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 INTRODUCTION:   
            This is an important branch of physical chemistry. The chapter deals with quantitative 
relationships between heat and other forms of energy. 
            Thermodynamics consist of three laws: first law is the conservation of energy while 
second law deals with the condition of feasibility of a process. Third law provides method of 
evaluation of various thermo-dynamical properties. Later zeroth law    introduces the concept of 
temperature. The laws are derived from the direct human experience and so it has no exception. 
This is why it is called exact science.  
 The laws of thermodynamics (TD) apply to the system at equilibrium and so time 
variable is totally absent in this chapter. Thermodynamics concerns with the macroscopic 
properties viz. pressure (P), temperature (T), volume (V) and mole number (n) of the system. 
Thermodynamics does not consider the constituent particles of the system as such. 
            Thermodynamics has a predicting value. It can predict whether a process is feasible or not 
under a set of experimental conditions. 
            
Some important terms used in thermodynamics:  
 
1) System and Surroundings:   System is a part of the universe selected for  
    thermodynamic-study and separated by definite boundary – real or imaginary.  
    The rest part of the Universe is called Surroundings.  
                                                         That is, 

                                                                         System  +  Surroundings  =  Universe 

                                                                         System may be homogeneous (uniform  
                                                                         in all parts) or heterogeneous (not  
                                                                         uniform in all parts). Examples of  
                                                                         homogeneous system are, mixture of gases,  
                                                                         mixture of miscible liquids, pure solid etc. 
                                                                         Heterogeneous system is liquid with  
                                                                         vapor, mixture of immiscible liquids, 
                                                                         mixture of solids etc.  
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On the basis of types of boundary walls, systems can be again classified into three types- 

Interaction of the open system with the surroundings is maximum while that of the isolated 
system is nil. Any impact on the isolated system by the surroundings is taken zero. 

2)  Properties of a system :  

  The measurable properties of a system are of two types. 

  a)  Extensive: Dependent on the amount of material present in the system.  
                         For example, volume, mass, heat capacity, mole number (n) and the  
                         thermodynamical properties like internal energy (U) , enthalpy (H),  
                         entropy (S) , work function (A) and free energy (G). 
   b)  Intensive: Independent of amount of material present in the system.  
                         For example, temperature(T), pressure(P), density(d), refractive index,  
                         viscosity,  surface tension, concentration and molar properties. 
 
3)  State of System:   

     The state of a system is described by the state variables like P, T, V and n.  
     But for   closed system, n is fixed and since these state variables are connected by an 
     equation, hence, out of P, T and V only any two can describe the state of the system.  
     Thus for closed or isolated system, state is designated by either (T, V) or (T, P) or  
     (P, V) while n is fixed. 
             Any change in the values of the variables will change the state of the system and 
      it will attain a new state. If it is desired to bring the system back to its initial state,   
      the variables will have to obtain their original value. 
 

4)  Path:  

     It is the sequence of intermediate steps or stages arranged in order for the system  
     to follow from initial state to final state. 

(a) Open System (b) Closed System (c) Isolated System 

Energy and mass are 
exchanged between system 
and surroundings. 
Example:  water in a 
beaker, Zn is reacting with 
dilute H2SO4 in a beaker. 
Mass and energy both are 
not conserved in the 
system. 
 

Mass is not allowed to 
transfer between system 
and surroundings so mass 
of the system is conversed 
(fixed). Energy is 
exchanged. Example: liquid 
in equilibrium with vapor in 
a sealed tube. 

  

Mass and energy both are 
not allowed to exchange 
between the system and 
surroundings. Both energy 
and mass of the system 
remains fixed.  
Example: boiling water in a 
thermo flask 
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5)  Thermodynamical Equilibrium: 

     When all the observable properties like T, P, chemical composition remain  
     time-invariant, the system is under thermodynamic equilibrium  
     (It satisfies simultaneously thermal, mechanical and chemical equilibria). 
     Difference with steady state:  
     (a) An isolated system is in equilibrium when its macroscopic properties remain    
           constant with time. 
     (b) An non-isolated system is in equilibrium when the following two conditions   
           hold 
           (i) The system’s macroscopic properties remain constant with time and  
          (ii) Removal of the system from contact with its surroundings causes no effect  
                in the properties of the system. 
     If the condition (i) holds but condition (ii) does not hold, the system is in steady state.  
     [Ph. Ch. – Levine (P5)] 
 
6)  Process: It is the method of operation by which the system changes its state. 

      It is of following types: 

     (a) Cyclic process: After a series of changes the system comes back to its initial state. 
                                    All the variables take its initial value. 
     (b) Isothermal process: Temperature (T) remains constant during the process. 
                                           Heat-exchange continues. Walls of the system must be  
                                           perfectly  conducting thermally. 
     (c) Adiabatic process:   Heat exchange is not allowed with the surroundings during the 
                                            process. Temperature varies. It occurs for the isolated system only.     
                                         
     (d)  Isobaric process:     Pressure (P) remains constant thus volume will vary.  
                                            For example, heating of water in a beaker, open to 1 atm  
                                            pressure.     
     (e) Isochoric process:    Volume (V) remains constant,  so pressure (P)  changes. 
     (f) Polytropic process:   Heat capacity remains fixed. 
     (g) Reversible process:  During the change of state, driving force and opposing force    
                                            differ by infinitesimal amount and final state of the system  
                                            can be  reversed without the aid of external agency.                                       
Let n mole of a gas is enclosed in a cylinder fitted with weightless, frictionless movable piston. 
The gas is expanded from the initial state (P1,V1) to (P2,V2) 
by reversible process. The driving pressure (force per unit area) is 
P1, infinitesimally greater than opposing pressure P1-dP,  
where, dP →0. 
The volume is increased by dV. At each step, the system attains 
equilibrium. For the expansion of the gas, infinite time is  
required to effect the change so it is not a real process, but  
a concept.  
Only reversible phase change (viz. melting of ice at 0oC and1 atm. pressure) is a real reversible 
process. The rev. process involves very large number of equilm. states, so reversible process is 
also called equilm. process.  
(h) Irreversible process: When the above conditions are not  
      maintained, the process  becomes irreversible. This process is 
      rapid and spontaneous. It occurs against constant opposing  
      pressure.  The initial state of the system can not be reversed  
      without the aid of external agency by this process.                                     
      In the example of expansion of a gas, the process occurs against  
      constant external pressure. This is a real process.                               
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7)  Perfectly differential quantity (X): 

     For a quantity to be perfectly differential, following conditions are to be satisfied.  
     Let the property be X, then 
     (i)   X must be a state function and single valued. 
     (ii)  dX will be independent of path of transformation between two specified states.      

     (iii)   .0dX   i.e. change of X of the system in the cyclic process is zero. 

     (iv)  If X = f(T, P), then  
TP

X

PT

X








 22

  i.e. it obeys Euler’s reciprocal relation.  

8)  Work (w): 

     When an object is displaced through a distance dx against a force F, the work done,  
      w = Fopposing . dx  
      (i)   Mechanical work = = Popp.× dV  
      (ii)  Gravitational work = mgh  
      (iii) Electrical work = Q × dE, when dE is the potential difference through which 
             Q amount of charge is flowing. 

