and attraction effect 

becomes negligible i.e. Pb  and a P/RT are negligibly small and Z = 1. The gas behaves ideal.  
 
Problem: The compressibility factor (Z) for one mole of a van der Waals gas at 0 oC and 100 atm pressure is 
                 found to be 0.5. Assuming that the volume of a gas molecule is negligible, calculate the van der Waals  
                 constant ‘ a ’.                                                                                              [IIT – JEE sample Question] 

Solution: We have  1
1

a
Z b P

RT RT
 

   
 

, but ‘b ’ is zero. So the compressibility factor, 1
P a

Z
RT RT

   . 

                 or,  
 

 
 

22 1 1

2 1
0.082 273

1 1 0.5 2.50 .
100

L atm mol K KRT
a Z atm L mol

P atm

 




      

 
Vander Waals constants ‘ a ’ and ‘ b ’ in real gas mixture: 
 
                          For real gas mixture, V depends on mole fraction, as well as, on T and P. 
The parameters ‘ a ’ and ‘ b ’ are taken as functions of the mixture’s composition.  
For a mixture of two gases, 1 and 2, it is useful to take  

             
212 22

1 1 1 2 1 2 2 2 1 1 2 22a x a x x a a x a x a x a         and    1 1 2 2b x b x b  , 

where 1x  and 2x are the mole fractions of the components. ‘ b ’ is related to molecular size so is taken as weighted 

average of  1b  and 2b . The parameter ‘ a ’ is related to intermolecular attraction; the quantity  
1

2
1 2a a   is an 

estimate of what the intermolecular attraction between gas 1 and gas 2 molecules might be. 

In applying an equation of state to a mixture, Vm is replaced by 
total

V
n and 1 1 2 2V x V x V  . 

                       This discussion explains that ‘ a ’ and ‘ b ’ do not follow the additivity rule.    
 

 Problem: The curve illustrates the PV  behaviour of real gas, where V is the molar volume.  
                  According to vander Waals for non-ideal gas behaviour, the values of one at high pressure        

                                                               are due to
PV

RT
 greater than 1                  
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                                                                   (A) the effects of increased rate of collisions of the molecules with the  
                                                                        walls of the container                                                                          
                                                                    (B) the effects of dissociation of individual gas molecules. 
                                                                    (C) the effects of the volume occupied by the gas molecules  
                                                                          themselves.  
                                                                    (D) the effects of forces of attraction by the molecules. 
                                                                    (E) ideal gas behaviour in this pressure region.                                                                        
                                                                          molecules with the walls of the container.                                                                   
 
 
 
Question: A gas obeying the P(V –b ) = RT has the compressibility factor, Z = 1.0018 at 27 oC and 1 atm  
                 pressure. Assuming the gas molecules to be spherical in shape, calculate its molecular diameter.  
                                                                                                                                               [Burdwan Univ, 2004]               

Solution: 1
P

Z b
RT

 
   

 
. Putting the values, we get 44.28b   cc/mol. But, 22

3 Ab N  , again inserting  

                the value of b ,  we get  43.275 10   cm. 
                                               
 
Critical phenomena – Andrews’ curves                                                                       
                                  A gas can be liquefied by lowering temperature and increasing pressure. But influence of 
temperature is more important. Most gases are liquefied at ordinary pressure by suitably lowering of temperature. 
But a gas can not be liquefied unless its temperature is below a certain value depending on the nature of the gas. 
This temperature of the gas is called its critical temperature (TC) and above which the gas can not be liquefied what 
ever high pressure may be applied to.  
                                 A gas can only be liquefied when the temperature is kept below TC of the gas. The pressure 
required to liquefy the gas at its critical temperature is called critical pressure (PC) and the volume occupied by one 
mole at TC and PC is called critical volume (VC). 
                                These critical constants can be illustrated from the Andrews curves. These curves are obtained 
by drawing P vs. V at different temperatures. T. Andrews (1869), in his experiment with one mole CO2, collected 
data of P vs. V at various temperatures.  
                       Let us discuss the isotherm (it is the curve describing the relation of P and V at constant T) at 13.1 oC 
(below TC), pqrs. The point p represents the gaseous CO2 at low pressure. As P is increased, V is correspondingly 
decreased according to Boyle’s law.  
At the point q , the gaseous CO2  begins  
to liquefy and the pressure at the point is  
the saturation vapor pressure of CO2.  
As the volume is decreased, more of the 
gaseous CO2 transforms into liquid CO2 

but P remains unchanged. This isothermal  
conversion continues up to r when all the  
gaseous CO2 is converted into liquid CO2. 
Now the curve rs  is very steep as the liquid 
is highly incompressible.                                                                        
When the temperature of 21.1 oC is taken for  
the study, similar curve is obtained except  
the liquid begins to form at higher saturation  
pressure and the range of volume over which  
condensation occurs is smaller. 
At temperature 31.1 oC, the plateau shrinks 
to a point and this temperature is the critical temperature (TC) of the gas.  
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       The dotted line encloses a dome-shaped area within which liquid and gas are co-existent. The highest point C 
of the area indicates the critical point. On the right side of the area, gas alone is present and at the left liquid. 
Any point within the dome-shaped area represents the two phases, one liquid and one vapour in equilibrium to each 
other. The molar volumes of the liquid and vapour can be obtained by drawing a horizontal line to V-axis through 
the point representing the state of the system. The intersections with the boundary line correspond to molar volume 

of liquid ( lV ) and molar volume of vapour ( gV ),  

respectively. This horizontal line is called tie line and it connects the state of one phase with the state of another 
phase and these phases are at equilibrium. As the temperature is increased, tie line becomes 
shorter and  the molar volumes of the liquid and vapour approach each other, tending to be more alike and at the 
critical point C, the tie line vanishes, the distinction between liquid and vapour phase is lost.   
                   When the temperature is further increased to 50 oC, the isotherm approaches more closely to that of 
ideal gas; no plateau is observed and no liquid is formed. Above TC, there is a single gas phase. 
Condition of the critical point (C) 
 
                                      The critical point is the limiting point of a series of horizontal two-phase lines. So the slope 

of the horizontal lines as well as the limiting point (C) is   0
T

P
V

 


.  

Again along the critical temperature isotherm, the slope is zero at the critical point (C) and  
is (–ve) on either side of the point. Thus the slope is maximum (zero value is greater than negative values) at the 
critical point. This slope is function of V and its derivative with respect  

to V is again zero at the point. That is,      
2

2
0

T
T T

PP
VV V

           

 at the point. 

Thus, the condition of the critical point is given by, 

                            0
T

P
V

 


              and              
2

2
0

T

P

V

 
 

 
. 

                     That means, both slope and curvature at the point is zero. 

At the critical point, as 0
T

P

V

 
 

 
 so, the isothermal compressibility 

1

T

V

V P


 
   

 
 becomes infinite. As  is 

very large in the neighbourhood of the critical point, very little work is required to compress the vapour to liquid. 
This set up large differences in density in the neighbourhood of critical point. This difference makes spontaneous 
fluctuations in density which is accompanied by fluctuation of refractive index and light is scattered strongly. This 
is called critical opalescence.  
Determination of critical temperature (TC) 
 and critical pressure (PC) 
                                                            These two properties of a real  
gas can be determined on the basis that at TC and PC, the density of  
liquid and vapour is identical and so the surface of separation of the 
two phases (meniscus) disappears.  
(i)  The bulb is enclosed by a jacket and its temperature can be varied  
      according to requirements. A small quantity of the substance is  
      enclosed over the mercury. This is attached to the manometer B 
      in which a known amount of air is kept over mercury.    
      Initially temperature is kept such that both liquid and vapour of  
      the substance are present over the mercury. The surface of  
      separation between the liquid phase and vapour phase should be 
      clearly visible. 
(ii) The temperature of the thermostat is gradually increased until the  
      meniscus just disappears. The temperature and the corresponding  
      pressure are noted from the thermometer and the manometer.  
      Now the bulb is cooled slowly and again the temperature and   
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      pressure are noted down when the surface of separation just  reappears. The mean of the two temperatures and    
      pressures are  the critical temperature (TC) and critical pressure (PC). 
 
Determination of critical volume (VC) 
                                                                 The determination of critical volume (VC) is based on the basis of law of 
rectilinear diameters. According to the law, the mean value of the densities of the liquid  and its saturated vapour of 
any substance is a linear function of temperature. These densities where liquid and vapour are at equilibrium are 
known as orthobaric densities. 
Mathematically, we state the law as  

                                                         
1

2 l vd d a bt   , 

where a and b are constants. If a graph is drawn densities vs. temperature, the following curve is obtained. BB  
curve for densities of liquid, AA is for densities of saturated vapour and DD  for 
the mean density values. The point C, obtained by extrapolating the lines AA, BB  and DD ,                                                 
 
gives the critical density ( Cd ). 

To determine the densities, a known mass of the liquid  
is taken in a graduated tube and sealed. It is heated to 
a particular temperature. The volumes lV   and vV  of  

liquid and vapour are read of from the graduation of the 
tube. If ld  and vd  are the densities of the liquid and  

vapour, respectively, then                                                 
                                 l v vl Vm V d d   . 

The experiment is repeated with different mass  m   

of the liquid at the same temperature, then it becomes 
                                 l v vl Vm V d d    . 

From these two equations, the value of ld  and vd  at the  

temperature is obtained. It is repeated at different temperatures to obtain the above curve. 

The critical volume of the substance is then obtained by the relation, C

C

M
V

d
 . 

Continuity of states: 
                                                         In the Andrew’s P –V diagram, the area in which the phases, gas and liquid 
coexist, are shown by dashed line. It is possible to make a sharp distinction between these two phases. Even the 
state point lies in the dashed area, the liquid and gas can be distinguished as there is surface of discontinuity and it 
separates the two phases. But it is not always possible to distinguish between gas and liquid.  
This is the principle of continuity of states. 
                  In the adjoining figure, A and D lie on the same 
 isotherm at temperature,  13.1 oC below the TC of CO2. 

The point A clearly indicates the gaseous state and point D 
indicates the liquid state. These two states are sharply defined 
and the dashed area which contains liquid-gas in equilibrium 
are also well-defined. But it is possible to shift from the 
gaseous state point A to the liquid state point D continuously 
without passing through the discontinuous dashed area. 
                                          Let the gas at the state point A is  
heated to B at constant volume along AB. Then the gas is 
gradually cooled at constant pressure along BC, the volume  
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reduced considerably. The gas is again cooled at constant volume until the state point D is reached. No where in the 
process liquid would appear. At D, the system is highly compressed gas. But the curve shows that this state point is 
for the liquid state. Thus there is hardly any difference between the liquid state and the gaseous state and there is no 
line of demarcation between the two phases. This is the continuity 
of states. The point D we may refer as liquid state or highly compressed gaseous state. In the absence of 
discontinuity there is no fundamental way of distinguishing liquid or gas. The gas is continuously transferred to the 
liquid without passing the usual process of condensation.  
 
Critical phenomena and van der Waals equation 

                        The van der Waals equation for one mole gas is, 2

RT a
P

V b V
 


. 

Taking the values of a  and b  for CO2, it is possible to collect data P and V at temperatures 13.1 oC, 21.1 oC, 31.1 
oC and 50 oC and to draw the similar isotherms like that of Andrew. These curves can be called van der Waals 
isotherms. The experimental Andrew’s isotherms coincide with the   
 
 van der Waals isotherms in all the points 
except the region where the gas and liquid are 
co-existing. The horizontal lines are replaced by  
wavy lines. These wavy portion of van der Waals  
curves poses two limitations of the van der Waals  
equation which are not realized in practice. 
The isotherm, pqrst shows that there are three  
volumes of the system at a given T and P. 
Again at the portion srq, it shows that with  
increase of  pressure, volume is also increased. 
These two points show the limitations of  
van der Waals equation. How ever, pq and ts 
may be considered to represent the super 
saturation and unsaturation of the system.    
     With increase of temperature, the minimum 
and maximum points come close to each other                                                                         
and at the critical point, both coalesce.  
The slope and curvature both are zero at the point. That is,  

                                                0
T

P
V

 


              and              
2

2
0

T

P

V

 
 

 
. 

Relation between critical constants  ,C C CP V and T   and van der Waals constants ( a  and b ). 

                Differentiating van der Waals equation, 
2

RT a
P

V b V
 


 with respect to V at constant T, we get the slope,     

 
2 3

2

T

P RT a

V VV b

 
   

  
     and the curvature,     

 

2

32 4

2 6

T

P RT a

V VV b

 
  

  
. 

But at the critical state,       0
T

P
V

 


     and     
2

2
0

T

P

V

 
 

 

,   and  T = TC,   V = VC.  

Putting, we get,  
 

2 3

2C

CC

RT a

VV b



   and  

 
3 4

2 6C

CC

RT a

VV b



 .   Solving the two equations, we get 

              VC = 3 b       and   
8

27C

a
T

Rb
   .    
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Again, the van der Waals equation at the critical point,    

                   
2

C
C

C C

RT a
P

V b V
 


 .  Inserting the value of TC and VC , we have   

227C

a
P

b
  .   

                   Thus, the relation between critical constants and van der Waals constants are: 

                                    VC = 3 b ,    
8

27C

a
T

Rb
       and    

227C

a
P

b
  . 

One property of the gas is critical coefficient, C

C C

RT

P V
.  Putting VC, PC and TC, C

C C

RT

P V
 = 

8

3
 = 2.66. 

The value of compressibility factor at the critical state,
3

8
C C

C
C

P V
Z

RT
   and it is less than 1. 

                     This implies that at the critical state the gas is more compressible.  
These values are tested experimentally whether the critical coefficient is constant and equal to 8/3 for all gases but 
it is found that it varies from gas to gas and the average value is about 3.66. 
   Unique application of these relations is the calculation of the van der Waals constants, a and b . 

        
3
CV

b   , but VC is avoided in the relation as it is not easily determined experimentally.  

                       VC is replaced by using the value of critical coefficient, 
3

8
C

C
C

RT
V

P
  . 

               Therefore, the van der Waals constants are:  
1

8
C

C

RT
b

P
      and  

2 227

64
C

C

R T
a

P
   . 

The critical constants of a gas can be determined experimentally and so the value of the van der Waals constants, a  
and b  can be calculated. 

Problem: The van der Waals equation of a gas is given by,    2

0.00786
0.00224 0.0041 273P V t

V
 

    
 

 

                  where  P is in atm and V in lit.  Find the values of PC and TC.                                                      [NET] 

Solution:   Comparing with van der Waals equation,             
2

2

an
P V nb nRT

V

 
   

 
,   

                  nR  = 0.0041 or, n  × 0.082 = 0.0041 or,  n  = 0.05. Now,           
                  nb  = 0.00224 or, 0.05 b  = 0.00224  or, b  = 0.0448 lit mol-1.   

                  Again, 2an = 0.00786 or, a  × (0.05)2 = 0.00786,  or,  a   =  3.14 atm lit2 mol-2. 

                  So, 
 

2 2

3.144
58.028

27 27 0.0448
C

a
P atm

b
  


and

8 8 3.144
253.58

27 27 0.082 0.0448C

a
T K

Rb


  

 
. 

Problem: Calculate the radius of Argon atom, given its critical temperature and pressure as – 122 oC and  
                 48 atm respectively. Assume that Argon obeys van der Waals equation of state. [Burdwan Univ. 1994] 
                  

Solution: The van der constant, 
1

.
8

C

C

RT
b

P
  .    Putting the data given in the problem, we get  

                 
 1 1

10.082 273 1221
. 0.0322

8 48

L atm mol K K
b L mol

atm

 


 

   = 32.2 cc mol-1. 

                But, 34
4

3Ab N r  or, 32.2 cm3 mol-1 = 4 × 6.023×1023 × (4/3) × 3.14 × r3 or, r = 1.5 × 10-8 cm. 

                                  Hence the radius of the Argon atm = 1.5 × 10-8 cm. 
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Question: A scientist with a simple view of life proposes the following equation for one mole gas. 

                                          
2 3

RT B C
P

V V V
   . 

                  Express PC, VC TC in terms of B and C and find the expression of critical compressibility factor, (ZC).    

                                   [
2 3

2

3
. ,

3 27C C C

C B B
Ans V T and P

B RC C
   , 1

3CZ   .] 

 
             Table showing the values of critical constants of different gases including their critical coefficients 
 
 
 
 
 
 
 
 
 
 
 
Reduced form of vander Waals equation of state                          
                                                                                      Vander Waals equation can be expressed in terms of their 
reduced variables in stead of T, P and V. The reduced variables are defined as the actual variables divided by the 
corresponding critical constants.  
Thus, reduced pressure,   = P/PC , reduced temperature,   = T/TC  and reduced volume,   = V/VC . 
Replacing P, V and T in the van der Waals equation by corresponding reduced variables, we have 

                                          
 

 2C C C

C

a
P V b R T

V
  



 
   

  

.   

Inseting the value of critical constants, VC = 3b , 
8

27C

a
T

Rb
  and 

227C

a
P

b
  in the above equation, 

we get the reduced form of van der Waals equation, 

                                                        2

3
3 1 8  



 
   

 

. 

The important feature of the equation is that it is independent of van der Waals constants, a and b . 
Thus it appears that the equation is independent of the nature of the gas and general as it is in ideal gas equation. 
But it is not true. The characteristic gas constants now remain in disguise within the reduced variables 
( , and   ) as these variables contain critical constants (PC , VC and TC) and these are characteristic constants of 
the gas. Thus it is not that generality lost in van der Waals equation is regained in this form. However, the reduced 
equation is more general than any specific equation of state. 
Law of corresponding states: 

                                             The reduced equation of state,  2

3
3 1 8  



 
   

 
 

gives birth one important generalization, called law of corresponding states. If the two substances have the same 
reduced pressure ( ) and are also in the same reduced temperature ( ), then their reduced volumes ( ) should be 
the same and the substances are said to be in their corresponding states. Thus, two gases are at the same reduced 
temperature and under same reduced pressure so they are in corresponding states and have same reduced volume. 
This principle of corresponding states is not exact, but it is the single most important basis for evaluation and 
comparison of different physical properties of substances. All substances will appear to behave similarly at their 
corresponding states.  
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For example, argon at 302K (TC = 151K) and under 16 atm (PC = 48 atm) pressure and ethane  
at 381 K (TC = 190.5K) and 18 atm (PC = 54 atm) are in their corresponding states, since each has   
                                                      = 2    and     = 1/3.      
This principle is approximately valid for gasses composed of spherical and non-polar molecules. 
The important utility of the law is that any physical property can be compared among the substances when they are 
in corresponding states. Let us illustrate it with the value of compressibility factor (Z) of different gasses at their 
corresponding states. 

We have by definition, C C

C

P VPV
Z

RT R T

 




 


    or,  C C

C

P V
Z

R T




      or,   

3

8
Z

 


  . 

Since 
 


 is same for the gasses in the corresponding state so the gases have same  

value of Z. This implies that all gases  
deviate from ideal behavior to the same  
extent when they are in corresponding state.  
Thus when Amagat’s curves are drawn  
Z vs.   at constant  , all gases produce  
single curve as due to the same value of Z. 
The curves are drawn taking the average value 
of Z at the corresponding state of different  
gases as the law is approximately obeyed. 
This shows that, all substances behave almost 
similarly like the value of Z at the corresponding 
states. 
Limitations of vander Waals equation 
 
        (1) The equation predicts VC = 3b but the mean value is VC = 2b . 

        (2) The equation also suggests that C

C C

RT

P V
  = 8/3 = 2.66 but the average value is 2.66. 

        (3) TB/TC  =  27/8  = 3.375, but the value is about 2.98.  
So we can conclude that van der Waals equation explains the behavior of the real gas qualitatively but it fails to 
explain quantitatively. 
Question: For an ideal gas, critical temperature is 0 K. – Comment on the statement.     [Burdwan Univ.1992] 
 
Answer: The statement is correct. This can be shown as follows. 
               The ideal gas equation for one mole is PV = RT or P = RT / V. Now taking 1st and 2nd derivatives of P  
              with respect to V at constant temperature and setting to zero at the critical point, we have,     

              
2 3

2
0 0C C

C C

RT RT
and

V V
    .   Subtracting,  

3 2

2
0C

C C

R R
T

V V

 
  

 
  or, TC = 0K. 

 
Kammerlingh – Onnes Virial equation: 
                                                                     The equation of state of a gas can be satisfactorily expressed as a power 
series of volume or pressure as suggested by H. Kammerlingh – Onnes  

 in 1901 as,                                 
2 3

1 ........
B C D

PV RT
V V V

 
     

 
   

where, B is 2nd virial coefficient and is most important in the expression. B, C, D is the virial coefficients and 
dependent of T and on the nature of the gas, their values are small in magnitude.  
Virial equation as power series of P is given by  
                                        1 1 11 ........PV RT B P C P D P     . 

               

 



 

                                KINETIC THEORY AND GASEOUS STATE WITH BURDWAN UNIV. QUESTIONS AND ANSWERS – DR N C DEY   51 
 

  Vander Waals equation of real gas can be recast in virial form as follows: 

The equation, 
2

RT a
P

V b V
 


  or,  

RTV a
PV

V b V
 


 = 

 1

RT a
b V

V




  =  
1

1
abRT V V



  . 

or, 
2 3

2 3
1 ......

b b b a
PV RT

V V V V

 
      

 

  1
b a

RT
V V

 
   

 
 1a

RT RT b
RT V

 
   

 
. 

So the virial form of van der Waals equation as power series of V is    
1

1
a

Z b
RT V

 
   

 
. 

The 2nd virial coefficient,  
a

B b
RT

   . Thus, evaluation of B is possible from a  and b .                                                                              

At the Boyle temperature, (TB),     B = 0,    and thus,    0
B

a
b

RT
           or,      B

a
T

Rb
 . 

    Therefore the virial form of the vander Waals equation can produce the expression of TB. 
The above virial form can easily be expressed as power series of P by replacing by  

RT
V

P
   (Taking approximation for small term).   So the form is,      1

1
Z

a
b P

RT RT
 

 
 

 
. 

A more rigorous mathematical treatment can be exercised to get a form consisting of 3rd virial coefficient. This 
form is, 

                           
 

2
31

1
2Z

a a a
b P b P

RT RT RTRT
 

   
     

   
. 

    It can be shown that the 2nd  virial coefficient is (–ve) while 3rd virial coefficient is (+ve). 
Thus, when P is low, 2nd term dominate and Z decreases with increase of P but when P is  high, the 3rd term 
dominates and Z increases with the increase of P in the Z vs. P diagram. 
A complete description of Z vs. P curve is obtained by this virial form of van der Waals equation. 
More accurate virial form of van der Waals equation is  

         
     

2
2 2 3

3 4 2
1

1 2
2 3Z

a a a a a
b P b P b P

RT RT RTRT RT RT
 

    
        

      

 

 
Problem: What is the molar volume of N2(g) at 500 K and 600 bar according to (a) ideal gas law and  
                 (b) the virial equation? The virial coefficient, B of N2(g) at 500 K is 0.0169 L mol-1. 

Solution: (a) The molar volume, 
1 1

2 10.08314 500
6.92 10

600

RT Lbar K mol K
V L mol

P bar

 
 

     

                (b)        1
BP

Z
RT

 
   1

1 1

0.0169 600
1 1.244

0.08314 500

L mol bar

Lbar K mol K



 


  


.  

                      Now,   2 2 11.244 6.92 10 8.62 10
ZRT

V L mol
P

           . 

Formulation of virial form,  
 

2
31

1
2Z

a a a
b P b P

RT RT RTRT
 

   
     

   
 

K’ Onnes virial form as power series of P is,  
2 3

1 1 11Z B P C P D P     (A) 

But the van der Waals equation for one mole is,  
1

1
abPV RT V V



      (See the last page). 
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or,           
1

1
abZ V RTV



    
2 3

1
b b b a

V V V RTV

    
             

     

     

                                                   
2 3

1
1

a b b
b

RT V V V
     

            
     

. 

Replacing   ZRT
V

P
 ,      

2 32 3

2 3

1
1

a P b P b P
Z b

RT RT Z RT RTZ Z
     

            
     

        (B) 

Equating with equation (A), we have,  

     
2 32 3

2 3
1 1 1 2 3

1 a P b P b P
B P C P D P b

RT RT Z RT Z RT Z
     

                 
     

 

Dividing both by P, 
2 3 2

2
1 1 1 2 3

1 1a b P b P
B C P D P b

RT RT Z RT Z RT Z
     

                 
     

.   (C) 

But, when P → 0, Z → 1. Using this condition, we get 2nd virial coefficient, 
1

1 a
B b

RT RT
 

  
 

. 

Putting this expression  in (D), 
2 3 2

2
1 1 1 1 2 3

1 b P b P
B C P D P B

Z RT Z RT Z
   

              
   

, 

or,                
2 3 2

2
1 1 1 2 3

1
1

b P b P
B C P D P

Z RT Z RT Z
     
                

     
. 

Again dividing by P, we have       
2 3

1 1 1 2 3

1 1 1Z b b P
B C D P

P Z RT Z RT Z

     
               

     

 (D) 

From (A),   2
1 1 1

1Z
B C P D P

P


       , but, when P → 0, Z → 1,   so,  

1

1Z
B

P


 . 

Using this value of B1 in (D), we get     
2 32

1
1 1 2 3

1B b b P
C D P

Z RT Z RT Z
   

          
   

.  

Again, using the condition, P → 0, Z → 1, we get 
2

2
1 1

b
B C

RT
 

   
 

 or, 
2

2
1 1

b
C B

RT
 

  
 

. 

Inserting       
1

1 a
B b

RT RT
 

  
 

,          we get         
 

1 3 2
a a

C b
RTRT

 
  

 
. 

Putting the values of B1 and C1 in (A) and keeping up to 3rd term, the required expression of Z is,  

                               
 

2
31

1
2Z

a a a
b P b P

RT RT RTRT
 

   
     

   

. 

Question: The compressibility factor (Z) for one mole of a van der Waals gas at 0 oC And 100 atm pressure  
                 is found to be 0.5. Assuming that the volume of a gas molecule is negligible, 
                 calculate the vander Waals constant ‘ a ’.                                                  [IIT – JEE Sample Question] 

Answer: We have, 1
1

Z
a

b P
RT RT

 
 

 
 

 = 1
P a

RT RT
  , (as b  in the van der Waals gas is assumed to be 0)  

                or,  
 

2

1
RT

a Z
P

  . Putting, Z = 0.5, R = 0.082 L atm mol-1K-1, T = 273K and P = 100 atm,      

                we get,   a  = 2.5 atm L2 mol-2. 
 
 
 
 
 



 

                                KINETIC THEORY AND GASEOUS STATE WITH BURDWAN UNIV. QUESTIONS AND ANSWERS – DR N C DEY   53 
 

Question: An approximate expression for the compressibility factor (Z) of van der Waals gas is 

                             
 

2
31

1
2Z

a a a
b P b P

RT RT RTRT
 

   
     

   
 

                 with terms having usual significance. 
                 At what temperature does the slope of the Z vs. P curve (at P → 0) have maximum value?  
                 What is the value of maximum slope?                                                       [Burdwan Univ. 1995, 2001] 

Answer:  1st Part :The slope of the Z vs. P curve is  
T

Z
P




  and let it be S. Thus, from the expression of Z,  

                we get, 
 

3

1 2
2

a a a
S b b P

RT RT RTRT

   
      

   
 .   But the slope at P → 0, 

0

1 a
S b

RT RT
 

  
 

. 

                It is seen that S0 is a function of T only. Now putting the condition of extrema, we have 

                   0
2 2 3

2
0

dS b a

dT RT R T
            or,       

2 2 3

2b a

RT R T
       or,       2a

T
Rb

 . 

                 It could be shown that at this temperature, 0S attains maximum by using  2nd derivative of 0S  

                with respect to T  and then equating to zero. 

2nd Part: The value of the maximum slope, is obtained by inserting  2a
T

Rb
   in the expression of the slope,       

                                  
0

1 a
S b

RT RT
 

  
 

 and  it is   
2

0 4
bS a .  

Question: Draw a graph PV
RT

 vs. P for a real gas. Remark on its nature for a general case. If a gas obeys the      

                 equation, PV
RT

 = 21 P P   , show that the following restrictions are imposed on   and  .   

                 (i)  0      and  0     (ii) 24  .                                                          [Burdwan Univ. 2004] 

Answer: 1st part:                                                        2nd part:  The value of PV
RT

 = 1 when P → 0  

                                                                                    and then decreases, attains minimum 
                                                                                    and then increases with increase of P. 
                                                                   3rd part: (i) For the restriction on   and  , let  

                                                                                     Z =  21 P P     where, Z = PV
RT . 

For the minimum value of Z, the conditions are   2 0dZ PdP       and  
2

2 2 ( )d Z ve
dP

    . 

Thus,  = (+ve).   Now, 2 0P     or,  2 ( )P ve     as  = (+ve)  so,  ( )ve   . 

Thus,                              restrictions   0    and 0    are fulfilled. 

(ii) Again since   2 0P     or, 
2P 


  .  Putting this expression, we get the minimum  

     value of Z  as     
2 2 22

min. 1 1 12 2 2 4 4
Z

    
    

          .            

      But,  min. ( ) 0Z ve    ,    so,
2

1 0
4




     or,   

2

1
4




        or,   24    .        

 
Question: A gas obeying the P (V – b ) = RT has the compressibility factor, Z = 1.0018 at 27 oC and 1 atm   
                  pressure. Assuming the gas molecules to be spherical in shape, calculate its molecular diameter. 
                                                                                                                                              [Calcutta Univ. 2004] 

 Answer:   1 PZ b RT   . Putting the values, we get  b = 44.28 cc/mol. But    32
3 Ab N   , 

                  again inserting the value of b  , we get,   83.275 10 cm   .    
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Problem: The critical density of CO2 is 0.45 gm/cc; calculate the constant ‘b’ for the gas in dm3 mole-1.  
                                                                                                                                               [Burdwan Univ. 1996] 

Solution: The critical volume of CO2, 
1

1

44

0.45C
C

gm molM
V

d gm cc




   97.78 cc. Again, VC = 3b cc mol-1. 

                Thus, 3 32.59Cb V   cc mol-1 = 0.03259 dm3 mol-1. [1 dm3 = 1 litre 103 cc.] 

 
Problem: Using the above value of b , calculate the collision diameter ( ) of CO2 molecules. 

Solution: The relation is 32

3 Ab N   or,
1 1

3 13 3
8

23 1

3 32.593
2.96 10

2 2 3.14 6.023 10A

cm molb
cm

N mol











   

  

   
   

  
. 

Question: Express the compressibility factor Z of a van der Waals gas in terms of reduced temperature ( ) 
                 and reduced pressure ( ). 

Answer:  For van der Waals gas,
1

1
PV V a b a

Z
RT V b RTV V RTV



     


 
 
 

. Replacing V by RT

P
,  

                or, 
 

1

2
1

bP aP
Z

RT RT



 
   
 

. Now, putting 
8

C

C

RT
b

P
  and

2 227

64

C

C

R T
a

P
 , we get 

1

2

27
1

8 64
Z

 

 



  
 
 
 

. 

 
 Dieterici equation 
                              The ideal gas equation is id idP V RT , where idV  is the volume of 1 mole gas in which the 

molecules are assumed as point masses and thus it is the free space for the movement of molecules. idP is the 

pressure of the gas in which the intermolecular attraction is assumed to be zero and so the molecules can exert full 
thrust on the walls of the gas container during their wall-collisions. 
                When the equation is used for real gas, correction of the above two assumptions are needed. 
 
Volume correction 
                               In Dieterici equation for real gas, the volume correction is same as that done in van der Waals 
equation and it is  idV V b  , where V is the volume of 1 mole real gas and b is the effective volume of 

Avogadro number of molecules . 
 
Pressure correction 
                               In real gas, the molecules suffer attraction among themselves. The molecules which are inside 
the interior (bulk) of the gas, each molecule are surrounded by other molecules uniformly and the resultant 
attractive force on the molecule becomes nil. It means that the molecules in the interior behave like ideal gas. But at 
the exterior (near the wall), the molecule must have excess potential energy (A) to escape attraction of 
neighbouring molecules and hit wall.  
Thus the number density near the walls ( N  ) is less than that in the bulk ( idN  ).  

So,                                         
A

RT

id id

N P
e

N P


 


   or,    

A
RT

idP P e  ,  

where idP  is the pressure that the molecules would exert if there had not been any molecular attraction (ideal 

pressure) and P is the pressure when the molecules suffer attraction (real pressure). 
A is the excess potential energy of the molecules per mole of the real gas. 
Incorporating these two corrections, we have Dieterici equation as  

                                          
A

RTP e V b RT     or, ( )
A

RTP V b RT e


  . 

It is expected that A is inversely proportional to molar volume, V and so 
1

V
A  or

a

V
A  ,  
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where a  is characteristic constant of the gas but its value is not same as that in van der Waals equation.   

The Dieterici equation then becomes     ( )
a

RTVP V b RT e


  . 

The values of  a  and  b  are determined experimentally by fitting to data.  
 
Dieterici equation and van der Waals equation 

                 We have the Dieterici equation, 
a

RTVRT
P

V b
e





. Expanding the equation, we get 

2
1

1 .....
2

RT a a
P

V b RTV RTV

  
         

= 1
RT a

V b RTV
 
 

  
. [Neglecting higher terms] 

So, the Dieterici equation is P = 
 

RT a

V b V V b


 
. But at low pressures, the volume is large and so  

  2V V b V  . Putting this approximation, we get 
2

RT a
P

V b V
 


  or,   2

a
P V b RT

V
 

   
 

 which is van 

der Waals equation.  
So, the Dieterici equation and van der Waals equation would respond to the same extent at low pressures. 
The validity of the Dieterici equation can be compared by average experimental value and calculated value of the 
properties like Boyle temperature, critical co-efficient, CV /b  of the gases, etc. These values we first calculate using 

Dieterici equation and then match with average experimental values of the various gases. 
 

Relation between critical constants  , ,C C CV T P  and Dieterici constants ( a  and b ) 

                                              Putting a
c

RT
  in the Dieterici equation, we get 

c
VRT

P
V b

e





. 