 9)  Heat (q): 
                      Heat is a form of energy. It can be produced from work or partly converted  
       into work. Heat flows from higher temperature to lower temperature until T becomes 
       equal (thermal equilibrium). 
                                         Heat is a special form of energy, since all other forms of energy  
       are easily converted into heat energy but latter has no tendency to be transformed 
       into other forms of energy. This is why vast amount of heat energy is stored in the universe.                                               

10)  Internal energy (U): 
                                      A system by virtue of its existence must possess a store of energy.  
       This is evidenced by the evolution of heat energy when liquid freezes, by production  
       of electrical energy in Daniel cell using the chemical reaction between Zn and   
       H2SO4. Carbon (C) when burnt produces huge amount of heat energy. 
                                      This stored-up energy is called the internal energy of the system. 
        This thermodynamic property is denoted by U. It is a perfectly differential quantity  
        and an extensive in nature. U is normally a function of T and V i.e. U = f (T, V). 
        The energy possessed by a system due to translational, vibrational and rotational 
        motion of the molecule, constitutes the magnitude of internal energy.  
        The motions of electrons and nuclei also contribute to U. 
       This energy is associated with the system by virtue of its molecular constitution 
        i.e. inter-particle attractive and repulsive potential (called internal potential energy)  
        and by virtue of its motion of constituent particles (internal kinetic energy). 
                                               Energy acquired by a system in a force field like electrical,   

         gravitational, magnetic or surface etc. are termed as external energy, and not   

         considered as part of internal energy.       

  .                                           

Related questions with hints to answer: 

1. Justify/Criticize the following statement:     
   (a) A finite change through a reversible process would require an infinite time. [BU’92]                                              
        HINT. Partially correct. True for reversible expansion of a gas but not true for  
                   reversible phase change of a substance.                                                 
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2. A cyclic process ABCA shown in the following V-T diagram 
    is performed with a constant mass of an ideal gas. Show the 
    same process on P-V diagram. Give your arguments.[BU’95]       
    HINT: Arguments: In V-T diagram, A →  B, P is constant, so 
                V  T, linear plot. B→C, V is constant, T decreases 
                so P will decrease. 
                C → A, T is constant, V decreases so P will increase.  
                                     Thus in P – V diagram, A→B, P constant, 
                 but V increases, B → C, V is constant But P decreases, 
                 C → A, T is constant so the plot is rectangular  

                 hyperbola (Boyle’s law). 

3 Explain with reason ─ an infinitely slow process is not necessarily a reversible process. 
                                                                                                                                 [BU’90]    
    Ans: For a process to be reversible, the following conditions are maintained.  
            (a) Driving force and opposing force must differ by infinitesimal amount and 
            (b) the process could be reversed without help of external agency.  
                 The process may be slow and this is not the criteria of reversibility of a process. 
                 
4(i) Identify with reasons, the following process as thermodynamically reversible or irreversible. 
                                                                                                                                         [CU’91]  
 (ii) Freezing of water at 0oC and 1 atm pressure.  Ans. Reversible process.   
 
(iii) Freezing of super cooled water at –100C  and 1 atm pressure. Ans.  Irreversible process. 
        
 (iv) 1 mole of N2 at constant T is held by a piston under 20 atm pressure and the  
         pressure is suddenly released to 10 atm.  Ans.  Irreversible Process → sudden change. 
 
      
5(i) Classify the following as extensive and intensive properties: 
       Pressure, volume, Free energy, Chemical potential, Temperature and Density      
       Ans. Extensive→ volume, free energy 
                 Intensive→ pressure, chemical potential, temperature, density.       
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                                                                                 First Law of Thermodynamics 
 
 
It is the law of conservation of energy. It states that “The energy can neither be created nor be 
destroyed but it can be transformed from one form to another.” 
 In other words, whenever one form of energy disappears, an exactly equivalent amount of 
another form must reappear. This statement rejects the possibility of constructing perpetual 
motion machine of the first kind. Formerly it was supposed that it is possible to construct a 
machine which would produce work for indefinite period of  time without supplying any form of 
energy. 

Let q amount of heat is supplied to a system containing one mole of gas in a cylinder 
fitted with weightless, frictionless movable piston. The gas expands from volume V1 to V2 while 
temperature changes from T1 to T2 at constant pressure. It is found that q  w, so it supposed that 
(q- w) amount of heat goes to increase the internal energy of the system.  

Thus,              q – w  = dU.        Or, q = dU + w          ------ (1)        

                          This is the mathematical form of the1st law. 
                                              
When w is restricted to the mechanical work only, w = +PdV 
[Workdone by the system is (+)ve while work done on the system is (–)ve ]. 

Putting this, we get the 1st law as,    q = dU + PdV      --------- (2) 

Again, U = f (T, V), so, on partial differentiation, dV
V

U
dT

T

U
dU

TV


























   

Putting we get generalized mathematical form of the law, 

                                   dV
V

U
PdT

T

U
q

TV

































       --------- (3) 

If the process is conducted at constant V, then dT
T

U
q

V
V 












    

    or, 
V

q

T
 
 
 

= V

U
C

T

 
 

 
constant volume molar heat capacity. So, V

U
C

T

 
 

 
. 

     Therefore,                         dV
V

U
PdTCq

T
V 




















      ---------- (4)                                                                            

For ideal gas, 0












TV

U
, since there is no molecular interaction in ideal gas, so internal  

energy does not depend on expansion or contraction of the gas.  

Thus,              for ideal gas, U = f (T) only and independent of volume. 

The 1st law for ideal gas becomes,     PdVdTCq V              ---------- (5) 

                   For n moles of ideal gas,  q = nCVdT + PdV           ---------- (6)                          

For real gas which obeys Vander Waals equation, 
2V

a

V

U

T













. So the 1st law becomes 
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              









2V

a
PdTCq V  dV     ------------  1 mole vander Waals gas --------(7) 

              dV
V

an
PdTnCq V 










2

2

    -----------  n moles vander Waals gas   ------(8) 

For n moles ideal gas, dTnCdU V  and for vander Waals gas, dV
V

an
dTnCdU V 2

2

  

These relations can be used to calculate the change in internal energy of a process provided no 
phase change or chemical transformations occur. For these two latter cases, relations are not 
valid. 

(1) Cyclic process:   The internal energy change in this process is dU = 0 so, q = w 
                                  i.e. heat is completely converted into work in the cyclic process. 

(2) Isothermal process:  For ideal gas, dU = CVdT = 0 since T is constant. dT = 0. 
                                       1st law is q = w,  i.e. heat is completely converted into work. 

                          
 (3) Adiabatic process:   q = 0.   So, 0 = dU + w     or, w = − dU.  
                                       The work done by the system is at the cost of its own internal  
                                        energy. When the system does work, its internal energy  
                                        decreases.           .  

                          For ideal gas,  dU  = CVdT = CV (T2 − T1) and w = PdV = P (V2 − V1). 
                                                  Putting,   P(V2 − V1) = − CV(T2 − T1) 
                            Or,   P(V2 − V1) = CV(T1 − T2) .............ideal gas, mech. work, adiab. proc. 
                                                  Thus for adiabatic expansion, V2  V1,  so,  T1  T2   
                    i.e. adiabatic expansion of an ideal gas causes fall in temperature. 
             Similarly, adiabatic compression of an ideal gas causes rise in temperature 

(4) Isochoric process:       V = constant, so dV = 0, q = dU  if work is only mechanical. 
                                          i.e. no work is done and total heat supplied goes to increase   

                                          the internal energy                                           .                                                                                       

Relation between P, V and T for ideal gas in reversible adiabatic process: 

(i) 1st law for adiabatic process and ideal gas, 0 = CVdT + PdV or, CVdT = −PdV.  

     But for 1 mole ideal gas 
V

RT
P  .  So  

V

dV
R

T

dT
CV   .  