Now,  
 

2 2
T

c c
V VP RT RT c

V V b VV b
e e
    

     
    

 = 
  2

P
P

V b

c
V

  


   and  

   

2

2 2 2 3 2 2 3

21 1 1 2
.

T T TT

P cP P P c P P c c
P

V b V V V V bV V V V VV b V b

   
        

      

          
                    

. 

At the critical point, both 1st and 2nd derivative would be zero, and P = PC, V = VC, and T = TC,  

thus, 
T

P

V

 
 
 

= 
  2

C
C

C C

P
P

V b

c
V

  


 = 0 and so 
  2

C
C

C C

P
P

V b

c
V

 


  or, 
  2

1

C CV b

c
V




….….(a) 

Again, 
 

2

2 2 2 3

1 1 2
0

T CC CT C

P P c c
P

V V bV V VV b

     
         

          

  or, 
 

2 3

1 2

CC

c

VV b




  ..………(b). 

From (a) and (b), we get 2CV b , and at the critical temperature,  

C

a
c

RT
 , so from (a),

   

2 2 24
4

2
C C

C C

V V b
c b

V b V b b b
  

  
  , thus 4

C

a
b

RT
   or,

4C

a
T

Rb
 . 

At the critical pressure, . C CC
C

C

a
RT VRT

P
V b

e





 = 
4

21
. .

4 2

b
ba

b b b
e



  or, 

2
2.

4C

a
P

b
e . 

Thus, the relations are                    2CV b ,   
4C

a
T

Rb
  and  

2
2.

4C

a
P

b
e . 

Critical co-efficient  =  
2

2 21 4 1
3.695

4 2 2
C

C C

RT a b

P V b b a
e e     . 
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Boyle temperature (TB) 

                                         When Dieterici equation is multiplied by V, we get 
a

RTVRTV
PV

V b
e


 


. 

So,  

   2 2
TT

a a
RTV RTV

PV RT RTV RTV a P

P V b V b VRTVV b
e e
 

     
                    

. But 0
T

P

V

 
 

 
 

At the Boyle temperature,   
0

T

PV

P

 
 

 

 and  BT T   so, 
   2 2

0B B B

B

RT RT V RT V a

V b V b RT VV b
   

 
, 

or, 
2

1 1
0B

B

RT

V b

a

V V b RT V

V


 
   

 
  or,  

 2

1 1

B

a b

V b V V V bRT V
  

 
 or, 

 
BRT

a V b

bV


 . 

But for the condition of Boyle temperature, 0P  and V is very large so, V b V  , and. BT
a

Rb
 . 

Comparison of the equations with experimental values 
                                                                                                 The table shows that Dieterici equation is  
                                                                                                  better but it has also limitations.  
                                                                                                  However, van der Waals equation is  
                                                                                                  simple and easy to handle  
                                                                                                  mathematically. 
                                                  
 
                                
 
 

 



                                                                                  THE LIQUID STATE – DR N C DEY  1 
 

THE LIQUID STATE OF MATTER 

Introduction: This state of matter has definite volume but no definite shape. It takes the shape of the 
container in which it is kept. This is due to the more intermolecular attraction than the gaseous state but 
less than the solid state.  In gas, the molecules are in a state of random motion as there is small 
intermolecular attraction while in liquid state, randomness of the molecules are in less random state. 
Liquid can flow like the gas and so these two are called fluid. From the above consideration, it is 
concluded that most properties of the liquid arise due to nature and magnitude of the intermolecular forces 
between the molecules. The important properties which we shall discuss in the chapter are:  
(A) Vapor pressure  (B) Viscosity (C) Surface tension one after another.    
 (A) VAPOR PRESSURE OF LIQUIDS: 
                    When a liquid is added into a closed evacuated container at constant temperature, we find 
that some molecules of the liquid pass from the surface into the space above it spontaneously. This is 
called evaporation. The molecules in the vapor phase collide with each other and also with the wall of the 
container like the gas. Some of the molecules in the vapor phase collide on the surface of the liquid and 
come back to the liquid phase. This is called condensation. Evaporation and condensation go on 
simultaneously. A stage is ultimately reached when the rate of evaporation is equal to the rate of 
condensation and a dynamic equilibrium is set-up between the liquid and its vapor. 
                            
 
 
At the equilibrium, the number density of molecules of the liquid  
phase and of the vapor phase remains unchanged. 
The molecules in the vapor phase are in chaotic random motion.  
They are colliding with the walls of the container and exert some 
 pressure. At equilibrium, this pressure is called vapor pressure of 
 the liquid and this pressure is the characteristic property of the liquid at a given temperature. Thus vapor 
pressure of a liquid can be defined as the pressure exerted by the vapors that are in equilibrium with the 
liquid at a given temperature. The vapor pressure of the liquid depends on: 
   (i) the nature of the intermolecular forces in the liquid, higher the intermolecular forces in the liquid less 
       will be evaporation and low is the vapor pressure of the liquid and  
  (ii) temperature. With increase in temperature, average kinetic  
        energy of the molecules is increased. The increased KE partly  
        overcomes the intermolecular attractive forces in the liquid 
        enhancing the escaping tendency of the molecules.  
        There occurs more evaporation and this results an increase 
        of equilibrium vapor pressure of the liquid.  
The vapor pressure of the liquid can be determined by manometer.  
Other several methods are there such as barometric method,  
isoteniscopic method, Ramsay and Young method etc.  
The vapor pressure of a liquid is determined at different temperature  
and when these vapor pressures are plotted against temperature,  
we have the above type exponential curve.  
The vapor pressure of the liquid is increased exponentially with temperature. The temperature at which 
the vapor pressure of the liquid becomes equal to the superincumbent pressure (usually atmospheric 
pressure), the liquid starts boiling.  So the boiling point of a liquid is the temperature at which its vapor 
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pressure is equal to the external pressure. When the external pressure is one atmospheric pressure, it is 
called the normal boiling point of the liquid. It is the characteristic constant of the liquid.  
The quantitative relation of variation of vapor pressure ( p ) of a liquid with temperature (T ) is given by 

Clapeyron equation (derived in the chapter, Chemical Thermodynamics) 

                                                        
 

vap

g l

Ldp

dT T V V



 

where vapL  is the molar latent heat of vaporization, gV  and lV  are the molar volume of vapor and liquid 

respectively. Since g lV V  so we can neglect  lV  in comparison to gV , and we get  

vap

g

Ldp

dT TV
 . If we assume the vapor obeys ideal gas equation, then, g

RT
V

p


 
and the equation becomes 

2

vapL pdp

dT RT
   or, 

2

vapLdp dT

p R T
  or, 

2

vapLdp dT

p R T
   or, 

1
ln lnvapL

p A
R T

 
   

 
 or, 

vapL
RTp Ae


  

(assuming vapL  to remain independent of T) and ln A  is constant. 

The equation shows that ln p  is a function of reciprocal of T.  

When ln p  is plotted against 1/T, it gives a straight line from the  

slope of which we can get the value of vapL . 

Again, if p  is plotted against T, the curve will be exponential type  

same as that obtained from the experimental data.  

The equation can be integrated within limits, 
2 2

1 1

2

p T
vap

p T

Ldp dT

p R T
      or,   2 2 1

1 1 2

ln vapLp T T

p R TT

 
  

 
. 

vapL  is assumed to remain constant between the temperature T1 and T2. p1 and p2 are the vapor pressure of 

the liquid at temperatures T1 and T2 respectively.  
This equation is helpful to determine molar latent heat of vaporization of a liquid by measuring vapor 
pressures at two temperatures. 
 
(B) VISCOSITY OF LIQUIDS: 
                                                Resistance to flow exhibited by liquids is known as viscosity. Because of 
this property some liquids flow slowly than the others.  For example, glycerene, castor oil, etc flow 
slowly while ether, ethanol, water, etc flow rapidly. Former liquids are called high viscous liquids while 
the latter liquids are called low viscous liquids. 
Flow of a liquid in a pipe: When a liquid flows through a pipe, all parts of the liquid do not move with 
equal velocity.  A thin layer immediate in contact with the wall  
of the pipe remains almost stationary. The velocity of flow of  
successive layers from the wall of the pipe increases and  
reaches maximum for the center layer. 

Thus there is velocity gradient,  xdv dz  of the flowing liquid.  

xv is the velocity of layer along x - axis (along the pipe) and z is the distance of the layer from the wall 

of the pipe 
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Origin of viscosity in liquid: 
                                                   When a higher moving layer slides over the lower moving layer, there 
occurs internal friction between the layers. Due to this internal friction, slower moving layer exerts 
resistance to the faster moving layer and the flow of the higher moving layer is retarded. This internal 
friction originates in liquid due to intermolecular attraction between the layers. This is evidenced by the 

fact that viscosity of the liquid decreases with increase of temperature, i.e.
𝜕

𝜕𝑇
 = (-ve). 

Co-efficient of viscosity: Newton’s law of viscous flow is given by  x
v

dv
f A

dz


 
   

 
, 

where    is the viscosity coefficient of a liquid. It is the characteristic constant of the liquid at a given 

temperature and pressure. It is a measure of the viscosity of a liquid. Higher the value of  of a liquid, 

slower is its flowing tendency. 
                             The unit of  in CGS system is poise according to the name of the scientist, Poiseuille 

which is equal to dyne cm-2 sec and in SI system it is Pa. s which N m-2 sec. 1 Pa.s  = 10 poise. 
The dimension of   is M L-1 T-1 or M/LT. 

Fluidity (𝜑) of a liquid is the reciprocal of viscosity ( ) i.e., 𝜑 =  
1


.  It measures the flowing tendency 

of a liquid. 
Kinematic viscosity: In some fluid-flow, the ratio of viscous force ( ) to the inertia force (ρ) is 

important. Flow depends, apart from ( ) , on density (ρ).  The ratio (  / ρ) is thus defined as kinematic 

viscosity of the liquid. This viscosity is very often used in engineering work to compare the flowing 
property of different liquids. It is defined as,   kinematic viscosity = viscosity coefficient ( ) / density. 

It is expressed in stoke unit. One stoke = (gm cm-1sec-1)/gm cm-3 = cm2 sec-1. 
Mass factor of the liquid is absent in this viscosity of the liquid. 
Type of liquid-flow: 
                                 (i) Laminar flow:  When the viscosity of discharge of a liquid in a tube is low, all 
the layers of the liquid move parallel to each other. This flow is called laminar flow or streamlined flow 
(lamina → 𝑙𝑎𝑦𝑒𝑟). 
The velocity of the fluid (both liquid and gas) at any particular point is  
always same in magnitude and direction. Hence two streamlines do not  
cross each other. 
Newton’s law of viscous flow is only applicable to this laminar flow. 
                                 (ii) Turbulent flow:  
When the rate of discharge of the moving liquid  
is high, the condition of streamline flow is not  
maintained and turbulent (broken) flow starts.  
The streamlines crowd as the velocity of flow  
increases.  The velocity of the liquid at a point  
varies with time irregularly.   
 
Reynold Number (Re):  

                                     Reynold suggested that when the value, 
𝑑𝜌𝑢


,  a dimensionless quantity , called 

Reynold number (Re) exceeds a certain value (≈ 1150), turbulent flow starts. 
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Thus,        eR
d u




   , where a liquid of viscosity coefficient,  and density, 𝜌 flows through a tube of 

diameter, d with velocity u . Re is dimensional quantity since   
𝑑𝜌𝑢


=  

𝑐𝑚×𝑔𝑚𝑐𝑚−3×𝑐𝑚𝑠𝑒𝑐−1

𝑔𝑚𝑐𝑚−1𝑠𝑒𝑐−1  = unitless so 

dimensional quantity. 
Approximately, the following conditions are followed for the liquid-flow.  When, 
                              Re < 1000, laminar flow occurs. 
                              Re ≈ 1000 – 1500, turbulent flow starts, a transition zone. 
                              Re > 1500, definite turbulent flow persists. 
Thus when a capillary tube is used, d is very small and the flow becomes streamlined especially when the 
velocity of discharge of the liquid through the capillary is low. This is why capillary tube is used in the 
measurement of viscosity of a liquid. 

Formulation of Poiseuille Equation, 
4Pr

8

t

lV



 

 
 

: 

Let us consider the streamline flow of an incompressible fluid (here we take liquid) through a capillary 
tube of radius r  which is large compared to the mean free path of the liquid (so that molecules cannot 

bounce between the walls which they invariably do in diffusive flow). Let the length of the tube be l . 
Fluid at the wall is at rest and the velocity of liquid is maximum at the centre of the tube. Let v  be the 
velocity of the layer at any distance z from the central axis and it varies from 0 to r . 
  
 
 
 
 
 
 
 
 
 

Newton’s law viscous flow for laminar flow, x
d

dv
f A

dz


 
  

 
,  where  xdv

dz
 
 
 

= velocity gradient and as z 

increases xv increases, df = driving force of the liquid flow and  A = area of the contact of layers. 

Let us consider the liquid layer which is z distance away from the centre of the tube. For this layer, the 

above equation becomes as : df  = 2P z , where 1 2P P P  = pressure difference of the two ends of 

the tube. 

2A zl  and xdv dv

dz dz
   

   
  

 since as z increases, v  decreases, when , 0z r v  . 

Putting the values, we get 2 2
dv

P z zl
dz

  
 

    
 

  or, 
2

P
dv zdz

l
  . 

 Integrating within limits,
0 2

v z

r

P
dv zdz

l
    or,  2 2

4

P
v r z

l
  .  
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Now the total volume of the liquid flowing through the tube in unit time  i.e. rate of liquid flow, 

           
4 4 4 4

2 2

0 0

Pr 1 1
2 2

4 2 2 4 2 2 4 8

r rdV P P r r P r
zvdz z r z dz

dt l l l l

  
 

   

   
          

  
  . 

Thus the Poiseuille equation for the rate of fluid (liquid or gas) flow , 
4

8

dV Pr

dt l




  is derived. 

Since the fluid flow is steady, hence 
dV V

dt t
    i.e. V volume flowing in time t , so the equation is  

4

8

P r t

lV


  .  J L Poiseuille formulated the equation in 1844 from Newton’s law of viscous flow. 

           This equation is applicable to incompressible fluid executing a streamlines flow in a tube. 
 
 
Determination of viscosity coefficient ( ) of a low viscous liquid: 

(i) Using Poiseuille equation directly. The Poiseuille equation  

     is given as 
4Pr

8

t

lV


  which is valid for laminar flow only.  

     Here V  is the volume of liquid of viscosity coefficient ( )  

     flowing in a capillary tube of radius r  and length l under  

     constant pressure difference, P in time t .  
To determine  of a liquid, all the terms of the right hand side  

of the equation are to be determined.  
The radius of the capillary ( r ) is determined by inserting a  
mercury pellet into the tube and  
the mass ( m ) and length ( x ) of 
the pellet are measured by using  

balance and travelling microscope.  Using the relation, 2
Hg Hgm r x  , r  can be calculated. 

This method provides the absolute value of  of a liquid but the method is time consuming. Further a 

small error in the determination of r  makes a large error in the value of viscosity coefficient, a r remains 
in the 4th power in the expression of  .        . 
Problem: If there is 1% error in the value of r, the radius of the capillary, what will be the error in the  
                 viscosity coefficient value calculated using Poiseuille equation.                  

Solution: 

4
4P r

8

t
k r

lV


   , where 

P

8

t
k

lV


  so,

34d k r dr  , or 

3

4

4d k r dr

k r




 , or 4

d dr

r




 . 

                   But the % of error in r = 1%  i.e., 
dr

r = 1 %, so 4%
d


  i.e., error in   = 4 %. 

 

(ii) Using Oswald viscometer:    
                                        Easy way to determine the relative viscosity coefficient of a liquid with reference 

to water   l w   is done by using Ostwald viscometer. 
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This viscometer consists of two bulbs at different height as shown in the figure.  
The bulb in the wider tube is first filled with the liquid and then it is sucked up  

in the left hand limb up to level 1a . The liquid then flows down through the  

capillary ( c ) and time ( lt ) required to fall from level  1a  to 2a is carefully noted. 

The experiment is repeated with water in the same viscometer with same volume  

of the liquid by pipette. The corresponding time ( wt ) is also noted.  

Thus for liquid, the Poiseuille equation is  

          
4

8
l l

l

h gr t

lV

 
   and for water

4

8
w w

w

h gr t

lV

 
  . So, l l l

w w w

t

t

 

 
  

or, l l w w

l w

t t 

 
  i.e. 

t


 is constant for a viscometer for all runs. So, l l

l w
w w

t
t


 


     
  

. 

Density of the liquid ( l ) is determined by specific gravity bottle. Both  lt  and wt  are noted by 

stopwatch. Density and viscosity coefficient of water are obtained from standard text book of physical 
chemistry.   
Precautions of the method: Temperature should be kept constant by using thermostat.  
                                            The capillary must be cleaned width chromic acid, water, etc before using. 
                                            The viscometer should be placed vertical and any sort of mechanical jerking  
                                            must be avoided. 
(iii) Using Stokes law:  [Generally used for high viscous liquids] 
          When a metal ball of spherical in shape falls freely in a fluid, the viscous force develops that resists 
the fall of the ball. The layer of fluid, in contact with the ball moves with zero velocity (no-slip layer), a 

velocity gradient develops in the fluid surrounding the sphere. This gradient generates a viscous force, vf  

resisting the sphere’s motion. This viscous force is found to be proportional to the velocity of the ball ( v ) 

provided, v is not very high, vf kv , where k is called frictional constant. Stokes proved that for a solid 

sphere of radius, r  moving at speed, v  through a Newtonian fluid (the fluid that obeys Newton’s law of 
viscous law) of viscosity,   the viscous force is 

                                                        6vf rv                           This is called Stokes law. 