     Integrating (since the process is reversible), within limits and assuming CV independent of T,    

     we have,                        
2

1

2

1

T

T

V

V

V V

dV
R

T

dT
C   or, 

1

2

1

2 lnln
V

V
R

T

T
CV     

                                              or,  
1

2

2

1 lnln
V

V

C

R

T

T

V

   or, 
VC

R

V

V

T

T










1

2

2

1   

       since,    R = CP − CV  for ideal gas, or R/CV (CP – CV )/CV = 1  ,  as ,  = CP/CV . 

        So,                                                 

1

1

2

2

1















V

V

T

T
,   

         or,                          1
22

1
11

   VTVT     -------    ideal gas, rev. adiab. proc.   
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   (ii) Using 1st law for adiabatic process, 0 = CVdT + PdV . But for ideal gas PV = RT     

         or,                PdV + VdP = RdT.   Replacing dT from the 1st law equation,     

                      PdVVdPPdV
R

CV 0        or,         VdP
R

C
PdV

R

RC VV 


.  

         But,                     
R

C

R

RC PV 


 .        Rearranging,        P V

dV dP
C C

V P
  .  

         Integrating within limits,      
2

1

2

1

P

P

V

VV

P

V

dV

C

C

P

dP
  or,  

1

2

1

2 lnln
V

V

P

P
  

         or,                            
2211 VPVP               ….. ideal gas rev. adiab. proc. 

 

   (iii) Replacing dV using ideal gas equation in the 1st law, we get    

           0 V VC dT RdT V dP R C dT V dP            or,       VdP = CPdT 

           Replacing                          ,
RT

V
P

       we get,         P

dP
RT C dT

P
 . 

            So integrating,       
2 2

1 1

P T

P P T

R dP dT

C P T
   ,    or,  2 2

1 1

ln ln
P

R

CT P

T P

 
  

 
 2 2

1 1

,
P

R

CT P
or

T P

 
  
 

. 

                                              But, 






11
1







P

VP

P C

CC

C

R
. 

               So,                             

1

2 2

1 1

T P

T P







 
  
 

       or,     

1

2 1

1 2

T P

T P







 
  
 

 

or,                                        1 1
1 1 2 2T P T P           … ideal gas rev. adiab. proc. 

 

Show that adiabatic curve is steeper than isothermal in the P – V diagram. 

We have to show adiabatic slope  isothermal slope 

or,                             
adV

dP








 

idV

dP








 

For isothermal change,  PV = const. or, PdV + VdP = 0  

or, 
V

P

dV

dP

i









 --------  rev. isotherm. proc., ideal gas. 

 
  
For adiabatic change of ideal gas,  PV  = const.       or,         lnP +  lnV = const.     

or,                      0
1

 dV
V

dP
P


          or,             


















V

P

dV

dP

a

 .    

But,           1                 so,                    
 
 

1 

i

a

dV
dP

dV
dP
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Thus adiabatic curve is steeper than isothermal in the P-V diagram. 
The comparison of reversible isothermal expansion and reversible adiabatic expansion of a gas 
can be understood in the following way. 
Let the gas expands from the initial volume V1 and pressure P1 to the final volume V2 in the 
above two processes. 
For isothermal expansion, T1 = T2 but for adiabatic expansion T1 T2 , since temperature falls in 
adiabatic expansion. Hence, the final pressure ( P2) in adiabatic process must be less than the 
final pressure (P2) for the isothermal expansion.  
                   So, adiabatic curve is steeper than isothermal in the P – V diagram. 
However, when V is plotted against P, isothermal curve is steeper than adiabatic curve 
 
                                               For this reversible expansion of ideal gas, final pressure in the  
                                               adiabatic process is less than that in the isothermal process. 
                                               Since the initial state of the gas is same in both the processes,  
                                               isothermal curve is more steep than the adiabatic curve. 
 
 
Related questions with hints to aswer: 

A gas is suspected to be Neon or Nitrogen. When a given sample of the gas at 250C is  
expanded adiabatically from 5L to 6L, the temperature came down to 40C. What was the gas?    

Using the relation T1V1
-1 = T2V2

-1    or,  
2

1

1

1

2

T

T

V

V











   or,  
277

298

5

6
1











       

        solving,   = 1.4.     So the gas was diatomic, hence it was nitrogen. 

Identify with reasons, the following processes as thermodynamically reversible or irreversible: 
 ( l ) Freezing of water at 0oC and 1 atm pressure.  
 (m) Freezing of super cooled water at – 10oC and 1 atm.  
  (n) One mole of nitrogen at constant T is held by a piston under 20 atm pressure and the  
        pressure is suddenly released to 10 atm.   
 ( l )  It is reversible phase change.  
 (m)  A small jerk to the system makes the process to occur rapidly so it is an irreversible phase  
         change. 
  (n) Irreversible process as it occurs suddenly. 
 
State whether the thermodynamic relation PV  = constant, is valid for a reversible process, 
an irreversible process or both. Give reasons. 
It is valid only for reversible process. Integration is done to get the relation, as P and V change 
continuously so the process is reversible. 
 

Establish the relation PV  = constant for an adiabatic process.          
Ans. See in the Text, page 8. 

(i) From the conventional treatment of the 1st law of thermodynamics (conservation of   
     energy principle), arrive at an alternative statement “ in an isolated system, work done 
     is independent of the path. (m = 2). 
 (ii) If in a P – V change, work done can be obtained by integration, what should be the essential 
      condition for the process?  (m = 2) 
 
 (i)  1st law states, q = dU + w . For isolated system, q = 0, so w  = ─ dU , but U is a state  
         function so dU does not depend on path. Hence w is also independent of path. 
 (ii) The P-V change should be the reversible as P and V change continuously. 
 

Final pressure in 
a adiab. proc. is 
less than that in 
isotherm proc. 

BU’96 

CU’91 

CU’93 

CU’91 
 

   CU’94,  

Solution 

Answer 

Answer 

 

Answer 
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(ii): Is it possible to draw the path for state I to state II if the change is brought about  
       irreversibly? Explain. (m = 2). 
       It is not possible to draw the path as the intermediate state points are not known for the  
       change. Only the coordinates of the state I and state II are known. 
 

Justify / criticize: “A finite change through a reversible process would require an infinite time.” 
                                                                                                                                                   (4) 
The statement is not always true. For reversible expansion of a gas, opposing pressure is 
infinitesimally smaller than driving pressure i.e. dP → 0,  so infinite time is required for 
completion of the process.  
But in the reversible phase change, viz. melting of ice at 0oC and 1 atm pressure, finite time is 
required to complete the process. 
 
For silver CP (J K-1 mol-1) = 23.43 + 0.00628 T. Calculate ∆H if 3 moles of silver are raised from 
25oC to the melting point 961oC under 1 atm. (Ph.Ch.─ Castellan, Ex.7.2) 
At constant pressure, PdH nC dT .Integrating within limits & using data given, 

we get, 
2 2

1 1

2 1,
H T

P

H T

dH n C dT or H H     
2

1

23.43 0.00628
T

T

n T dT  = 79,290 J.  

         2 2
2 1 2 1

0.00628
23.43( )

2
H n T T T T

 
     

 
 

                 =  2 20.00628
3 23.43(1234 298) 1234 298 79,300

2
J

 
    

 
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 CU’98,  

BU’92, 

Problem: 
 

Answer 

Answer 

Solution:  
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Joule’s Expansion (Free Expansion): 

        In 1843, Joule tried to determine  
T

U
V




 of a gas by measuring the temperature change 

after free expansion of the gas into vacuum. This experiment is repeated by Keyes and Sears in 
1924 with an improved set-up. Bulb A is filled up with gas at pressure P while bulb B is 
evacuated. The walls of the bulbs are adiabatic. The valve is operated and the gas expands against 
vacuum. When equilibrium is reached, the temperature is noted by the thermometer (T). 