In this determination, liquid is generally taken in a tall cylinder and spherical metal ball is allowed to fall  
                                                      in the liquid. The driving force of the ball is due to gravitational force  
                                                      acting on the ball. 

                                                                      34

3df r g  ,           where  is the density of metal ball.     

                                                      This force is again is resisted by the buoyancy force and it results from 
                                                      the greater fluid pressure below the body than above it. This force is  
                                                      equal to the weight of volume of liquid that is replaced by the body. 

                                                                    34

3buoy lf r g  ,           where l is the density of the liquid.  

                                                      When the driving force on the ball is equal to the opposing force,  
                                                      the ball falls with steady velocity.  

                                                                d buoy vf f f    or,  3 34 4
6

3 3 lr g r g rv        
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or, 3 34 4
6

3 3 lrv r g r g       or,  34
6

3 lrv r g    
       

or,        
22

9 l

r
g

v
                                                                                                  

If the ball falls l  distance in time t , then 
l

v
t

  and so,       
22

9 l

r t
g

l
     

Determination of all the terms of the RHS gives the absolute value of viscosity coefficient ( ) of the 

liquid. 
Relative viscosity: When water is taken as reference liquid and same ball is used to fall between the same 

two marks of l  distance then ,  

     l l
l w

w w

t

t

 
 

 

  
   

  
and w  is obtained from the text book at the temperature of the experiment.   

Problem:  A steel ball of radius 32 10 m falls in a vertical column of castor oil. The coefficient of  

                  viscosity of castor oil is 20.7Nm s  and its density is 3 30.98 10 kg m . The density of the 

                  steel ball is 3 37.8 10 kg m and 29.8g ms . Find the terminal velocity of the steel ball. 

                                                                                                                                  [ Burd. Univ. 2006]    

Solution:  
 

 

232
3 3 2

2

2 102 2
7.8 0.98 10 9.8

9 9 0.7l

mr
v g kg m ms

Nm s
 










       

                       6 32 4 10 6.82 10 9.8 9 0.7 / 0.085 /m s m s                              

Temperature – dependence of viscosity coefficient of liquid 
                                 It is our common experience that viscosity varies with temperature. Honey, syrup, 
coal tar flow more rapidly when heated. Engine oil and hydraulic fluids thicken appreciably in winter 
season and significantly affect the performance of cars and other machinery.   
 Qualitative aspect of T-dependence: In general, viscosity of liquids decreases with rise of temperature. 
                                                          As temperature increases, average speed of the molecules is increased 
resulting higher translational kinetic energy and this allows overcoming intermolecular attractions more 
easily.  
Quantitative aspect of T- dependence: Dependence of   on T is quantitatively expressed as  

                                                             vE RTAe  , where 
v

E = activation energy of viscous flow and A is 

constant for the liquid. The above relation can be formulated as follows: 
In order to move, a molecule in a liquid must escape from its equilibrium position so it needs a minimum 

energy. The probability that it can acquire at least energy vE  is proportional to vE RTe  (assuming two 

dimensional flow in layer). The mobility (fluidity) of the liquid should follow the Boltzmann energy 

distribution law and fluidity ( )  vE RTe . Since viscosity ( ) is reciprocal to fluidity, 

                   so vE RTe    or, vE RTAe  , where A is proportionality constant, characteristic property 

of the liquid.  vE  is the activation energy of the viscous flow per mole and it is also the characteristic 

property of the liquid. 

When 0T K  or, vE    ,   , the liquid ceases to flow in either of the two cases. 

Again, taking logarithm of both sides, we have 
1

ln lnA vE

R T


 
   

 
.  
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Thus when ln  is plotted against  1 T , a straight line is obtained 

 from the slope of which  vE  can be determined.  

      Again, lnA ln , when 1 0T    i.e. T  . 

However, in drawing the plot, problem is that data points obtained are very  
close for small range of 1/T. 
So the slope and intercept obtained from the plot are liable to uncertainties.   

The above equation in two temperatures gives   2

1 2 1

1 1
ln vE

R T T





   
    

   
.  

This relation is also used to calculate vE  of a liquid.     

Problem: The viscosities of water are 0.018 and 0.009 poise at 0oC and 25oC respectively. Calculate the  
                 average value of the viscous activation energy assuming it to be independent over this  
                 temperature range.                                                                                                [Burd. Univ.] 
 

Solution: Putting the values in the relation,

 

2

1 2 1

1 1
ln vE

R T T





   
    

       

                   

1
1 1

0.018 1 1
ln

0.009 2 273 298
vE

K
cal mol K



 

   
    

      or,    
1

25
ln 2

2 298 273
vE

cal mol
 

  
   

                            
  1 12 298 273 ln 2 / 25 4511.22vE cal mol cal mol     

                                          

                 

 
Pressure- dependence of viscosity of liquids: 
                          The viscosity of a liquid is increased with the pressure over the liquid is increased. 
 With increase of pressure, number of holes is reduced and it is therefore more difficult for liquid to 
move. [Exception: water, its   decreases with increase of pressure over it.] 

Addition of solutes: 
                                    Stronger the cohesive forces in a liquid, higher will be its viscosity. The factor that 
reduces cohesive forces, should lead to the decrease of viscosity of the liquid. Ionic salts reduce cohesive 
forces and hence in general it lowers the viscosity of the liquids.  
Factors that increase   of a pure liquid:                                        

                                   Viscosity of a liquid is found to increase with the increase of molecular weight of 
the liquid and also with branching of the organic liquids. 
                                   Liquids having H-bonding have also high viscosity such as, glycerol, water, etc. 
Determination of molar mass of a polymer: 
                                    Viscosity measurement of a polymer solution can be used to determine the molar 
mass of the polymer. When a polymer is dissolved in a suitable solvent, its viscosity ( ) is increased. 

Let   and 0  are the viscosity coefficients of the polymer solution of conc. c (gm/L) and pure solvent, 

then relative viscosity ( r ) = 0  and specific viscosity ( sp ) =  0 0   . 

The reduced viscosity, red sp c  . Thus the reduced viscosity ( red ) =  0 0 c     . 

If reduced viscosity ( red ) is plotted against conc. ( c ), a straight line is obtained. 
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 The extrapolated intercept is called intrinsic viscosity, [ ]  which 

 is 0sp cc 
   . It may be called as the fractional change in the  

viscosity  of a solution per unit conc. of polymer solution at infinite 
 dilution.  

This [ ]  depends on the molar mass of the polymer. The empirical  

relation proposed by Flory is          [ ] K Ma   

K and a are constants depending on the solvent, polymer-type and 
 temperature of the solution. 

If a  = 1, M is weight average molar mass ( Mw ) of the polymer. 

                                      1 1 2 2 3 3

1 2 3

........

................ i i

w M w M w M
Mw f M

w w w

   
   

   
, 

where 1 2 3, ,w w w  are the weights of polymers having molar masses 1 2 3, ,M M M , etc.  

 and if  = weight fraction of the polymer of molar mass iM . 

When 1a  , M lies between Mw  and nM , and sometimes called viscosity average molar mass of the 

polymer. nM  = number average molar mass  = 1 1 2 2 3 3

1 2 3

........

................

n M n M n M

n n n

  

  
  = i ix M ,  

where  ix  = mole fraction of the polymer of molar mass iM . 
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SURFACE TENSION OF LIQUIDS 

Origin of the property: 
                                          Surface tension of a liquid is the surface property and it can be related to the 
intermolecular attraction present in the liquid. 
                                    Let us consider a molecule A in the bulk of the liquid. It is uniformly surrounded 
by other molecules and on an average it is attracted from all  
directions and the resultant force on it becomes nil. But the molecule B on  
the surface is partially surrounded by other molecules and experiences a  
resultant inward pull as a result of which, molecules on the surface try to  
leave the surface and enter into the bulk of the liquid. The liquid surface is 
under tension and tries to contract to get minimum surface area.  
This unbalanced force of attraction on the surface molecules of a liquid is  
the origin of the property, surface tension. Higher the intermolecular  
attraction force (cohesive force), greater is the magnitude of surface tension  
of the liquid. 
 Demonstration of inward pull of silk thread:  
Inward pull on surface molecules towards the bulk of the liquid 
can be demonstrated by the stretching of a silk thread in a liquid 
film of a circular wire when one side is punctured. 
Consequences of surface tension of liquids:   
 Liquid assumes a shape that has a minimum surface area, because  
that enables the maximum number of molecules to remain in the  
bulk rather than on the surface of the liquid.  
For this reason, droplet, when it falls freely, takes the spherical shape since this shape has surface/volume 
ratio minimum. If we drop some olive oil into a mixture of water and alcohol having same density as the 
oil, oil drops take spherical shape and float freely in the mixture. Lead shots are made by allowing molten   
lead to fall into a pool of water through a sieve at the top of the tower. 
                                        Other consequences of the property are the formation of bubbles of gas in a 
liquid, floating of needles on water surface, capillary-rise and capillary-fall of liquid, etc. 
Definition of surface tension (  ) :  

                                         Since the surface is under tension, any attempt to make a penetration along any 
line on the surface will require an application of force to hold the separate portions of the surface 
together.   
This force is called surface tension and is denoted by   (gamma). It is expressed as force per unit length 

acting at right angles to the line along the surface of the liquid. Its unit is dyne/cm in CGS system and  
1Nm  in SI system. The dimension of   is 2MT  . 

 Stretching of a liquid film:  The meaning of surface tension is better understood by the following  

                                              experiment. The force, f required to stretch the film 

 is found to be proportional to the length of the piston ( l ). Since there are two  

surfaces of the film, the total length of the film is 2l . So  2f l  or,  2f l . 

The proportionality constant,   is known as surface tension of the liquid and it  

can be looked upon as force exerted by a surface of unit length. 
                                  This increase of surface area of the liquid film against its natural tendency to 
contract will require performance of work.  
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                                                 The work required = oppf displacement  

                            i.e.  2w l x    =   2l x    = A    and so, w A   . 

                      So w is also the surface energy associated with the surface area, A .  
Thus the surface tension (  ) may also be defined as the work required to increase the surface of unit 

area.   is equivalent with the surface energy per unit area though unit of latter is erg cm-2 or  Jm-2 but 

both have the same dimension 2MT  . 
Thermodynamics of the property:          
                                       Surface work is additional to PV-work so we regard it as a contribution to the 
Gibbs free energy of the system. The free energy change due to change in surface area ( dA ) of a liquid  
is given by  

                            dG SdT Vdp dA        for one-component closed liquid system. 

At constant T and P,    ,T PdG dA .    For spontaneous process, , 0,T PdG   and so dA 0 . 

This means that surfaces has natural tendency to contract as a system tends to attain smaller free energy 
(G), so it tends to acquire smaller surface area of the liquid. 

Problem: A liquid drop of radius R and surface tension   breaks up into n  tiny droplets of equal size. 

                 Show that the change in surface energy is given by 
12 34 (n 1)R   .    [Burd. Univ. 2008] 

Solution:              3 34 4

3 3
R n r     or, 3 3R nr   or, 

1
3R n r  or, 

1
3r R n . 

                  Increase of surface area = 2 24 4n r R    =  
21 234 4n R n R   = 2

2 3
4 1

n
R

n


 
 

 
 

                  So increase of surface area =  2 1 34 1R n   and increase of surface energy =  2 1 34 1R n   . 

Problem: 1 cc of water is broken into droplets having a radius of 510 cm. Calculate the surface energy of  
                 the droplets relative to that of water. Given surface tension of water = 72.7 dyne/cm. 

                                                                                                       [Answer : 72.18 10  erg] 
Wetting and non-wetting liquids: 
 Definition of angle of contact:    Liquids can be classified into two types depending on their ability to wet 

the solid surface . Let us first define the angle of contact ( ) that measures the extent of wetting of the 
liquid. It is defined as the angle between the tangent to the liquid surface at the point of contact and the 
solid surface inside the liquid. Greater the angle of contact less is the wetting. 
Difference of behaviors of wetting and non-wetting liquids:   
 

  
                                   ) 
 
                       

   For example : water on glass surface, ( 18o  )       For example : mercury on glass surface ( 140o  )  
  (1) Wetting liquid has tendency to spread on the        (1) Non-wetting liquid has a tendency to remain 
          solid surface.                                                                   detached from the solid surface. 
(2) The liquid meniscus in the capillary tube is             (2) The liquid meniscus is convex upwards and so  
     concave upwards and so there is rise of liquid                      there is  fall of the liquid in the tube 
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     on the tube.  
(3) Intermolecular attraction between the liquid            (3) Intermolecular attraction between the liquid  
      molecules (cohesion) is less than that between               molecules (cohesion) is greater than that                                                                                                 
      the liquid molecules and solid molecules                        liquid molecules and solid molecules   
       (adhesion)                                                                        (adhesion)        
                 i.e. cohesion <  adhesion.                                               i.e. cohesion  >  adhesion.       
It is interesting to note that water cannot wet feather of birds so they can fly in the rain also.  
Water also cannot wet the leaves of lotus on the ponds. 
Condition of wettability: 
                              When a liquid drop remains stable of a solid surface, the following forces are balanced 
 with themselves along the line of contact. 

           cossg sl lg         or,     cos sg sl lg      

(1) When the liquid wets the solid surface,  90o  and  

      cos 0  ,  so sg sl    and the liquid spreads over 

      the solid surface. That is, lower the interfacial tension 

      sl , smaller the value of   and   greater is the wettability of the liquid over the solid.  

(2) When the liquid does not wet the solid surface, 90o  ,  cos 0  , so sl sg  . That is higher the  

      interfacial tension  sl
 
between solid and liquid, less is the wettability of the liquid on the solid  

      surface. The liquid does not spread more.  

      The equation does not hold if  lgsg sl    .  

      In that case,   sg sl lg     and cos 1   which is not possible. 

      Again, when   sg sl lg    ,  cos 1    or, 0o   i.e. solid is completely wet.   

(3) Similarly, if  sl sg lg    , then cos 1   ,   cos cos180o    or, 180o  and liquid does not  

      wet at all. The equation does not hold. 
Excess pressure on the concave side of a bubble: 
 Difference among bubble, cavity and drop:   Bubble is either a thin liquid film in which air and vapor are 
trapped or cavity that contains full of vapor in a liquid. Former has two surfaces while cavity has only 
one. The treatment of both is much the same, but factor 2 in the case of bubble is to be added. The drops 
are spheres of liquid in equilibrium with the vapor.  
Bubble inside a liquid:   
 Let a cavity inside a liquid of radius r is decreased to radius r dr . 

The surface energy is decreased =  24 8dA d r r dr         . 

The amount of work done by the cavity to do so 

      = 34
4

3oppP dV Pd r P rdr 
 

       
 

. 

 Equating the two we have   4 8P rdr r dr           or,   2excessP r  . 

So the excess pressure inside the cavity (concave side) within the liquid is  2excessP r   . 

When we consider the bubble suspended in air, 4excessP r since it has two surfaces. 
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Alternative formulation: The bubble inside the liquid remains in equilibrium ( r  remains time-invariant). 
                                        This is due to the fact that the tendency to decrease their surface area is balanced 
by excess pressure inside. The cementing force that tends to decrease the surface area is for surface 

tension of the liquid forming the film and for the outward pressure, outP . We know work required to 

stretch the surface of the bubble through radius dr  is given by,  24 8w dA d r r dr        . 

But work is force (opposing)  displacement. So the force opposing stretching through the distance, dr at 

the radius is 8 r  . Thus cementing force = 24 8outr P r   . The disrupting force  is due to the inward 

pressure, inP  and it is equal to 24 inr P . Since the bubble is stable, these two forces are equal and so 

        2 24 4 8in outr P r P r     or, 24 ( ) 8in outr P P r     or, 2excessP r  .  

Excess pressure over plane surface:  Thus we see that pressure inside a curved surface is always greater  
                                                             than the pressure outside, difference drops to zero as the radius of 

curvature tends to infinity (for flat surface). Since 1P r  for a liquid, smaller bubble requires higher 

pressure for its formation and maintenance. This is in agreement with our experience of blowing a 
balloon. It is difficult to blow initially but becomes easier as the size of the balloon increases.  

The excess pressure is high as r  is small. For example, excessP  in a bubble of radius 0.01 cm,  

 excessP  = 14,600 dyne/cm2 which is enough to sustain about 15 cm column of water. 

                                 [
1

3 2

2 2 72
14.7

1 980 sec 0.01

dynecm
h cm

gr gmcm cm cm







 


  

 
]. 

Problem: A soap bubble is suspended in air with volume 6  cc. Calculate the excess pressure inside  

                 the bubble if interfacial tension of soap solution and air is 27 dyne/cm. 

Solution: 3 34

3 6
r cm


 

 
or, 3 38r cm  or 2r  cm. So, 

2
excessP

r


  = 

12 27
27

2

dynecm

cm


 dyne/cm2.    