                                                         Since the walls of the bulbs are adiabatic, so  q = 0.  
                                                         The gas expands against vacuum, so, w = Pext dV = 0.  
                                                         Therefore q = dU + w  or, 0 = dU + 0 or, dU = 0.  
                                                         This is a constant internal energy process,  
                                                         U = constant. The experiment measures temperature 
                                                         change with change in volume at constant U,  

                                                          
UV

T


  or more   precisely T/V at constant U.   

  

                       This quantity is called Joule’s co-efficient ( J ) and   
U

J V
T


 . 

Relation between J  and  
UV

T


 :  We know that  U = f (T,V)  

so,          .dV
V

U
dT

T

U
dU

TV


























     But for this Joule’s free expansion, dU = 0.   

So,             .0 dV
V

U
dT

T

U

TV


























         Or,          .0 dV

V

U
dTC

T
V 












  

                     
TVU V

U

CV

T
























 1            or,                
TV

J V

U

C














1
   

or,                                                 JV
T

C
V

U













.   

                                Joule measured J  = 0 hence,   .0



TV

U  

But his experimental set-up is so poor that his result is meaningless. Keyes-Sears 

                          showed that  
TV

U


  is small but definitely non-zero.  

Now it is taken,   .0



TV

U  for ideal gas and  ≠ 0 for non-ideal gas.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Improved 
Set-up 
by Keyes  
& Sears 

 

Relation 
between µ J   
      & 

 
TV

U


  
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    Heat-change (q) and work-done (w) are not perfectly differential quantity 

 The heat change (q) and work done (w) of a system between fixed initial and final states depend 
on nature of the process. Various examples can be cited in support of the fact. But we shall prove 
it by use of Euler’s theorem. Let the heat change is perfectly differential and denoted by dq 
instead of q. Hence, from the 1st law, we have     

                     dV
V

U
PdT

T

U
dq

TV

































    or,   

V V

q U

T T

    
   

    
.  

Differentiating with respect to  V at constant T,            
TV

U

TV

q








 22

  -----------(A) 

Again,                                  
TT

V
UPV

q











  . 

 

Differentiating with respect to  T at constant V ,   
VT

U

T

P

VT

q

V 



















 22

 ------ (B)  

But RHS of (A) & (B) are not equal since   0



VT

P ,  hence , 
VT

q

TV

q








 22

   

Euler’s theorem is not satisfied, so dq is not perfectly differential and hence we represent it as q..  
đq is often written instead of q to denote that  heat change is not exactly differential quantity. 
By the same argument, we can prove that w is not perfectly differential. Let it be represented as 
dw and  

                          dw = PdV  but V = f (T,P) or, dP
P

V
dT

T

V
dV

TP


























   

so,                                           dP
P

V
PdT

T

V
Pdw

TP


























 .                      

                      By the use of Euler’s theorem, it could be shown that  
TP

w

PT

w








 22

.   

                   Hence dw is not perfectly differential and we write work done by w only.  
 
Enthalpy (H):    It is defined as,                        
                                                         H = U + PV.                                               

Since, U, P & V are all state functions, so H is also a state function and perfectly differential 
quantity. 
Again, U = internal energy and PV = energy term, so H is also an energy term.  
As,   PV is external energy of the system, so, H is called total heat content of a system.  
On differential,                                                    dH = dU + PdV + VdP 
or,                                                                         dH = q + VdP .  
For a change of state of a system at constant P,   dHP = qp.  
This signifies that heat supplied to a system at constant pressure increases the enthalpy of the 
system. 
                             We may summarize the different relations with the change of enthalpy and 
internal energy of the system:  
(1) In chemical reaction, H = QP  and U = QV  i.e. heat change at constant pressure is identical 
      with H and that at constant volume by U. 

(2) Dividing by dT at constant P,   P
PP

CT
q

T
H 












  when one mole gas is considered, 

Physical 
significance 

Comparison 
between H 

and U 
 

Use of 
Euler’s 

theorem 

Definition 
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      thus,                     
P

P T
HC


  , called constant pressure molar heat capacity   

      and                       
V

V T
UC


  , called constant volume molar heat capacity. 

 
(3) Again, dH = CP dT at constant P and dU = CV dT at constant V.  
      However these two expressions can not be applied to the rev. phase change of a substance 
      and chemical transformations. 
(4) It is usual to write,                     U = f (T,V)  and  H = f (T,P).  
      But for ideal gas,                        U = f (T) only and H = f (T) only.  
 
 
Expression of CP ─ CV: 
 

Thermodynamic definition gives    
VP

VP T
U

T
HCC





 . 

but,            H = U + PV               so,                
   

V
P

VP T
U

T

PVU
CC















   

or,                        
VPP

VP T
U

T
VPT

UCC








  . 

Again,        U = f (T,V)                so,                      dVV
UdTT

UdU
TV 




   

or,                                
PTVP T

V
V

U
T

U
T

U











 .  

Using this relation in the expression of CP – CV,   

                                                                             P V
T P

U VC C P V T
    
   

 . 

     This expression is not so useful as  (∂U/∂V)T   is not directly measurable quantity. 

However, thermodynamic equation of state is given by    
VT T

PTV
UP





   

Thus, generalized expression of CP – CV  is obtained by the use of the equation.   

                                        
PV

VP T
V

T
PTCC





  .  

This form is applicable to ideal or real gases and also to other states of aggregation of the 
substances. 
 
(i) CP – CV for ideal gases: Ideal gas obeys the relation PV =RT    

                                              so,    V
R

T
P

V



   and   P

R
T

V
P



 .    

     Thus,                                       R
RT

TR

PV

TR
CC VP 

22

   

      So,                                                   CP – CV = R   -----------------    ideal gas. 
 
(ii) CP –CV  for the gas obeying P (V – b) = RT equation:      

      
bV

RT
P


      or,     

bV

R
T

P
V 



        and    b

P

RT
V    or,    

P

R
T

V
P



  .  

       Thus,                    
 

R
RT

TR

bVP

TR

P

R

bV

R
TCC VP 







22

. 

       The relation is thus,                              RCC VP  . 

 
 

Expression 
of CP – CV 

Generalized 
form of  
CP - CV 
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(iii) CP – CV  for water at 40C:  
 
      The liquid water attains minimum molar volume at 40C. So V = minimum at 4oC. 

      Thus,                0
P

V
T

 


       so,          0






PV

VP T
V

T
PTCC .  

      So for water at 40C,           CP – CV = 0              and              CP = CV . 
 
(iv) CP – CV  for vander Waals gas: The equation for 1 mole gas,    

         RTbV
V

a
P 










2
,  where, a and b are characteristic constants of the gas.  

        For this expression, some approximations are to be taken as it involves  
PT

V


 . 

        Now,                   
2V

a

bV

RT
P 


             or,              

bV

R
T

P
V 



 . 

        Again, multiplying fully, vander Waals equation becomes RT
V

ab

V

a
PbPV 

2
,     

         neglecting the small term ab/V2, we get 

                        RT
V

a
PbPV              or,            R

T

V

V

a

T

V
P

PP


























2

.  

                                                 Or,  
2

P

RV
T aP

V

 
 

 

             
2V

aP

R

bV

R
TT

V
T

PTCC
PV

VP













  











22

2

2

V

a

V

a
PbV

TR  

                         

  














2

2

2
V

a

bV

RT
bV

TR
  = 

 

2

22

2 ( )2 ( ) 11

R T R
a V bRT a V b

V b
RTVV b RTV


   

        

. 

                            But V  b, so 
1

2
1

2
1
















RTV

a
R

RTV

a
R

CC VP
     

           and  
2a

RTV
 is small correction term originating from non-ideality of a gas.     

                         So,      
TV

a
R

RTV

a
RCC VP

22
1 








 , 

      V is replaced by using ideal gas equation as an approximation.  

         Thus,                               
2

2

RT

aP
RCC VP  .  

                           This shows that (CP - CV )  R for vander Waals gas.  
 

(v) CP – CV in terms of  and : We have    
PV

VP T
V

T
PTCC





 ,   

      But,  = thermal expansion co-efficient or thermal expansivity =  
PT

V
V 

1
  

      and   = co-efficient of compressibility or isothermal compressibility =  
TP

V
V 


1

  

Calculation 

of  
PT

V


  

for vander 
Waals gas 

Calculation 

of  
PT

V


  

for vander 
Waals gas 
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 
 

   
TP

T

P

V
P

T
V

P
V

T
V

















  

           But, V = f(T,P), so by partial differentiation, it is possible to show that     

                       1









TVP V

P
P

T
T

V or      
VTP P

T
V

P
T

V








 /1 . 

Thus,                      
 

 
V

V

T
P

P
T 







1




and,   .VT

V
P




   

So we have                                       CP  – CV = 2TV ∕ β 
                        This relation is valid for substances in all states of aggregation. 

Related questions with answer: 
 
Find out the value of CP – CV for decane at 270C, given molar volume 106ml and 
 = 1 ×10-3 K-1 and  = 106 X 10-6 atm-1. (Ph.Ch.- D.N.Bajpai, page,155.) 

 
6

23

P 10106

106300101
C








 VC  (K-1 ml mol-1 atm) = 

106

106300
(K-1ml atm mol-1)   

               = 300 K-1. mol-1 
82

2
 cal = 7.26 cal mol-1K-1. (using 1 ml atm = 2/82 cal.). 

 

We have thermodynamic equation of state,    
T V

U PP TV T
  

 
.  

So,                                           PT
PTV

U
VT






 .  

            This equation helps to calculate the value of  
TV

U


  for different gases. 

 

(i) For ideal gas:      PV = nRT       or,      V
nRTP       or,        V

nR
T

P
V



 .  

                             Thus,   0


 PPP
V

nRT
P

V

nR
TV

U
T

   

   So,                                                 0












TV

U     ----------------     for ideal gas.  

     This means that the internal energy (U) of an ideal gas is independent of volume.  
        Hence, we can say U is not a function of V for ideal gas and U = f(T) only. 

(ii) For vander Waals gas:  For n moles gas,      nRTnbV
V

an
P 










2

2

  

or,               
2

2

V

an

nbV

nRT
P 


                      or,                   

nbV

nR
T

P
V 



  

Putting in the expression of  
TV

U


 , we get 

                                   P
V

an
PP

nbV

nRT
V

U
T

















2

2

  

or,                                                 2

2

V
an

V
U

T



    ---------- vander Waals gas  

This relation shows that  
TV

U


 = (+)ve and value decreases with increase of volume.  

                    Isothermal expression of a vander Waals gas leads to increase of U. 

Problem(1)
: 
Solution: 

Expression of 

 
TV

U


  



 

PRINCIPLES OF THERMODYNAMICS ─  N C DEY 16 

A vander Waals gas expands isothermally and reversibly from a volume of one lit to ten lit. 
Derive all necessary mathematical expression to calculate the internal energy change of the gas in 
calories.( a= 1.4 atm lit2 mol-2)   

First derive   2

2

V
an

V
U

T



  as above.  

 
Now, integrating the relation,       

            
3

1

2

1

2
2

V

V

V

V V

dV
andV            or,        

2

1

12
12

V

VV
anUU 








 .   Putting the values, 

   4.1U atm lit2 mol-2 × (1 mol)2










10

1

1

1
lit-1  = 

10

9
4.1  lit atm =

082.0

2

10

9
4.1   cal . 

                                          Or, ΔU = 30.73 cal per mol of the gas,  
 
Internal energy change in terms of T and V. 
                                         12 TTnCU V   for ideal gas   

and,                   









21

2
12

11

VV
anTTnCU V  for vander Waals gas.                        

                      Provided no phase change or chemical transformation occurs. 
 

A student attempting to remember a certain formula comes up with CP – CV = TVαm/βn, 
            where m and n are certain integers whose values the student has forgotten. 
Use dimensional considerations to find m and n.          

TV

CC VP
n

m 



    The dimension of α = K-1 and that of 

22

2




MT

L

MLT

L
   

So, αm = K-m and βn = LnM-nT 2n .  Dimension of nnnm
nnn

m

TMLK
TML

K
LHS 2

2






  

Dimension of 212
13

22-1K
RHS 





 TMLK
molKL

molTML
.   Equating, we get m = 2 & n = 1. 

 
Calculate the difference between the molar heat capacities at constant pressure and at constant 
volume for copper at 20oC.  

Given: 5 14.92 10 K    ,  7 17.0 10 atm     and density of copper = 38.96 .Kg dm  
                                                                                               [Answer: 0.654 J mol-1 K-1 ] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BU’87, 

Solution: 

∆U for ideal 
and vander 
Waals gas 

BU’96 

Solution: 

Problem 
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Mechanical or pressure-volume work (w) 
                            
                                   It is the work associated with the change in volume of a system against 
opposing pressure, w  = Popp.ΔV,  where Popp is the pressure that opposes the change of V, 
                                                     w  = Popp(V2 – V1)    

Magnitude of w for specified volume change (say V1 to V2) depends on this opposing pressure.  

       

 

 

 

 

 

     
 
                                                                                                                  

                                                                                                              Since dP→0, P changes 
                                                                                                             continuously, so summation 
                                                                                                             is replaced by integration. 

This shows that magnitude of work done by a system increases with increase of number of steps 
that occurs for a specified volume change and maximum when the max process is 
reversible.Thus,   w is a path function. 

 

w = Popp( V2 – V1 ) so, work done by the system is taken (+)ve   
                              and work done on the system is ()ve.  
Thus, for expansion of the gas,     w = (+)ve  since V2  V1  

          for compression of the gas, w = ()ve since V2   V1 

Modern convention: w =  Popp (V2 V1) so the sign of work done becomes opposite to the above 
conversion. However, we shall use the old convention only. 

 

Expression of work done in reversible process: 

 Reversible process is a multi-step process and in each step the working system attains 
equilibrium. Again the driving pressure is infinitesimally greater than the opposing pressure in 
each step and dP→0, i.e. pressure difference is infinitesimally small. If the pressure over the 
piston were kept greater than P1 – dP, there obviously would be no expansion.  

w1 = P2(V2 –V1) 
     = area (shaded) 

w2 = w+w’ 
     = P2’(V2’-V1) 
         +P2(V2-V2’) 
      = area (shaded) 
 

w = (P1-dP)dV +    
       (P1-dP)dV   
      +(P2+dP).....+P2dV 
    = shaded area 

Indicator 
Diagrams 

Magnitude 
of w is path 

function 

Sign 
Convention 

of w 

Work done in 
reversible 

expansion is 
maximum 

 

2

1

V

V

w PdV   
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Therefore, the opposing pressure is always maximum in each step through out the whole process. 
Since w = Popp( V2 – V1) thus, for the same specified volume change ( V1→ V2 ), w = maximum 
as Popp is maximum. Thus, work done by the system in reversible process is maximum and the 

value is calculated as, 
2

1

V

V

rev PdVw .  