Problem: Two limbs of a vertical U-tube have internal diameters 0.5 mm and 0.3 mm respectively.  
                  It is partially filled with a liquid of density 0.3 gm/cc. The surface tension of the liquid is  
                  60 dyne/cm. What is the difference in the levels of the liquid in the two limbs? 

Solution: The difference of pressure between the two limbs, 
2 2 1 1

2P
r r r r

 

 

       
 

                             or,  
1 1

2h g P
r r

 
 

      
 or, 2 1 1

h
g r r





 
    

  

                              or,  
1

3 2

2 60 1 1
10.87

0.3 981 sec 0.015 0.025

dynecm
h cm

gmcm cm cm cm



 

 
    

  
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Explanation of capillary-rise and capillary-fall phenomena: 
 Capillary-rise for wetting liquid:  When a glass capillary tube is immersed in water or any liquid that 
wets, there occurs a rise of liquid inside the capillary. It is called capillary action. 
                                                       Explanation: The liquid wets the inner wall of the capillary and thereby  
                                                                              surface area is increased. To decrease of surface area, the  
                                                      liquid must rise within the tube. As soon as this happens, however, the 
                                                      glass is again wet and again the liquid draws itself upwards. The process  
                                                      stops when the force of surface tension acting upwards becomes equal  
                                                      to the force due to column of liquid acting downwards.                                                     

                                                         2upf r  (approx. for wetting liquid) and 2
downf r h g  .  

                                                      The process stops when they are equal.  

                             Equating, 22 r r h g     or, 2 ( )h gr    or,  (h ) 2gr  . 

                              2 ( )hr g   = constant for a liquid at a given temperature.  

                                      Thus, h  vs. r  plot is a rectangular hyperbola. 
 
Capillary-fall for non-wetting liquid: In similar way, it can be shown that there will be capillary-fall for 
the liquid that does not wet the solid surface, such as mercury in glass tube.  
The formulation also helps to determine the surface tension (  ) of a liquid.  

Determination of Surface Tension of a Liquid: 
(a) Capillary-rise method:  Rise and fall of liquid in a capillary tube is due to surface tension. Let us take  
                                            a wetting liquid and it rises in the capillary tube until the vertical component 
of the lifting force is balanced by the weight of the liquid in the capillary tube.  

                                                          Lifting force (upward force) = 2 cosr   , where r is radius of  

                                                              the tube and it is also the radius of the curvature of the liquid  

                                                             meniscus [ coscr r   and cos 1  for wetting liquid so cr r ].                                                       

                                                                  The weight of the liquid (downward force) = 2r h g v g   ,    

                                                                      where v is the volume of the liquid in the meniscus itself 
                                                                       = volume of the cylindrical tube of radius r and length r 
                                                                           – volume of empty hemisphere within the meniscus  

                                                                              = 2 3(1 2) (4 3)r r r      31 3 r .   

                                                          So the downward force = 2 3(1 3)r h g r g     = 2 1
(h r)

3
r g                                                           

At equilibrium, the two forces are equal, so 2 r
2 cos (h )

3
r r g        or,  

 3

2cos

h r g r





 .                                      

For more accurate,   is sometimes replaced by l v 
   thus,    

 3 ( )

2cos
l vh r g r 




 
 . 

However, for most wetting liquids, cos 1   and h r , so  1 2 h( )l v gr    . 
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Problem: For water-air interface at 25oC and 1 atm, calculate the rise in a capillary tube with inside  
                 diameter 0.2 mm. The surface tension of water at 25oC is 72 dyne/cm. The density of air  
                 and water at 25oC and 1 atm are 0.001g/cm-3  and 0.997 g/cm-3. (g = 981 cm sec-2). 

Solution:   
1

2 l ah g r     or, 
 

2

l a

h
g r



 



= 
  3 2

2 72 /

0.997 0.001 981 sec 0.01

dyne cm

g cm cm cm 



  
 

                                                             = 14.74cm .  

 

Approximate working formula: Again, l v   and so for approximate measurement, working formula, 

                                                              =   1 2 h gr .                                                                      

Since   is not accurately determined, so this method does not give very accurate result. 

For non-wetting liquids, h  is depression of the liquid level in the capillary tube. 

For determination of  , h is determined by travelling microscope,   is determined by specific gravity 

bottle, r  is determined by inserting a mercury-pellet and determining the mass of the pellet.  
Precaution:  Only precaution of the method is that the capillary must be well-cleaned and immersed 
vertically. 
Relative surface tension:  Relative surface tension of a liquid with reference to water using same capillary   
                                          tube can be determined more easily.  

                                                                       l w l w l wh h      . 

   w and w  are obtained from the Text Book of Physical Chemistry at the temperature of the experiment    

(b) Drop-weight or drop-number method: 
       Theory of the method: The liquid whose surface tension is to be measured is allowed to pass very  
                                            slowly through a capillary (called stalagmometer) tip. The liquid falls as  
       cylindrical drop at the mouth.  Just at the point of detachment of the drop from the capillary tip, the  

 upward force ( 2 r  ) is balanced by the downward force which consists of the weight ( mg ) of the  

drop and the excess pressure ( r ) inside the cylindrical drop for its curved surface. Thus, 

                                          22 r mg r
r


         or,   

mg

r



  

Though the formulation is approximate, yet the relative value with respect 
 to a reference liquid (usually water) works well.  

                                        l l

w w

m

m




    or, l

l w
w

m

m
   . 

Drop-number method:  However this can be replaced by drop-number  
                                      method. The number of drops obtained for the  
same volume, say V ml of the liquid and water are counted.  

Thus,              
 

 
l ll

w w w

V nm

m V n




 ,     so         l w

l w
w l

n

n


 



   
     

   
. 

Precautions: The liquid is allowed to drop slowly and stalagmometer must be cleaned. During the fall of 
the liquid, air current or mechanical jerking is avoided to get accurate result. 
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Effect of Temperature on Surface Tension: 

   decreases with rise of  T and vanishes at cT :   As the temperature of a liquid, in equilibrium with its 

vapor, is raised, the phases becomes more and more alike. The number density of both the phases tends 
towards the same value. Inward pull on the surface molecules towards the bulk decreases, so the surface 
tension of the liquid is also decreased. 
                      At the critical temperature, the liquid-vapor interface disappears and the surface tension of 

the liquid vanishes i.e., when cT T , 0  . 

Eotvos equation:  R. Von Eotvos found that molar surface energy   
2

3k Mv  
  

  varies linearly with 

temperature in degree celsius (toC), assuming the molar volume of the liquid as spherical shape. 

[Formulation of molar surface energy:  Using spherical shape, the molar volume,   34 3Mv R , 

where R = radius of the spherical mass and v the specific volume of the liquid, so  
1 33

4
R Mv



 
  
 

. 

The molar surface area = 24 R   
2 3

2 33
4

4
Mv



 
  

 
 =  

2 3
k Mv  and  

2 3
k Mv  is the molar 

surface energy.] 

Thus, Eotvos observation is  
2 3

k Mv k t c      or,  
2 3

Mv k t c    , where k k k  . 

      When ct t , 0  , so  0ck t c    or, cc k t . Thus Eotvos relation is    
2 3

cMv k t t   . 

But Ramsay and Shield found that  drops to zero approximately at 6ct  . So the modified relation is 

                                            
2 3

6cMv k t t    . 

Value of k : For normal and non-associated liquids, 2.1k   when  
  is measured in the cgs unit. For water, alcohol, carboxylic acid  

(associated liquids) k  is less than 2.1 and k  increases with  
temperature. 
Empirical relation:  When specific volume ( v ) is assumed to be  

temperature independent, then  
2 3

Mv  is constant. Again, if temperature is in Kelvin scale, the 

273ot C T   and 273c ct T  , the empirical relation becomes      ck T T   . 

Problem: Surface tension of ethyl acetate ( 523cT K ) is 25 dyne/cm at 0oC. Find its value at 50oC. 

Solution:  ck T T    or,  25 / 523 273dyne cm k K    

                or,   1 1 1 125 250 0.1k dynecm K dynecm K     ,   

                so   1 1 10.1 523 323 20dynecm K K dynecm        
. 
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Vapor Pressure over a Curved Surface (Kelvin Equation): 
                                 To derive the effect of curvature of liquid surface on vapor pressure, we may recall 
the expression of dG  of a system that includes the change in surface area ( dA ) also. 

                                                    i idG SdT VdP dA dn       . 

For one component (pure substance) open system,  dG SdT VdP dA dn      . 

Last term ( dn ) in the equation gives the change in G when dn moles of the substance are added to the 

system at constant T and P without changing the surface area of substance (planar surface).  

         So for planar surface, we can write    , ,T P A PlanardG dn  

 or, we can define chemical potential of the substance at constant T, P having planar surface 

                                                          , ,Planar T P A
G n    . 

It is the chemical potential of the component substance when it has planar surface at constant T and P. 

However, when dn  moles of the substance are added to the spherical droplet, there occurs an increase of 

surface area ( dA ).  [For a sphere, 24dV r dr   and  8dA rdr , so  2dA dV r ] 

Thus, addition of dn  moles of the substance increases the surface area,  

                        2 2 2
dV Vdn M

dA dn
r r r

 
    

 
,   where  is the density of the substance. 

So the free energy change of a substance including surface area is given by 

          2 planar

M
dG SdT VdP dn dn

r
 



 
     

 
  or,

2
planar

M
dG SdT VdP dn

r






 
     

 
. 

              At constant T and P, free energy change of the substance, ,

2
T P planar

M
dG dn

r






 
  
 

 

Thus the chemical potential of the substance (liquid) when it is in droplet (convex curved surface) 

                              
,

drop
T P

G

n


 
  

 
      or,        

2
drop planar

M

r


 



 
  
 

 . 

       Now, 
2

drop planar

M

r


 


  ,    but  

0

lndrop planar

p
RT

p
    [vapor obeys ideally]  

  It is the change in chemical potential of the substance when 1 mole is transferred from planar surface 

(vapor pressure, 0p  ) to the droplet (vapor pressure, p ). Therefore,                                         

                                      
0

2
ln

p M
RT

p r




   or, 

0

2
ln

p M

p r RT




    (Kelvin equation) 

Since all the terms in the RHS are (+ve), so 0p p  i.e., vapor over a drop (convex surface) is greater 

than the planar (flat) surface. Smaller the radius of curvature, higher will be p  than 0p .    

The vapor pressure of water as a function of radius of curvature of the surface is shown below at  25oC, 

                          ( )r cm         0p p               ( )r cm         0p p        

                          10-4              1.001                 10-6            1.111,             0p = 23.75 mm at 25oC 

                          10-5              1.011                10-7             2.88                                       
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But when the liquid is transferred to the concave surface, the surface area is decreased and free energy 

change due to surface tension is dG dA  . The Kelvin equation becomes 

              or,    
0

2
ln .

p M

p r RT




  , so     

0

ln ( ve)
p

p
    and  0p p . 

That is, vapor pressure of the concave surface of a wetting liquid in a glass capillary tube or in small 
bubble is less than that of the flat surface of the liquid. 
The figure shows that vapor pressure of a small droplet 
exceeds that of plane surface of the liquid, and vapor  
pressure of a concave surface of a liquid is less than that 
of a plane surface. It is assumed that surface tension does  
not depend on the radius of curvature of the surface. 
This is obvious that small droplets are having vapor pressure 
higher than the bulk liquid because molecules are not drawn  
into the interior by so many near neighbors.  
And concave surface of a wetting liquid in a capillary has lower vapor pressure than the bulk liquid 
because the molecules are drawn into the interior by more neighbors than in a flat surface.  
      The consequence of the equation is that  
higher vapor pressure is required to condense 
 vapors into small droplets as dew drops. 
 Similarly, liquids have a tendency to  
superheat (boiling delayed) at their boiling 
points. If a small bubble starts to form at the 
boiling point, the equation is not satisfied.  
The bubble will be squeezed out of existence by the force of surface tension. There occurs then bumping. 
At a temperature above the boiling point, vapor pressure will be enough high and the bubble of certain 
radius will be thermodynamically stable. The liquid will be superheated in absence of foreign substance.  
Problem: Calculate the vapor pressure inside the bubble of water vapor and outside a drop of water,  
                 in each case taking the radius as 10 nm. At 298K, the surface tension of water is 72 dyne/cm 
                 and the vapor pressure over a flat surface is 23.76 mm of Hg. 
Solution: In the Kelvin equation,  

                  
1 1

3 7 7 1 1

2 2 72 18
. 0.1046.

1 10 8.31 10 298

M dynecm gmmol

r RT gmcm cm erg mol K K





 

   


  

  
                        

For drop of water, 0ln 0.1046p p   or, 0 1.11p p  and vapor pressure, 1.11 23.76p   mm of Hg. 

                     So the vapor pressure of water over drop of water ,  26.37p   mm of Hg 

Again for bubble, 0ln 0.1046p p    or, 0 0.901p p   and  0.901 23.76p    mm of Hg  

                      So the vapor pressure inside the bubble of water,  26.37p  mm of Hg. 

Problem: Calculate the vapor pressure of a water droplet at 25oC of radius 92.0 10 m .  
                 The vapor pressure of a flat surface of water-air interface at 25oC is 0.072 N m-1. 
                 Density of water at 25oC is given as 103 Kg m-3.   [Answer: 5344.59 Pa] 
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Alternative derivation of Kelvin equation:  

                     Let dn  mole of the liquid is transferred from flat surface having vapor pressure 0p  to the 

spherical droplet at vapor pressure p . The free energy change 

for this transfer is given by  

                                       0lndG dn RT p p . 

 For this transfer, there occurs increase of surface area of the  

drop by dA . 
The flat surface has no change of surface area due to this transfer. So the increase of free energy due to 
this increase of surface area is  

                                       dG dA ,  

(while other controlling factors for the free energy change remain fixed) 

Equating the two, we have  0lndn RT p p dA .  But,  
2 2M

dA dV dn
r r

 
    

 
. 

So,  0

2
ln

M
dn RT p p dn

r




 
  

 
 or,  0

2
ln

M
RT p p

r




 
  

 
  or,  0

2
ln

M
p p

r RT




  . 

For transfer to the concave surface, there occurs decrease of surface area and dG dA  . 

The Kelvin equation in such case will be         0

2
ln

M
p p

r RT




   .  
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PROPERTIES OF SOLIDS 

 
Introduction:  
                            A substance can remain in three states – gas, liquid and solid. But solids 
differ from liquids and gases by their high density and low compressibility.  Solids have 
definite shape, mechanical strength and rigidity. This is due to close proximity of molecules in 
solids and hence high attractive forces. 
 
Classifications:  
                                 Solids are classified generally into crystal and amorphous. The crystals 
have flat surfaces, sharp edges and pointed corners, arranged symmetrically.  
Crystals have definite melting point at a definite pressure. 
Complete ordered arrangement of constituent particles (atoms, molecules or ions) in the crystal 
gives definite geometric shape. 
The crystals have definite melting point at a definite pressure. 
Crystalline solids (other than belonging to cubic class) are anisotropic. Magnitude of some 
properties depends on the directions along which it is measured. Refractive index, thermal and 
electrical conductivities, coefficient of thermal expansion are of such properties.  
For example, refractive index ( ) of AgNO3 crystal at 20oC along X, Y and Z 

axes are 1.73, 1.74 and 1.79 respectively for Na D-light ( 5890 5896and  Ǻ). 

In a crystal of AgI, the coefficient of thermal expansion is observed to be (+)ve in one direction 
and (-)ve in other direction.  
This directional nature of the properties (anisotropicity arises due to different fixed 
arrangement in different directions.  
                                                                                       Fig.  Arrangement of particles is                                                                                                                       
                                                                                                different in different directions                                                                                                                                             
                                                                                                so the value of some physical 
                                                                                                 properties is found to be 
                                                                                                 different in different directions. 
                                                                                                 Anisotropic nature of the property       
                                                                                                 develops in the crystal. 
 
                                                                                                                                                                                                                                                
                                                                                                                       
                                                                                                                       
On the other hand, amorphous (Greek word, amorphos meaning no form) solids though they 
have definite shape, hardness and rigidity, but have no sharp melting point. They melt (soften) 
over a range of temperature and they can be moulded or blown into various shapes. 
These amorphous solids are isotropic and the properties do not vary with the directions along 
which it is measured. Glass, pitch, rubber, plastics belong to this class.  
The isotropy- nature of the amorphous solids originates due to the lack of ordered structure of 
the constituent particles (random arrangement). 
One striking example is that quartz is a crystalline structure while quartz glass is amorphous 
having no long range order arrangement. 
In many ways, amorphous solids closely resemble to liquids and thereby called ‘super-cooled 
liquids’. Like liquids, they have tendency to flow though very slowly due to high viscosity. 
Glass panes fixed to windows and doors of old buildings are invariably found to be slightly 

Anisotropicity 

of the crystals 

Origin of the 

anisotropicity in the 

crystal 

Isotropicity 

of the 

amorphous 

substances 
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thicker at the bottom than at the top. This is, because the glass flows down very slowly and 
makes the bottom slightly thicker. 
Hence forth by solid, we always mean the crystalline substance and not amorphous substance. 
 
Crystalline solids: 
                                                      Highly ordered arrangement of constituent particles is 
accompanied by a lowering of internal energy of system. We have combined equation of 1st 
and 2nd law of thermodynamics as,  
                                                                          dU = TdS   PdV 

For this order arrangement, the entropy (S) is minimum and the volume (V) is maximum. 
                                     This makes the internal energy of the system (U) minimum. 
                Crystals are bound by flat surface or face (f), sharp edges (e) and pointed corners (c). 
Two faces when intersect, edge is developed, and when two edges meet, a corner is formed. 
These external features of a crystal are related as,  

f + c = e + 2.  
 
 
 
 
 
 
 
 
First law of crystallography:             
                                                        The size and shape of a crystal depend on the conditions 
under which crystal grows.  If the rate of deposition is slow, a big size crystal is formed, each 
face has got sufficient time for its proper development. 
                                                          Again, if some impurity is present in the solution from 
which the crystal is formed, the shape may be different. For example, NaCl crystallizes as 
cubes from aqueous solution while as octahedral from 15% urea solution. 
 
 
  
 
 
 
 
 
                                                          The angle between two faces is the interfacial angle. 
Interfacial angle is the angle between the normal to the two intersecting faces. This angle is 
measured by the instrument, called Goniometer developed in 1780. 
The first quantitative measurements on crystals were made by Niel Stensen, professor of 
Anatomy at Copenhagen in 1669. He measured the angles between the corresponding faces of 
quartz crystals of different shapes and stated the first law of crystallography. 
                                                           “The angles between the corresponding faces of various 
crystals of the same substance are same”. 
Interfacial angle is thus a characteristic property of a solid in spite of its different possible 
crystalline geometric shapes. 
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Crystal lattice and unit cell: 
                             The internal regularity of the particles reminds the idea of lattice.  
The 3-dimensional ordered structure is called space lattice. 
Due to difficulty in representing the constituent particles in the crystal lattice, points are used 
instead of particles. The centre of mass of the particle represents the point in the lattice.   
Thus the arrangement of points in 3-dimensions gives point lattice. 
When the points are arranged in one line regularly at a certain fixed distance, it is called  
one-dimensional lattice. 
 
                                                                           The spacing of the points is fixed and is equal to   
                                                                                     ‘a’, called distance lattice parameter.                                                                                 
 
When the set of points are repeated regularly on a plane (along two co-ordinate axes), it is 
called two-dimensional lattice.  The points in two-dimensional lattice plane can be arranged in 
five and only five different ways on the basis of lattice parameters a , b and .  

             
 
 
 
 
When  two dimensional lattice is extended in three dimensions i.e. points are arranged in 
regular and repeated manner along three co-ordinate axes, it results a 3- d lattice,  called space 
lattice. When the points are replaced by the constituents, called motifs, of the crystal, it is 
called crystal lattice.  
 
Six parameters are required to define  
the 3-d lattice , three distance parameters, a, b, c and  
three angle parameters, .    

The angle parameters are  
,XOY XOZ and YOZ         

 
If similar points are connected by sets  
of parallel lines along the co-ordinate axes,  
the space will be divided into a large number of small symmetrical units.  
These basic units of the space lattice are known as ‘unit cells’. This unit cell is the smallest 
building unit of the crystal. Like molecule in a substance, unit cell retains all the characteristic 
features of the crystal. Any point placed in one unit cell must occupy the same relative position 
in every unit cell of the crystal.  
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Symmetry in crystals: 
                                             Symmetry is a kind of regularity in the arrangement of the 
constituent particles in a crystal. Symmetry of a crystal is described in terms of certain 
symmetry operations which transform a spatial arrangement into an arrangement that is 
virtually indistinguishable from the original one. The crystals can be classified into seven 
crystal systems according to their symmetry operations. How much a crystal is symmetrical, 
that can be measured by the number of symmetry operations (elements of symmetry). Greater 
the number of elements of symmetry of the crystal, greater is its symmetry. 
Generally the three types of symmetry operations are used to describe the symmetry of a 
crystal. These are discussed below. 
(a) Axis of symmetry:  
                                           An axis of symmetry is an imaginary line passing through the centre 
of the crystal about which if the crystal is rotated through an angle of 360o, the crystal takes a 
number of indistinguishable configurations with the original one. This rotation operation is 
denoted by Cn, where n is the number of such indistinguishable configurations that appears.  
If two such equivalent arrangements will occur in a complete rotation, i.e. through 3600, the 
axis is said to be a twofold (diad) axis of symmetry ( C2 ).  
If the complete rotation leads to the three same result as the original one, the axis is called a 
threefold (traid) axis of symmetry ( C3 ).  
In the cubic crystal, there are three C4 axes of symmetry passing through the opposite faces, 
four C3 axes of symmetry passing through the opposite corners of the cube and six C2 axes of 
symmetry emerging from the opposite edges. 
 
 
 
 
 
 
 
 
 (b) Plane of symmetry:  
                                            A crystal is said to possess a plane of symmetry if it can be divided 
by an imaginary plane into two parts such that one is the exact mirror image of the other.  The 
plane of symmetry is usually designated by  When the mirror plane is perpendicular to the 

direction of the principal axis (axis of highest order), it is called horizontal mirror plane and is 
denoted by  On the other hand, when a mirror plane contains the principal axis of symmetry, 

it is known as the vertical mirror plane and is denoted by  

In the cubic crystal, there are three principal  
planes and six diagonal planes of symmetry.  
Thus the cubic crystal contains total nine planes 
of symmetry.                                                                                                    
(c) Centre of symmetry:  
      It is denoted by i. Centre of symmetry  
of a crystal is a point such that any line drawn  
through it intersects the surface of the crystal at equal distances 
in both the directions. A crystal can have only one centre 
of symmetry. Thus a cubic crystal has one centre of symmetry. 
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Crystal systems: 
                                  With distance cell parameters a, b, c and three angle cell 
parameters , it is possible to have seven crystal systems of different geometrical shapes. 

These are given bellow: 
Crystal systems               Cell parameters             Elements of symmetry     Examples 

1. Cubic                     a = b = c,        = 90o             13 axial, 9 plane       NaCl. KCl 

2. Tetragonal             a b c  ,      = 90o              5 axial, 5 plane       Rhombic S,  

3. Orthorhombic        a b c  ,      = 90o              3 axial, 3 plane       White tin, TiO2 

4. Rhombohedral       a = b = c,        90o              7 axial, 7 plane            Calcite 

5. Hexagonal             a b c  , 90o    , 120o        ----- do ------           Graphite, Mg 

6. Monoclinic            a b c   , 90o   , 90o       1 axial, 1 plane       Monoclinic S 

7. Triclinic                a b c     90o                    No axial, No plane       K2Cr2O7 

     Any other geometrical shape with these six cell parameters gives rise to one that have the 
same elements of symmetry with the one of the above seven crystal systems. 
Out of these seven crystal systems, cubic system has maximum elements of symmetry – 13 
axis of symmetry (3C4, at right angles to each other, 4C3, axes passing through the opposite 
corners and 6C2 , axes emerging from opposite edges ), 9 plane of symmetry  
(3 are principal planes and 6 are diagonal planes) and one centre of symmetry. 
On the basis of symmetry, 3rd law of crystallography is stated as, 
        “all the crystals of the same substance have the same elements of symmetry.”  

 Out of the seven crystal systems, three are having orthogonal axes (     = 90o ) 

and these are cubic system, tetragonal system and orthorhombic system. 
Examination of the macroscopic shape of a single crystal helps to find the crystal system it 
belongs to and allow ‘a’, ‘b’ and ‘c’ axes to be located. With the use of the instrument, called 

Goniometer, it is possible to find the angle parameters,  , ,   . 

These external features of the crystal help to determine the crystal system but it can not 
tell us the internal arrangement of the constituent particles in the crystal. 
Bravais class of the crystal systems:      
                             Bravais (1848) showed that considering the position of the lattice points in 
the different crystal systems  
a total of 14 different Bravais  
classes are possible. 
These are discussed below:  
1. Cubic crystal system:  
            a = b = c,   

           = 90o            

     It  has  got three  
     Bravais classes. 
2. Tetragonal crystal system: 

     a = b c,      = 90o           

      It has got two Bravais classes. 
      One is simple (P) and other is 
      end-centred (C) in which the lattice  
      points  are on the opposite faces  
      bound by a and b axes. 
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 3. Orthorhombic crystal system: a  b c,       = 90o.  It has four Bravais classes. 

 
 
       
       
        
 
 

4. Rhombohedral crystal system ( a = b = c,        90o ) has only one simple (P)   

       Bravais class. 

5. Hexagonal crystal system (a = b  c,     = 90o,    = 120o) has only one simple (P)   

     Bravais class. 

6. Monoclinic crystal system ( a   b  c),    = 90o ,    90o ) has two Bravais 

     classes – simple (P) and end-centred(C). 

 7. Triclinic crystal system ( a   b  c, 90o     ) has only one simple (P) Bravais  

      class arrangement. 
 
 
 
 
 
 
 
 
  
  How many crystal systems and Bravais lattice are there in crystalline solids?   (1) 
 Show that two dimensional lattice with five fold rotation axis of symmetry is not possible.   (5) 
Ans. : See Physical Chemistry Vol. I  by K L Kapoor, Page 126. 
Assignment of lattice points per unit cell in a cubic system:      
                                   Cubic crystal system has three Bravais classes. 
1. Primitive cubic system (P):  
    It has 8 points at the 8 corners of the cube so each point at the corner is equally shared 
    by eight other adjacent unit cells.  
    Hence contribution of each atom to the unit cell is (1/8). 

                     Total number of lattice points per unit cell = 1
8

8
  = 1 

2. Body-centred cubic system (I):  
    The lattice points occupy each corner of the cube along with one point at the centre of  
     the cube. The body- centre point belongs exclusively to the unit cell. 

       Total number of lattice points per unit (bcc) cell = 1
8

8
  + 1 = 2.      

3. Face-centred cubic system (F); 
    The lattice points occupy each corner of the cube along with at the centre of each face of  
     the cube. The face-centred point is equally shared by two adjacent unit cells.  
     Such type of points is six at the centre of six faces of the cube lattice.    

             Total number of lattice points per unit (fcc) cell =  
1

8
8

  + 6 
1

2
= 4. 

 

 

Four Bravais  

classes in 

orthorhombic 

crystal system. 

Monoclinic has 

two Bravais 

classes and 

others have one 

in each crystal 

system 

Primitive cubic 

crystal has one 

lattice point per 

unit cell. 

bcc has two 

lattice points 

per unit cell. 

fcc has four 

lattice points 

per unit cell. 

BU 2005, Q1(b) 

BU, 2006, 

Q4(c)(ii) 

 



 
 

                                                                      PROPERTIES  OF  SOLIDS  –  DR  N  C  DEY Page 7 
 

Density of cubic  system: 
                                                   Density of a solid can be accurately determined from the 
experiments and its value can also be used to unit cell dimensions. Again if the cell dimension 
is determined by Bragg’s diffractometer, the type of Bravais class of the crystal can be 
ascertained. 
                                              For the cube unit cell, the volume = a3, where a is the edge-length. 

Mass of the unit cell = 
A

M
n

N

 
 

 
   where, M = molar mass of the solid and  

                                                                      n = number of the constituent particles per  
                                                                        unit cell.. 
                                                                   It is one for primitive (P), two for bcc    
                                                                                       and four for fcc. 

  For tetragonal crystalline solid,
2

A

M n

N a b






, and for orthorhombic solid, 

A

M n

N abc






.  

   a, b and c are the distance cell parameters of the orthorhombic crystalline solid. 
Problems: 
(1) K has a cubic lattice and at 25oC the density of K is 0.856 gm/cc and X-ray diffraction      
       shows the unit cell edge length is 5.33Å. Find the number of formula units in a unit  
       cell of K . What kind of cubic lattice does K have?  [Physical Chemistry – Ira Lavine] 

(Answer  n = 2 and bcc) 

(2) Copper crystallises in the fcc pattern. From X-ray diffraction study, the edge length of  
       the unit cell has been found to be 0.360 nm. If the density of copper is  
       8.94  103 Kg m-3, calculate the Avogadro number NA. [C U, 96] 

(Answer – 6.095 1023 mol-1) 

(3) The orthorhombic crystallised form of an organic compound contains 2 molecules per  
        unit cell with cell dimensions 12.05, 15.05 and 2.69 Å and density of the crystal is  
        1.419 gm/cc. What will be the molar mass of the organic compound?   
                  (Answer – 208.47)                                                    [Civil Service Exam, 1999] 
Packing  in  cubic  lattice : 
                                                     For the calculation of packing of the constituent particles in 
the crystal, we consider that each particle is (a) rigid sphere, (b) identical with other 
constituents and (c) they are touching each other in the unit cell. 
(1) Simple cubic cell:   
                                                                              In this simple cubic cell, spheres are at the   
                                                                              corners and they are touching along the side  
                                                                              of the unit cell. Thus the distance between the  
                                                                              centres of two spheres = a  
                                                                              and radius of each sphere = a/2.  

                                                                              The volume of each sphere =  
3

4

3 2

a

 
 
 

  . 

                                                                               Volume of the unit cell = a3      
                                                                               Thus the fraction of the total volume of unit  
                                                                                cell occupied by the sphere 

                                     =  

3

3

4
3 2

a

a


 
 
    = 0.523 = 52.3%  and the void volume =  47.7%. 

     The structure is relatively open since only 52.3% of the space is occupied by the constituent 
      particles and the rest 47.7% remains empty. 

So the density of the solid     

         
3

A

M n

N a






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(2) Body-centred cubic cell: 
                                                                        Besides the eight corners of the cube, one  
                                                                         sphere occupies at the centre position.  
                                                                        The body-centred cube contains two spheres.  
                                                                         The spheres are touching along the body-diagonal 
                                                                          of the cube which is equal to 

                                                                             
2 2

3facediagonal edgelength a                                                                                                  

.                                                                          Thus 4r = 3 a  or, r = 
3

4

a
.                                                                               

                                                                          The fraction of the total volume of the unit cell                                                                                  

                                                                         occupied by the spheres = 

3

3

4 3
2

3 4
a

a


 

  
  = 0.68.                                                            

       So the volume occupied  = 68% and void space = 32%. 
       In this arrangement, each sphere has eight nearest neighbours and thus the   
        co-ordination number (equidistant nearest neighbour) = 8. 
        About 22 elements crystallise with bcc.  In this cubic crystal, the constituents do not  
        occupy the highest fraction of space so these are very soft. Alkali metals have this bcc.  
                                    In the crystals of elements all the constituent particles are atoms and  
         same. But there are compounds with body-centred lattice, the particle at the centre  
         is different from that at the corners. Caesium chloride (CsCl) is such an example.  
         In its unit cube, corners are occupied by the Cl- ions and Cs+ ion is at the centre or 
         vice versa. In fact it may be regarded as a case of two simple cube lattices  
         (one of Cl- ions and one of Cs+ ions) interpenetrating.  
         Caesium chloride has a body-centred cubic lattice. Find the number of Cs+ and Cl- ions  
         per unit cell. (2) 
(3) Face-centred cubic cell : 
        In this Bravais class of cubic system, besides  
        eight corners of the cube, six spheres occupy 
        at the centre of each face. The cell contains  
        total 4 spheres and the spheres are touching 
        each other along the face diagonal. 

             Thus,  4r = 2 a , so   r =  
2 2

a .      

 
                              
The fraction of the total volume of the unit cell occupied by the 4 spheres 

              = 

3

3

4
4

3 2 2

a

a


 

  
  = 0.74. So the packing = 74%,  and void space = 26%. 

Thus, in general, the packing fraction (fraction of volume occupied) is independent of the 
radius of the sphere and depend only on the nature of the Bravais class of crystal system. 
This packing is more common for uniform spheres and is indeed closest packing possible in 
cubic system. Thus it follows that the density of substances increases from simple to bcc  to  
fcc.  
Most metals are either face-centred or hexagonal. Many elements such as the solidified inert 
gases, or metals like Cu, Ag, Au, Ni etc possess this type of structure. 
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Sodium chloride (NaCl) crystal has this type structure and two fcc units one of Na+ ions and 
other of Cl- ions are interpenetrating. 
The co-ordination number (equidistant nearest neighbours) is 12 in both face-centred cube and 
hexagonal structure.  
Problem: 
(1) Al crystallises in a cubic closed packed structure. Its metallic radius is 125 pm. 
       (i) What is the length of the side of the unit cell? 
      (ii) How many unit cells are there in 1.00 cm3 of Al?   

                                     [Answer:  a = 3.54 810  cm, number of unit cell = 2.25 2210 ]. 
 