Similarly, it can be shown that work done in compression of a gas (work done on the system) for 
same specified volume change in reversible process is minimum. 
 
            The pressure over the piston in this reversible compression is slightly greater then the 
opposing pressure. i.e. P2 + dP is infinitesimally greater than P2. Thus, P2 is minimum pressure 
below which there would be not be a reversible process.    
                                                       Thus in every step, the work required is minimum 
                                                       so, overall work done on the system is minimum in   
                                                       the reversible compression of a gas,  
                                                       w = P2 dV + (P2 + dP) dV + (P2 + 2dP) dV  ------- 
 
                                                                 (P1   2dP) dV + (P1   dP)dV  
 

                                                                      = 
1

2

PdV  = ─ 
2

1

PdV  

 

     When ideal gas is used, the equation is PV = nRT. Or, P = 
V

nRT
. 

So, wr,i = 
2

1

V

V

PdV = nRT 
2

1

V

V V

dV
,  since the process isothermal.  So,   wr,i = nRT 

1

2ln
V

V
.   

                           Again as T is constant, so 
2

1

1

2

P

P

V

V
 .   

So,             wr,i = nRT 
1

2ln
V

V
 =  nRT 

2

1ln
P

P
,    -------id. gas, rev. isotherm. proc.                                                                 

  

For vander Waals gas, P = 
2

2

V

an

nbV

nRT



   so, dV

V

an
dV

nbV

nRT
w ir  




2

1
2

22

1

,  

Or, wr,i = nRT ln 
nbV

nbV





1

2  + an2 









12

11

VV
----- vander Waals gas, rev. isotherm. proc. 

 

 For ideal gas in reversible adiabatic process, )tan(, tconskPV  or, P = V
k . 

Therefore,         wr,a   =   k 
2

1
V

dV
  =  k 

2

1
1

1 V

V

V

















 =   1 1
2 2 2 1 1 1

1
. .

1
PV V PV V   



      
. 

 Or,                 
1

2211
,








VPVP
w ar      -----------   id. gas, rev. adiab. proc. 

  But,                         P1V1 = nRT1        and         P2V2 = nRT2,  

General 
expression of 

wrev. 

Work 
required in 
reversible 

compression 
is minimum 

Work done in 
reversible 
isothermal 

process 
 

Workdone in 
reversible 
adiabatic 
process 
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so,                   
1

21
,








nRTnRT
w ar =  21

1
TT

C
C

nR

V

P





. As, CP – CV = R, 

so,                          21, TTCnw Var  ----  id .gas, rev. adiab. proc. 

This expression of arw ,  is obvious as, for adiabatic process, q = 0, so 0 = dU + w  

or,                                 w = ─ dU =  12 TTCn V  .  

So,                       21, TTCnw Var   ---- id. gas, rev. adiab. proc. 

and for n moles vander Waals gas,  w = ─   


















21

2
12

11

VV
anTTnCV    

or,  21, TTCnw Var   + an2 









12

11

VV
  ---------- vander Waals gas, rev. adiab. proc.                                                 

                                                           
       Let the process, for example, is isothermal reversible and 1 mole ideal gas as working 
substance. The work done,   1 2w w w  ,  

1w  = work done in the forward process and 2w = work done in the backward process.  

                                      1w  = RT ln 
1

2

V

V
       and     2w = RT ln 

2

1

V

V
 

  So,      w  = RT ln 
1

2

V

V
+ RT ln 

2

1

V

V
           or,            w = RT ln 

1

2

V

V
 –  RT ln 2

1

V

V
 =  0. 

The net work done in the reversible cyclic process is zero and 1w  = – 2w . 

This means that the original state of the system can be brought back without the aid of external 
agency and this is why it is called reversible process. 
 
This can be compared by using indicator diagram from the area for the two type’s curves of work 
done in reversible processes.  
                                                  The ideal gas expands from volume V1 to V2 for two 
                                                  processes starting from the same initial position (P1, V1).                                                       
                                                 22 PP  , thus adiabatic curve is steeper than isothermal   
                                                                curve in the same P - V diagram. 
                                                      The work done, irw , = area shown by  ‘ = ‘   and 

                                                                                  arw ,  = area shown by ‘|| 

                                                  It is evident that area under isothermal curve is greater  
                                                  than that under adiabatic curve. So,   irw ,      arw , .  

                 The reason behind is that in isothermal process, energy is transferred from 
the surrounding and the system does the work. But in adiabatic process, work is done 
by the system at the expense of its own internal energy. 
                                    This is why isothermal reversible process is preferred to obtain maximum 
work for a definite volume change of the system. 

Work done in irreversible process: 
                                                              This process occurs against a constant opposing pressure, 
P2 without the restriction of occurring in successive stages of infinitesimal amount. Thus, when a 
gas expands from V1 to V2 against constant opposing pressure  P2, 
the work done,                      irrw = P2 (V2 – V1). 

 

Irreversible 
isothermal 

process 

General 
expression 

of irrw  

Comparison 
of 

irw ,  and arw ,  

Reversible 
cyclic 

process 
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Since T is constant in the process, hence for ideal gas, V2 = nRT/P2,  V1 = nRT/P1.  

So, iirrw ,  = P2 









12 P

nRT

P

nRT
  Or, iirrw ,  = nRT 










1

21
P

P
 --- id.gas, irrev. isotherm. proc.     

Let the final temperature of the system in this irreversible adiabatic process is 2T  .  

Then, airrw ,  = nCV (T1 – 2T  ) which occurs at the cost of its internal energy of the system. 

                                  But this final temperature 2T   is calculated from the 1st law as, 
             0 = dU + w         or,        w   = – dU             or,             P2 dV = – n CV dT.  
If the temperature changes from T1 to 2T   and volume from V1 to V2, then,  

                                  P2 (V2 – V1) = – nCV ( 2T   - T1)  

or,     P2 










1

1

2

2

P

nRT

P

TnR
= –  nCV ( 2T   – T1 )    or,    R 










1

2
12 P

P
TT  = CV (T1 – 2T  ).  

 This relation can be used to calculate the final temperature ( 2T  ) of the system. 

Reshuffling the equation, it is possible to find an expression of 2T  .  

                           2T    = 









1

21

P

P
RC

C

T
V

P

.     -------- ---  id. gas, irrev. adiab. proc. 

Let us consider the irreversible expansion of a gas in a cyclic process consisting of one forward 
process and one backward process. 
 
                                     Work done in the forward process,   1w  = P2 (V2 – V1) and 

                                      work done in the backward process, 2w = P1 (V1 – V2). 

                                                                                                      = – P1 (V2 – V1).  
                                                      Since P1   P2, hence | 2w  |   | 1w |. 

                                      Total work done in the irreversible cyclic process,  
                                     w  = 1w  + 2w  = (P2 – P1) (V2 – V1) = (–)ve. 

 
Work is required to bring the system back to its initial state. It means that the system    
                                               cannot be restored to its original state without the aid of  
                                               external agency and hence the  name of the process is  
                                               irreversible.      
                                               This can also be shown by the indicator diagram. 
                                               1w = P2 (V2 – V1) = area of BCDEB 

                                               2w = ─ P1 (V2 – V1) = area of ACDFA and 

                                               w  = ─ area of ACDFA + area of BCDEB  
                                                    = ─ area of ABEFA.  
                                               This diagram also shows that | 2w |   | 1w  |. 

                                                                
Let us compare it by taking example of isothermal expansion of one mole ideal gas. 
Using the expression of the work done ( w ), we get, 

rw  = RT 
2

1ln
P

P
 = RT ln 







 


2

211
P

PP
 = RT 

2

21

P

PP 
 when P1 – P2 is not very large.  

irrw = P2 (V2 – V1) = RT (1 irrevw
1

2

P

P
) = RT 







 

1

21

P

PP
.  Since, P1   P2 , so  revw   irrevw   

1w
  = ‘ // ’ & w2 = ‘×’ 

w1 = ‘ // ’ & w2 = ‘×’ 

Irreversible 
adiabatic 
process 
 

 

Work done in 
irreversible 

cyclic process 
 

 

Comparison 
between work 

done in 
reversible 

and irreversible 
processes. 
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Again, revw – irrevw   = RT 
2

21

P

PP 
─ RT 







 

1

21

P

PP
    = RT (P1 – P2) 










12

11

PP
                            

                               

or,              revw – irrevw   =    RT 








 

21

2
21 )(

PP

PP
 = (+)ve. 

So,                                   rev irrevw w .                                                                    

                This can be shown by the indicator diagram also. 
 
 
A note for solving problems: Though various equations are formulated depending on conditions, 
they are not easy to remember while solving problems. We may summarize these into seven 
fundamental equations. 
(1) The formula for expansion work,       w  =  Popposing × dV. 
(2) The mathematical form of the 1st law, q = dU  + w  
(3) The definition of enthalpy,                  H = U + PV. 

(4) The definition of molar heat capacity, (a)   CP =  
PT

H


   and   (b)   CV =  
VT

U


  

(5) The change in internal energy and enthalpy of a system, 

       (a)  dU = nCV dT +  
TV

U


 dT       and         (b)  dH = nCP dT +  
TP

H


 dP 

 
One mole of steam is compressed reversibly to liquid water at its boiling point (100oC). The heat 
of vaporization of water at 100oC and 1atm pressure is 2258.1 Jg-1. 
Calculate each of the thermodynamic properties, (i) q, (ii) w , (iii) ∆U and (iv) ∆H.                                                                                                   

(i) q = heat of condensation per mole = ─18×2258.1 J mol-1 = ─ 40.646 kJ mol-1. 

              (ii) w  =  P ( lV ─ gV ) = ─ P gV  (neglecting lV ) = ─ RT = ─ 8.31 × 373 J mol-1. 
                                     = ─3.099 kJ mol-1 

                      (iii)  ∆U =  q – w  = ─ 40.646 + 3.099 kJ mol-1 = ─ 37.547 kJ mol-1. 
               (iv)  ∆H = Pq = ─ 40.646 kJ mol-1. 
 
(a) One mole of He at 27oC and 1atm is adiabatically reversibly compressed to a final   
      pressure of 10atm. Evaluate the final temperature and also find out w , ∆U and ∆H. 
(b) The same gas is compressed adiabatically against a constant pressure of 10 atm, the   
      final pressure is 10 atm. Evaluate again the final temperature and the values of  
     w ,  ∆U  and  ∆H.                                                                                

(a) T1 = 273 + 27 = 300 K, P1 = 1 atm, P2 = 10 atm, T2 = ? γ = 5/3  

                                           (Since He is  monatomic gas). 

                                For the ideal gas in reversible adiabatic process, 

                              T2 = 


 1

1

2
1











P

PT  = 300 K K
atm

atm
750

1

10 5
2









.  

                     ∆U = nCV (T2 – T1) = 1 mol × 3 cal mol-1 K-1 (750 – 300) K = 1350 cal. 
                     ∆H = nCP (T2 – T1) = 1 mol × 5 cal mol-1 K-1 (750 – 300) K = 2250 cal. 
                      w  = ─ ∆U = ─ 1350 cal (Since the process is adiabatic). 
 
        (b) Let the final temperature is 2T  . So using the relation for irreversible adiabatic  

IIT, KGP, 
2000 

Physical 
Chemistry 
 –P C Rakhs 

 

Physical 
Chemistry 

–P C Rakhsit 

Solution: 

  Solution: 



 

PRINCIPLES OF THERMODYNAMICS ─  N C DEY 22 

             process with ideal gas, R










1

2
12 P

P
TT = CV (T1 – 2T  ). Putting the values, 

             2 cal mol-1K-1 ( 2T –300 K ×
atm

atm

1

10
) = 3 cal mol-1 K-1 (300 K – 2T  )  or, 2T =1380 K 

             ∆U = nCV ( 2T – T1) = 1 mol × 3 cal mol-1 K-1 (1380 –300) K = 3240 cal. 

             ∆H = nCP ( 2T – T1) = 1 mol × 5 cal mol-1 K-1 (1380 –300) K = 5400 cal.  
              w  = –∆U = –3240 cal since the process is adiabatic.  
   ( Note: 2T   is almost doubled for this irreversible process so w  is high for compression). 
 
One mole of an ideal gas at 300 K and 10 atm expands to 1 atm.  
                      Calculate w , q,  ∆U,  ∆H for  
                      (a) isothermal and reversible, (b) isothermal and irreversible,  
                      (c) adiabatic and reversible    (d) adiabatic and irreversible. 
Tabulate these results and state what important conclusions you can draw from these results. Plot 
P ─ V curves for adiabatic and isothermal changes.  [Given, CV = 1.5R]. 

(a) ,rev isow . = nRT ln 1

2

P

P

 
 
 

= 1mol × 8.31 J mol-1 K-1× 300 K 
atm

atm

1

10
ln  = 5744 J 

                     ∆U = nCV dT = 0       and       ∆H = nCP dT = 0,  
as,  T = constant for this isothermal process. Therefore,  
                                           q = ∆U + w  = 5744 J.            

(b) . .irrev isow = J
atm

atm
KKmolJmol

P

P
nRT 2244

10

1
130031.811 11

1

2 
















   

for this isothermal process and ideal gas,                 ∆U = 0            and                  ∆H = 0.   
                                                                                                 q = w  = 2244 J 

(c) T2 =  T1 × K
atm

atm
K

P

P
4.119

10

1
300

5
21

1

2 






















. (As,
3

5
5.1

5.2  R
R

C
C

V

P ). 

 
     ,rev adiabw  =  nCV (T1 – T2) = 1 mol ×1.5 ×8.31 J mol-1 K-1

 (300 – 119.4)K = 2251 J 

                       ∆U = – ,rev adiabw  =  – 2251 J, (Since q = 0 for this adiabatic process). 

      ∆H = nCP (T2 – T1) =1 mol ×2.5 ×8.31 J mol-1 K-1
 (119.4 - 300) K = –3752 J 

(d) R 









1

2
12 P

P
TT = CV (T1 – 2T  ) or, R( 2T –300 K × atm

atm
10

1 ) = 1.5R(300K– 2T  ) 

     Or,                            2T = 192 K.            q = 0, (As this is an adiabatic process). 

    ,irrev adiabw  = nCV (T1 – 2T  ) = 1 mol ×1.5 ×8.31 J mol-1 K-1
  (300 - 192) K = 1447 J     

                  ∆U = – ,irrev adiabw .  = –1447 J, (Since q = 0 for this adiabatic process). 

           ∆H = nCP ( 2T – T1) =1 mol ×2.5 ×8.31 J mol-1 K-1
 (192 – 300) K = – 2245 J 

     In (a),                     V1= .46.2
10

300082.01 11

1

lit
atm

KKmolatmlitmol

P

nRT







  

                                                           V2 = 10 ×2.46 = 24.6 lit. 