(2) Gold crystallizes in fcc lattice. The atomic weight and density of gold are 196.97 and  
      19.4 gm/cc respectively.  The length of the unit cell is  
       (a) 2.563 Ǻ        (b)  3.230 Ǻ        (c)  4.070 Ǻ        (d)  8.140 Ǻ       [GATE] [Ans. (c)]          
                                                                                                                                                           
(3) Sodium metal crystallizes in the body-centred cubic lattice with cell edge a.  
       The radius of the sodium atom is       

       (a)    
2

a       (b)  3
2

a      (c)  3
4

a      (d)   
2 2

a       [GATE]     {Ans. (c)}   

 
  Crystal cleavage  and  development  of  its  faces :  
                     A series of large number of parallel and equidistant planes, called lattice planes 
can be drawn through the lattice points.   
Among these large number of planes, only few  
planes represent the faces of the crystal.  
Only those planes that have large point density  
can form the crystal faces. Greater the point density  
of a plane, greater is the probability of that plane to  
form the crystal face. Planes passing through the  
crystallographic axes have highest density of points, 
so these planes generally form the crystal faces.  
Thus, natural fractures of a crystal will contain the  
planes parallel to these faces so the cleavage planes  
would correspond to the naturally  developed    
crystal faces. 
It can also be shown that the planes with the highest density are also planes with largest 
distance of separation (d) so that interatomic attraction 
 between the planes would be minimum.       
 
Lattice  planes  and  their  designations : 
  
Let us consider the set of parallel and equidistant 
planes (set A, set B, set C and set D). These sets of 
planes make intercept with the crystallographic 
axes X and Y (passing through maximum  lattice points) 
and parallel to the Z-axis. 
                               The designation of the planes is  
expressed in terms of the intercepts they make                  
with the crystallographic axes. The orientation of the planes 
are useful to discuss the structure of crystals  
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(i.e. arrangement of lattice points in space within the crystal). The unit intercepts with X-and 
Y-axes are ‘a’ & ‘b’.  
Set A planes: Consisting of 3 planes which are parallel 

& equidistant. The intercepts of the 1st plane = , ,a b  , 

the intercepts of the 2nd plane= 2 ,2 ,a b   and the  intercepts of  the 3rd plane = 3 ,3 ,a b  . 

Since the plane is parallel to Z-axis & hence it cuts Z-axis at  . 

The ratio of the intercepts for the set A planes  : :a b   = same for all three parallel equidistant 
planes under set A. Similarly, the intercept-ratio of 

set B planes =  : 2 :a b  ,  
set C planes have intercept-ratio  = : :a    and  

set D planes have intercept-ratio  =  : :a b   
This shows that any plane can be designated in terms of the intercept-ratio with the 
crystallographic axes, and all the planes under a given set (which are parallel & equidistant) 
can be named by the same intercept-ratio. This can be better understood by the Hauy’s laws of 
rational intercepts or indices. 
Law of rational indices: The law states that the intercepts of any plane of a crystal, with 
crystallographic axes, are either equal to the unit intercepts (i.e. intercepts made by unit plane, 
which are denoted by a, b, c) or some small whole number multiples of them. Such a ratio of 
three intercepts of any plane is given by pa: qb: and rc where p, q, r are small whole numbers 
and a, b, c are the intercepts made by the unit plane with the crystallographic axes.  
        This law also means that all planes cut a given axis at distance from the origin that bears a 
simple ratio to one another.  
                        These coefficients, p, q, r are called Weiss indices of the plane & these members 
characterise and represent any plane of the crystal. The corresponding plane is designated as (p 
q r) plane. Usually the Weiss indices are small whole members but in some cases they may be 
fraction & infinity. 
                            The numbers in the Weiss indices are replaced by Miller indices (h k l).  
                                          W.H. Miller introduced (h k l) for indexing the planes & they are 
obtained by the following way.  
                     The Miller indices of a plane are obtained by the reciprocals of Weiss indices  
(i.e. the coefficients of unit intercepts a, b, c) & when it is found necessary, the reciprocals are 
to be multiplied by smallest number (i.e. least common multiple, LCM) to make all reciprocals 
as simple small integers. 
Thus, the sets of planes under discussion are designated as  
 Set A: intercept ratio  a : b :  , Weiss indices  (11 ), Miller Indices (110) 

 Set B: intercept ratio a : 2b :   Weiss indices (12 ), Miller indices (210) 

 Set C: intercept ratio a : : , Weiss indices  (1  ), Miller indices (100) 

 Set D: intercept ratio  a : b :  , Weiss indices  ( 11 ), Miller indices 10). 

 
                                                                        Let OX, OY & OZ represent three  
                                                                        crystallographic axes and ABC is one plane that 
                                                                        cuts the crystallographic axes at A, B and C. Thus  
                                                                        OA, OB and OC are the intercepts along the axes.                                                                                                                                                                                                                                        
                                                                        Thus according to the law, OA = pa, OB = qb,  
                                                                        OC = rc  where the of the unit intercepts of the  
                                                                        unit planes are a, b, c.   
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                          The Miller indices (h k l) are defined as      

                           1 1 1
, .

a b c
h k and l

p OA q OB r OC
                                                                                                                                                      

int

a
h

ercept of the plane along X axis



,  

int

b
k

ercept of the plane along Y axis


     

                                   int

c
l

ercept of the plane along Z axis



. 

So, larger the value of Miller indices, smaller is the intercept made by the plane.  
Thus (222) plane has intercepts which are one-half of those of (111) planes. However both the 
planes are parallel and equivalent. 
Problem:  The planes in a crystalline solid intersect the crystal axes at (2a, b, c), (-a, b, c),   
                    (a, 2b,3c), (3a,2b,c) and (-a, b, ). Find the Miller indices of the planes. 

                                          Answer: (122), (1 11), (632), (236), (1 10).       

 
Lattice  planes  in  cubic  system : 
                                                                  The planes are defined by Miller indices (hkl) and 
Miller indices do not define merely a particular plane but define a set of parallel and 
equidistant planes. It is the ratio of the Miller indices which are important for the planes.  
For examples, the (222) plane is the same as (111) plane, the (200) plane is same as (100) 
plane. Only the interplanar distances are different. The (200) planes have half interplanar 
distance of the (100) planes. 
(a) Simple cubic crystal:  [Lattice points occupy the eight corners of the cube.] 

                                 Let ‘a’ is the edge length of the cubic cell and d is interplanar distance. 
                                     One plane is passing through the origin. 
                                                                         

                                                                                                                                                                                      
 
 
 
 
 
 
 
The ratio of the interplanar distances are given as:                                                     

100 110 111

1 1
: : : : 1: : 1: 0.707 : 0.577

2 3 2 3

a a
d d d a   . 

                                                                                                                                                                          
 

 .                                                                       crystallographic axes.                                                                                                    

                                                                         Thus according to the law where the intercepts                                                                               

                                                                         of the unit plane are a, b, c.                                                           

                                                                         OA = pa, OB = qb, OC = rc. 

                                                                          The Miller indices (h k l) are defined as         

                                                                1 1 1
, .

a b c
h k and l

p OA q OB r OC
       
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(b) Body-centred cubic crystal: [The lattice points occupy the centre of the cube in   
                                                                               addition to the eight corners.] 
 
 
 
 
 
 
 
 
 
The interplanar ratio of the three planes is given as:                                                                                             

200 110 222

1
: : : : 1: 2 : 1:1.414 : 0.577

2 2 2 3 3

a a a
d d d    . 

(c) Face-centred cubic crystal : [The lattice points occupy  the centre of six faces in 
                                                                           addition to the eight corners of the cube.] 
 
 
 
 
 
 
 
 
The interplanar distances  of the three planes are given as:    

        200 220 111

1 2
: : : : 1: : 1: 0.707 :1.154

2 2 2 3 2 3

a a a
d d d                           . 

The interplanar distance ( hkld ) of a crystal is determined by Bragg X-ray diffraction 

measurements. This helps to find out the Bravais class to which a crystal system belongs. 
 
Expression  for  calculation  of  interplanar  distance  ( ) : 

 
       The crystal systems belonging to the orthogonal axes (having a set of perpendicular axes) 
are cubic, tetragonal and orthorhombic. For these crystal systems, the interplanar distance can 
be calculated by the use of certain formula. 
Miller indices that define the set of parallel planes, 
taking one of which passes through the origin. 
If a perpendicular is drawn from the origin  
to the nearest plane of Miller indices (hkl), 
then the perpendicular distance, represented by 

 becomes the interplanar spacing between  

the planes indexed by (hkl). 
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If  1 2 3, and    are the angles which this perpendicular makes with the three axes, then 

                 1 1cos coshkl

a
d OA

h
    

                2 2cos coshkl

b
d OB

k
     and  3 3cos coshkl

c
d OC

l
   . 

Therefore, 1cos hkl

h
d

a


 
  
 

,   
2cos hkl

k
d

b


 
  
 

 and  
3cos hkl

l
d

c


 
  
 

. 

Since , cos 1 , cos 2  and cos 3 are the direction cosines of the perpendicular line, so 

  2 2 2
1 2 3cos cos cos 1              or,                

2 2 2
2 2 2

2 2 2
1hkl hkl hkl

h k l
d d d

a b c

     
       

     

.  

So,  
2 2 2

2 2 2 2

1

h k l

h k l

d a b c
   . This relation is applicable to any crystal having orthogonal axes. 

For cubic system, a = b = c, hence 
2 2 2

2 2

1

hkl

h k l

d a

 
  or, 

2 2 2hk l

a
d

h k l


 

. 

                  For tetragonal crystal system, a = b  c,   
2 2 2

2 2 2

1
.

hk l

h k l

d a c


   

                   For orthorhombic system, a b c  , 
2 2 2

2 2 2 2

1

h k l

h k l

d a b c
   . 

             It can be shown that 
2 2 2

2
2 2 2 2

1

nhnk nl

h k l
n

d a b c

 
   

 
  or, 2

2 2

1 1

nhnk nl hk l

n
d d

  . 

 
Problem : Calculate the separation of  (a) the (123) planes and  (b) the (246) planes of an  
                     orthorhombic unit cell with a = 0.17 nm, b = 0.93 nm and c = 0.75 nm. 

Solution :  123 2460.13 0.065d nm and d nm  .                [Civil Service Exam. 2003]                                                                                                    

Some  regions  of   electromagnetic  radiation : 
                                                                             Electromagnetic radiation is generally 
classified into several regions depending on the wave length. It is given below: 
 

Name of the regions Wave length range 

Cosmic rays 4 210 10A A   

 rays 2 110 10A A   

X - rays 110 50A A   

Vacuum  UV 50 2500A A  

UV 2500 4000A A  

Visible 4000 8000A A  

I R 8000 1,25,000A A  

Far I R 5 61.25 10 10A A   

Microwave 210 3cm cm   

Radio wave 3 300cm cm  

Interplanar 
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Diffraction  of  electromagnetic  radiation : 
                                                                                     Electromagnetic radiation consists of a 
wave that propagates in space with the velocity of light. The wave is characterised by 

frequency ( ) or by wave length ( ) and amplitude (displacement of the wave in a direction 
perpendicular to the direction of its propagation). 

The frequency ( ) and wave length ( ) of the light are related as 

                                                
c




 ,  where c is the velocity of the light. 

Two waves of same wave length and amplitude from two different sources reinforce each other 
when their maxima and minima coincide. These results as constructive interference and forms 
as bright point (B) on the screen placed to the path of the rays (in phase). 
On the other hands, they may  
interfere and exactly cancel  
each other when their maxima  
and minima do not coincide  
(out of phase).  
This is destructive interference  
and appears as dark point (D) 
 on the screen. 
                                                                            
 
These interference phenomena form the basis of diffraction of light by diffraction grating.  
The diffraction grating consists of a transparent medium (such as glass) on which are ruled a 
large number of very fine, equidistant parallel opaque lines. When a light ray from a 
monochromatic source is incident perpendicular on the grating, all the clear spaces will emit 
light waves in all directions radially outwards. The wave length and amplitude of the diffracted 
light rays are same as the incident light rays. The waves from two apertures will cross at some 
point beyond the grating. If the screen is placed at this crossing point, a series of bright and 
dark spots will be observed on the screen. 
Condition of bright spot is that when both the waves are in phase and for that, extra distance 

travelled by one of the waves must be an integral multiple of wave length ( ) of light 

                                                    i.e. FG  =  n , where n = 1,2,3, etc. 

but,                                                   FG = d sin  so d sin = n . 

                                      For the two waves forming bright spot, d sin  = n . 

Thus, maximum value of   = d, since maximum value of sin  = 1 and minimum value of  
n = 1. For crystal planes, d  10-8 cm so the maximum wave length of the light used for 
diffraction from crystal planes is also about 10-8 cm. This light falls in the region of X- rays. 
Thus,  X-rays  and not UV light is used for the diffraction by crystal planes. 
 
Diffraction  of  X-rays  by  crystal : 
                                                                   In 1912,  Max Von Laue predicted that since the 

distances between the particles in a crystal are of same order of magnitude ( 810 cm ) as the 

wave length of X-rays, the former could be used as three dimensional transmission grating. He 
also obtained a diffraction pattern when a beam of polychromatic  X-rays was passed through 
the crystal. 
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Bragg ’s  diffraction   equation :  ( 2 sind n  ). 

B H Bragg and W L Bragg employed a crystal not only as a transmission grating as in the Laue 
method, but also a reflection grating. The series of equally spaced lattice planes will serve as 
grating. As the interplanar spacing (d) is  

comparable with the wave length ( ) of  X-rays,  
latter is diffracted by crystal planes. 
          When  X-rays are incident on a crystal face, 
they penetrate into the crystal and suffer  
reflections  on striking the constituent particles 
 in successive planes. 
 
If the reflected waves from successive layers are out of phase then due to destructive 
interference, no diffraction will be observed. If, however, the reflected waves are in phase, then 
due to constructive interference, a diffraction bright spot will be observed. The condition for a 
reflection to give constructive interference is that the path difference between the two waves 
must be integral multiple of wavelength of light. 

Let    be the incident angle of a monochromatic X-rays of wavelength ( ) with the parallel 
equidistant planes of particles of interplanar spacing d. The waves are in phase before striking 
the planes. Two such waves labelled as wave 1 and wave 2 are shown. After reflection, two 
waves will be in phase provided the extra distance travelled by wave 2 is an integral multiple 

of  . 
The extra distance can be obtained by dropping perpendiculars BG and BH from B to wave2.  

Therefore,                          AB  =  DG and BC  =  HF. Again, GE = HE = d sin . 

Thus ,                                         the extra distance = GE + HE  = 2 d sin . 
In order to wave 1 and wave 2 are in phase, the condition to be satisfied as, 
                                                                      
 
where, n = 1,2,3, etc and is called order of reflections. 
 

Critical  discussion  on  Bragg ’s  equation  (2 d sin   =  n ) :  
 
(1)  Restriction of the value of n : n is called order of reflection and it is equal to the   
       number of  wave lengths in the path-difference between waves reflected by adjacent  
       planes. n cannot take the value zero in such case two rays are same as path-difference  
       becomes  zero. 

       n can take only integral values with limitation that sin  must not exceed one, in such  

       case, n must not be greater than 2d. 
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(2) Again,  sin 2n d
  .  This shows that the crystal planes cannot produce reflection  

       at any angles but at those discrete angles such that sin  becomes integral multiple of  

       2d
 . Thus, we have more than one reflection at angles 1 2,  ... corresponding to the 

       values of  n = 1, 2, -- respectively for fixed values of   and d. The equation shows that  

       higher order reflections will occur at larger values of sin , and hence at larger angles. 
                                             Experimentally it is found that lower order reflections are more  
       intense and intensities of higher order reflection drop off rapidly. 
 
(3) In dealing with X-rays diffraction, it is customary to express higher order reflections  
       in terms of the first order reflection from planes of higher (hkl). The equation is  

                               2 dhkl  sin   =  n , where dhkl = interplanar distance of (hkl) planes. 

       But we have seen that                   hkl
nhnk nl

d
d

n
  . 

        Now, rearranging the Bragg’s equation, we get, 2 sinhkld

n
  or, 2 sinnhnk nld   . 

        This means that a second order reflection (n = 2) from (111) planes may be  
         considered to be equivalent to the first order reflection from (222)  planes. 
         Similarly, a third order reflection from (100) planes is equivalent to first order  
         reflection from (300) planes. 

(4) Maximum value of  : Bragg’s equation is    
2 sind

n


  .    So for maxn. value of  ,   

        

 
max

max
min

sin
2d

n


  ,      but  

max
sin 1   and min 1n  .   Hence, 

      
 This means that the wave length of light used for Bragg’s diffraction must not exceed 

        twice the interplanar spacing of the crystal studied. This shows that since d  1A,  

       thus  is of 10-8 cm range. so  X-rays and not  UV  light is required for crystallographic  

       studies. When,  2d  ,  sin 1
2

n

d


     and there will be no diffraction. 

       Similarly, min 2d   , that is in order to obtain diffraction pattern, the lattice planes in       

       the crystal should have a separation of 2
  or greater. 

(5) Diffraction from different sets of planes: 
                                                                            So far, we have considered the reflection of   
       X-rays from identical sets of planes i.e.. the planes that contains identical constituent  
       particles of having same particle density. 
       For reflection from two different sets of planes, let us consider that one set is  
       represented by  AA and BB  and other set by A A  , B B    of interplanar distance  d.   

If    If x is the distance between AA  and  A A   or between BB and B B and  n is the path 
      difference for the rays  from  AA and  BB planes then for the same angles of incidence  

       , the path-difference for the rays reflected from AA and A A or BB and B B  is xn
d

 . 

      If this is also an integral multiple of wave length then the rays reflected from  
       AA and BB planes will be reinforced by the rays from A A   and  B B   planes and a  
       strong reflection maxima will be obtained. 
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                                       However, if 2
dx   , 2

xn n
d

     

        So, when n = 2, 4, 6 (i.e. n = even numbers), the reflection beam will be in phase and  
        strong reflection occurs between the planes  AA  and A A  . 
        For n = 1, 3, 5, (i.e. n = odd numbers), the reflection will be in opposition, reflection  
        beam will be less intense. 
        It means that one identical set of planes are interposed at the midway of the other 
        identical planes, then 2nd and 4th order reflections are more intense and 1st and 3rd  
        order reflection intensity will be less. 
Planes of high particles density produce better scattering of X-rays which gives a more intense 
beam. If more than one kind of particles is present in the crystal, the particle with greater 
number of electrons has greater scattering power for light elements. Between Na+ and Cl- ions, 
latter ions have more scattering power while K+ and Cl- have same scattering power as both the 
ions are iso-electronic.  
Similarly, from X-rays  diffraction, it is not possible to distinguish between atoms which differ 
only by the possession of one addition electron, such as nitrogen and carbon. 
The scattering power of H-atom is very small and over-shadowed by the effect of neighbouring 
atoms containing large number of electrons and is not deduced by X-ray method. 

problem: (i)Derive Bragg’s equation to show that  2 d sin   =  n for the reflection of X-rays      
                     from the faces of the crystal. 
                 (ii) Calculate the interplanar spacing (d-spacing) in a cubic crystal of the second  
                      order refection from such planes are obtained  

                      sin   = 0.38, when X-rays of   = 154 pm are used.    [IAS’ 2010, m = 20]  
Solution: (i) See the text note. 

               (ii) 
2 154

405.3
2sin 2 0.38

n pm
d pm






  


. 

Experimental  set-up  of  Bragg ‘s  diffractometer : (2 d sin   =  n ) 

                                      In the Bragg’s equation,   is measured for various order of maximum   
reflections  and  the interplanar spacing (d) is calculated by the  X-ray diffractometer. 
                                                  The whole experimental set-up consists of three parts. 
(1)  X-rays generating component  (2) reflection arrangement of  X-rays  by crystal  
(3) Determination of reflected  X-ray intensity. 
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The X-rays generated in the  X-rays tube are passed through a series of slits to give a sharp and 
monochromatic beam. The beam is then directed to strike the face of a crystal which is 
mounted on a graduated rotating table (turn-table). The rays reflected from the crystal are then 
allowed to pass through a detector, called ionisation chamber, filled with vapours of methyl 
bromide. The chamber is rotated co-axially with the crystal table. The crystal table and the 
chamber are so adjusted that when the crystal rotated through any angle, the chamber rotates at 
twice of that angle so that the reflected rays always enter the chamber. The extent of ionisation 
produced by the reflected beam is measured by the electrometer. 

The value of    (the incident angle) is gradually increased from 0o by rotating table.  
The intensity of the reflected X-rays for various angles is determined. Strong reflections are 
obtained from those planes which contain larger number of particles (larger particle density) 

and for those values of   which satisfy the Bragg’s equation. The process is repeated for each 

plane of the crystal. The intensity of the reflected rays is plotted against   and the lines are 
indexed. 

Braggs themselves used NaCl crystal and took Pd metal as anticathode (  = 0.58 A) in the   
X-rays tube. They examined the maximum intensity of the reflected X-rays from (100), (110) 
and (111) planes for which the incident X-rays is directed normal to face, edge and corner of 
the NaCl crystal.  
Application  of   Bragg ‘s  equation  to  determine  the  structure  of  NaCl  crystal   
                                                                  
                                                               To determine the structure of a crystal, we need to 
know the pattern of the regularly repeating spatial distribution of the constituents (atoms, 
molecules or ions). This is possible from the determination of spacing of some suitably chosen 
lattice planes of the crystal. The spacing are determined by the use of Bragg’s equation  

                                               (2 d sin   =  n ).  
Braggs themselves used X-ray diffractometer to determine the crystal structure of NaCl. 
They used Pd anticathode ( 0.58 A  ) in the  X-rays tube and examined the maximum 

intensity reflection of the  X-rays from (100), (110) and (111) planes of NaCl crystal. 

From the graph of reflected X-rays intensity vs. incidence angle ( ) given below, 
 

 
 
the interplanar distance ratio of these planes can be calculated for n = 1. 
 

     100 110 111

1 1 1
: : : : : : 1: 0.705 :1.14

sin 5.9 sin8.4 sin 5.2 0.103 0.146 0.091o o o
d d d

  
   . 

 

Intensities of  X-rays by different planes  

   Planes           n = 1       n = 2        n = 3 

   (100)              100          19.9         4.87 

   (110)              50.4          6.10         0.71 

   (111)               9.0           33.1          0.58 
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                      The ratio is also obtained for 2nd order (n = 2) reflections. 
The observed ratio of interplanar spacing shows that NaCl crystal is a face-centred cube.  
Since in the NaCl crystal, the constituent particles are Na+ and Cl- ions, the two  
face-centred cubic lattices of Na+ and Cl- ions are interpenetrating. 
 
 
 
 
 
        
 
 
 
 
 
Intensity of  X-rays reflected by (100) and (110) planes decreases as usual with increase of n, 
which supports the structure that these planes have both Na+ and Cl- . 
But for the planes (111), the intensities of n = 1 and n = 3 are low but for n = 2 is high 
indicating that these set of planes are not identical, either containing Na+ or Cl- entirely. 
As the Na+ ions planes are interposed half-way of Cl- ions planes, ( x = d/2), so 1st order and 3rd 
order intensities are less while 2nd order reflection intensity is high (n = even). 
From the structure given, we can calculate the number of NaCl unit per unit cell. 

       Number of Na+ ions = 
1 1

8 6 4
8 2

    , and number of Cl- ions = 
1

12 1 4.
4

    

 Thus, there are 4 NaCl units per unit cell of the crystal. These support the fcc structure.  
           It is also possible to calculate the interionic distance between Na+ and Cl- ions. 

The spacing of (100) planes is 100

1 0.58

2sin 2sin 5.9o

n A
d






  = 2.82A for 1st order refection with 

Pd anticathode. Thus the interionic distance between Na+ and Cl-  ions are 2.82 A. 
This can again be supported from the density measurement of NaCl substance. 

The edge length , 

1 1
3 1 3

23 1 3

58.48 4
5.63

6.023 10 2.17A

M n gmmol
a A

N mol gmcm



 

    
     

    
. 

So the interionic distance between Na+ and Cl- ions = a/2 = 5.63/2 A =  2.815 A. 
All these determinations support the face-centre cubic structure of NaCl crystal. 
 
Crystal defects : 
                                So far we have discussed the perfect crystals in which all the constituent 
particles occupy the right positions as required for the particular geometrical shape. 
But crystals with perfect lattice are very rare and almost all crystals suffer from imperfections 
of various kinds. The imperfections in the crystal in many cases determine the electrical 
properties (such as conductivity), optical properties (colour), transport properties (rate of 
diffusion) and mechanical properties (compressibility) of the crystal.  
At thermal equilibrium, the imperfect crystals suffer more decrease of Gibb’s free energy due 

to increase of disorder in the structure.  G = H – TS, S increases and so G decreases.  
These crystal defects are of various types. 
(A) Line defects :  The constituent particles are not arranged in lines as it would be in    
       perfect crystals. 
(B) Point defects : It may be of following types. 

 

Two fcc 

crystals of Na+ 

ion and Cl- ions 

interpenetrate 

to give a fcc 

NaCl crystal 

structure. 

4 units of NaCl 

are present in 

the unit cell of 

the crystal. 

(111) planes 

are different 

from (100) 

and (110) 

planes. 

Calculation of 

interionic 

distance of Na+  

and Cl-  in the 

crystal. 

Imperfection in 

the crystal 

alters many 

physical 

properties and 

adds more 

stability than 

perfect crystal. 



 
 

                                                                      PROPERTIES  OF  SOLIDS  –  DR  N  C  DEY Page 20 
 

       (1) Impurity defects: If molten NaCl containing little BaCl2 is crystallised, each Ba+2  
              ion displaces 2 Na+ ions. One site is captured by Ba+2 ion and other site remains  
              vacant. 
       (2) Non-stoichiometric defects: It is of two types. 
             (a) Metal excess defects: When NaCl is heated in presence of Na-vapour, Na atom  
                    deposits on the surface, and Cl- ion in the crystal moves to the surface and one  
                    electron from Na-atom enters into the Cl- ion position. These acts as F-centre or  
                    colour centre. 
                    LiCl crystal becomes pink when heated in presence of Li-vapour and KCl in   
                    presence of excess K- vapour becomes violet. 
              (b) Metal deficiency defects:  
         (3) Stoichiometric defects:   
               (a) For non-ionic crystal, it is vacancy defects and interstitial defects.                
               (b) For ionic crystal, it is mainly of two types.  
 
 
(i) Frenkel defects:  
In this type of defects, some ions usually cations enter the interstitial positions, leaving a 
corresponding number of normal lattice sites vacant. The density almost remains same. This 
defect occurs when one ion (usually cations) is much smaller than the other. As it creates a 
vacancy defect at its original site and interstitial defect at its new location it is sometimes called 
dislocation defect. 
For example, AgBr and AgCl crystals have such type of defects.   
 
 
 
 
 
 
 
 
 
 
 
 
                  (ii) Schottky defects: This defect arises when positive and negative ions move to the 
surface leaving corresponding normal sites vacant.  Density of the substance decreases for this 
type of defect. 
This defect normally occurs when anions and cations are of same size.  
NaCl, KCl normally contains this type of defect. 
Number of Schottky defects in ionic solids is quite significant. For examples, in NaCl there are 
approximately 106 Schottky pairs per cc at room temperature. In 1 cc, there are about 1022  ion 
pairs  

(Molar volume of NaCl = 
58.5

27
2.17

cc  thus 1 cc contains 
23

226 10
2 10

27


   ion pairs.) 

Therefore, one Schottky defect is created per 
22

16 16
6

2 10
2 10 10

10


    ions. 

Thus , Frenkel defect is a misplaced ion and Schottky defect is a vacant ion site. 
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Tetrahedral  and  octahedral  holes  in  FCC  crystal : 
                                                                                The closed packing of identical spheres 
occurs in hexagonal closed packed (hcp) and face-centred cubic (fcc) structures. Most of the 
metal crystals belong to one of these structures. The co-ordination number (equidistance 
nearest atoms) is 12 in both hcp and fcc.  We shall discuss the fcc crystals only. 
                                                                 In the above closed packed structures, two types of 
holes (voids) are generated. While the number of octahedral holes present in a lattice is equal 
to the number of closed packed particles (4), the number of tetrahedral holes is twice the 
number (2 8 ) per unit fcc cell.                                     

In ionic solids, the bigger ions (usually anions) form the closed packed structure  and smaller 
ions (commonly cations) occupy the  holes. If the latter ion is small enough, it occupies 
tetrahedral holes and if it is bigger, then it occupies octahedral holes. In a given compound, the 
fraction of octahedral and tetrahedral holes that are occupied depends upon the chemical 
formula of the compound. 
Locating tetrahedral holes:  
Let us consider a fcc unit cell  
and this unit cell is divided into  
eight small cubes.       
 
 
 
 
 
 
 
 
 
 
 
Each small cube has atoms at alternate corners. In all, each small cube has 4 atoms. When 
joined to each other, they make a regular tetrahedral. Thus there is one tetrahedral hole in each 
small cube and eight tetrahedral holes in total.  
But fcc crystal unit cell has 4 atoms and so number of tetrahedral holes is twice the  
number of atoms in the unit cell.  
                     i.e.   number of tetrahedral hole  =  2 number of atoms per unit cell. 

It is possible to calculate the diameter of the largest atom to be accommodated in tetrahedral 
hole in fcc unit cell of edge length ‘a’. 
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Atoms  1 and 2 in small cube  are in contact as shown in the figure, so the atoms are touching 
along face diagonal of the small cube. 

                                                     
 

 2 2 2
ar    =  

2
a  .                            

Again the centre atom (M) of diameter d is just between the cross diagonal, the length of which 

is   3 2
a . Now the two atoms and the centre atom are touching each other along the body 

diagonal, so   2 3 2
ar d       or,    3 2 32 2 2

a a ad r    . 

                                     Thus,  3 2 2
ad         or,    d  =  0.16 a. 

Locating octahedral holes: 
                                                     Let us again consider a fcc unit cell, centre of the body of the 
cube  is not occupied but it is surrounded by six atoms on the face centres. If these face centres 
atoms are joined, an octahedron is generated. Thus, this unit cell has one octahedral hole at the 
body centre of the cube. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Besides the body centre, there is one octahedral hole at the centre of each of the 12 edges. It is 
surrounded by six atoms, four belonging to the same unit cell (2 on the corners and 2 on each 
face centre) and two belonging to two adjacent unit cells. Since each edge of the cube is shared 
equally between four adjacent unit cells, so the octahedral hole located on it is also shared by 
four unit cells. Only ¼ th of each hole belongs to a particular unit cell. 
Thus in cube closed packed (CCP) structure, 
Octahedral void (hole) at centre of the body of the cube  =  1 

12 octahedral voids located12 edges and shared between four unit cells  = 12  

Total number of octahedral (voids) holes = 1 + 3 = 4. 
In ccp (fcc ) structure, each unit cell has 4 atoms and so number of octahedral holes is equal to 
this number.  
Calculation of the diameter of largest atom to be accommodated in the octahedral hole of fcc 
unit cell of edge length ‘a’ is given as, 

3 atoms are touching along the face diagonal and so 4 r =   a. 

The atom, M to be accommodated at the hole has the diameter, ‘d’ . Then two face centre 

atoms of the cube and the atom, M in the octahedral hole are touching each other. So,  
 

 2 r  +  d  =  a, the edge length of the cube  or, d  = a   2 r = 2 112 2
aa a 

   
 
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The largest atom that fits into the hole has diameter, d = 11
2

a 
 

 
 = 0.293 a. 

Problem: Copper has a face-centred cubic lattice with a unit cell edge length of 0.361 nm. 
                 What is the diameter of the largest atom that could fit into the  
                 (i) octahedral and (ii) tetrahedral holes of this lattice without disturbing its structure.   
                                            [BU’2007, Old pattern].   { Answer : (i) 0.105 nm, (ii) 0.058 nm } 
 
Problems (1):  Shown below the three different crystallographic planes of a unit cell of a 
                             hypothetical  metal. The circles represent the atom position.  
 
                                                                                                                                    
                                                                                        (i) To what crystal system does the unit  
                                                                                              belong?   
                                                                                
                                                                                         (ii) What  would be the crystal  
                                                                                               structure?   
 
                                                                                         (iii) If the density of the metal is  
                                                                                           .    8.9 g cm-3 , determine its atomic  
                                                                                                 weight 
 
Ans:                                                                                   Ans: (i) Orthorhombic.       
                                                                                                   (ii)  Body-centred.      
                                                                                                   (iii)  160.8.                                                                                                                           
                      
                                                                 
 
3(a) What is meant by a (110) plane? Draw the (110) plane of a simple cubic crystal. (2) 
   (b) A crystal having simple cubic lattice has the length of its unit cell ao pm. One of its  
          planes show a first order Bragg reflection at an angle of 60o. Taking the wave  
          length of the X-ray as ao pm, find the Miller indices for the plane. (3) 
3(a) What are the Miller indices?   (2) 
   (b) Potassium crystallises with a body-centred cubic lattice and has density of  
          0.856 g cm-1 . Calculate the length of the unit cell and the distance between (110)  
          planes.   (3) 
3(a) Is it possible to obtain Bragg reflection from (100) plane of a simple cubic crystals  
         with edge length 1.5 A by using X-rays with wavelength 3.5 A? (2) 
  (b) The density of Lithium metal is 0.53 g.cm-1 and the separation of the 100 planes of  
          the metal is 350 pm. Determine whether the lattice is f.c.c.  or b.c.c.  
         [M of Li = 6.94 g.mol-1].   (3) 
3(a) With the help of a diagram show that for a cubic lattice the spacing between the  

          adjacent (hkl) planes is 
2 2 2

a
d

h k l


 
,  ‘a’ is the edge length.         (3) 

 
(2)(b) The smallest observed Bragg diffraction angle of the reflection from (111) planes of  

          a potassium crystal is  =6.613 when X-radiation of wavelength  = 70.926 pm is  
          used. Given that potassium exists as body-centred cubic lattice, determine the length  
          of the unit cell and density of the crystal (At. wt. of K = 39).    (2+2) 
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3(a) Calculate the closed distance between the atoms placed in a face-centred unit cell.                                                                                                                                                                  
   (c) For identical experimental conditions the first order Bragg reflection from a plane of  
          a cubic crystal comes up at 5.9o and 5.85o respectively at 20oC and 50oC. 
         Calculate thr coefficient of cubic expansion of the solid.   (3) 
4(c) A unit of NaCl crystal contains 14 chloride and 13 sodium ions and yet it contains  
         ‘four’ molecules of NaCl . Explain. 
1(d) Calculate the wave length of X-rays if the reflected angle for NaCl  with density  
          2.163 g/cc is 5.9o. 
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