      In (c), 
2

2 P

nRT
V .8.9

1

4.119082.01 11

lit
atm

KKmolatmlitmol


 

 And, V1 = 2.46 lit. 

                     Thus, for reversible isothermal process, V1 = 2.46 lit and V2 = 24.6 lit. 
                      And, for reversible adiabatic process,    V1 = 2.46 lit and 2V   = 9.8 lit. 

 Advanced   
Physical 

Chemistry 
- D.N.Bajpai 

   Solution: 
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                                Table showing the results of calculation. 
 

Process   w 
 (J) 

  q 
 (J) 

ΔU 
(J) 

ΔH 
 (J) 

  T2 

 (K) 
V2 

(L) 
Isothermal 
(a) rev. 
(b) irrev. 

 
5744 
2244 

 
5744 
2244 

 
0 
0 

 
0 
0 

 
 300 
 300 

 
24.6 
24.6 

Adiabatic 
(a) rev. 
(b) irrev. 

 
2252 
1447 

 
  0 
  0 

 
–2252 
–1447 

 
–3753 
–2245 

 
119.4 
192.0 

 
9.8 
─ 

 
 
Conclusion:   
(1) Work done in a reversible process ( revw .) is greater than that in an irreversible process    

      ( irrevw ). 

(2) Work done in reversible isothermal process ( ,rev isow ) is greater than that in reversible  

      adiabatic process ( ,rev adiabw ). 

(3) There occurs more rises in temperature in the irreversible adiabatic compression ( 2T  )  
      than in reversible adiabatic compression (T2). 
(4) Final volume on reversible isothermal process (V2) is greater than in reversible  
      adiabatic process ( 2V  ) for the same change of pressure.  
                  So adiabatic curve is steeper than isothermal curve in P–V diagram. 
 
An ideal gas (CV = 2.5R) is expanded adiabatically against a constant  
                      pressure of 1 atm until it doubles its volume. If the initial temperature is 
                      25oC and the initial pressure is 5 atm, calculate final temperature, then  
                      calculate q, w , ∆U and ∆H per mole of the gas for the transformation.  
Solution:       2T = 274 K,  q = 0, w  = 120 cal, ∆U = –120 cal mol-1, ∆H = –168 cal.mol-1. 
 
         Some more problems with solution in B.Sc. (Hons.) in BU/CU. 
 
Problem (1): One mole of an ideal gas expands reversibly from a volume V1 to V2       
                     obeying the relation  PVγ  = constant. If T1 = 300 K and T2 = 200 K,  
                     calculate w . Given also that CV = 5R/2, calculate Q, ∆U and ∆H. 
Solution:      Q = 0, ∆U = ─ 500 cal, ∆H = ─ 700 cal. 
 
Problem (2): An ideal gas undergoes a reversible polytropic expansion according to the   
                      relation,  PVn = C where C and n are constants, n   1. 
                     Calculate W for such an expansion if one mole of the gas expands from  
                     V1 to V2 and if T1 = 300 K, T2 = 200 K and n = 2.                                                                                                                   

Solution: W =  1
1

1
2

12

1

2

1 11

2

1

















 

nn

V

V

n

n
VV

n

C

n

V
C

V

dV
CPdV   

                    =     1 1 1 1
2 1 2 2 2 1 1 1

1 1

1 1
n n n n n nCV CV PV V PV V

n n
          

  
   

                     2 2 1 1

1

1
PV PV

n
  


 =      1 1 2 2 1 2 1 2

1 1

1 1 1

R
PV PV RT RT T T

n n n
    

  
 

               Putting values given in Problem, W =  200300
12

2



 cal = 200 cal. 

Physical 
Chemistry 

- G W Castellan 

BU’1993 
 

BU’1994 
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Problem (3): For a constant pressure process, ∆H = QP. Does it follow that QP is a state  
                     function? Give reasons. 
Solution:       No, QP is not a state function. QP = ∆H = H2 – H1.  
                     H2 is a function of the final state, and H1 is a function of the initial state  
                     but H2 – H1 is neither the function of the final state nor the function of the 
                     initial state. Thus, QP is not a state function. 
                                                        
Problem (4): Calculate q, w  , ∆U and ∆H for a reversible expansion at 300 K of 5 moles  
                       of an ideal gas from 500 ml to 1500 ml. What would be ∆U and w  if the  
                       expansion occurs between the same initial and final states as before, but is 
                       done by expanding the gas in vacuum? 
Solution:        1st case, q = 3,296.28 cal, w  = 3,296.28 cal, ∆U = ∆H = 0.  
                       2nd case, w  = 0 and ∆U = 0. 
 
Problem (5)(i): Calculate the work done by a reversible isothermal expansion of 1 mole 
                         of a gas from V1 to V2 obeying the equation P (V– b) = RT.  
                  (ii): Calculate the work done by an irreversible isothermal process for one mole 
                         of the same gas from V1 to V2 against a constant external pressure until the 
                         equilibrium is reached.  

Answer:          (i) 2
,

1

lnrev isotherm

V b
w RT

V b





 .  (ii) 2

,
1

1irrev isotherm

P
w RT

P

 
  

 

.. 

 
Problem (6):  Show that the work involved in an adiabatic expansion is than that in an isothermal   
                      process.  

 Answer:      Let   2 2 1adiabw P V V   and   2 2 1isothermw P V V   for the same change of  

                    pressure from P1 to P2 . But there will be greater volume change in the isothermal   
                    process than in adiabatic process, i.e. 2 2V V  , hence, isotherm adiabw w . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BU’1994 
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WBCS, 2002 
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THERMOCHEMISTRY 
 
Introduction:   
                       This chapter deals with the heat-change associated with a chemical reaction. When 
heat is evolved, Q = (–)ve and the reaction is called exothermic. When heat is absorbed, Q = 
(+)ve, it is called endothermic reaction. For example, 
                     C + O2  = CO2  ;   Q = (–)ve  and   N2 + O2  =   2NO  ;   Q = (+)ve 
              The former reaction is exothermic while the latter reaction is endothermic. 

Since chemical reactions involve the breaking of old bonds and the making of new bonds, 
it is always associated with the heat changes. 
The subject matter of this chapter is the consequences of first law of thermodynamics 
applied to chemical reactions.  

Heat of reaction is defined as the amount of heat change associated with a reaction as represented 
by the stoichiometric equation. As heat change depends on the physical  
state of the materials so these are also included in the chemical equations. For example, 

N2(g) + O2(g) = 2NO(g); Q = 42 kcal but  
2

1
 N2(g) + 

2

1
O2(g) = NO(g);  Q = 21 kcal 

Heat of reaction is of two types: heat of reaction at constant pressure (QP) which is identified as 
H and heat of reaction at constant volume (QV), identified as U. 
In the chemical equation when temperature, pressure, heat-change and physical states 
are included, it is called thermo-chemical equation. For example, 
C7H8(l) + 9O2(g = 7CO2(g) + 4H2O(l) ; H298K  = – 930 kcal but,  U298K = – 928.8 kcal 
 
Now, H of the reaction is called enthalpy of the reaction and as most reactions are carried out in 
open atmosphere or at constant pressure, enthalpy of reaction is  
commonly used to express the heat-changes of a reaction. 

Relation between H and U of a reaction at constant temperature: 
We have, by definition,    H = U + PV so for a chemical change, H =  U + (PV). 
If the reacting components are assumed to obey the ideal gas equation, PV = nRT, 
                                H = U  + (PV)Product  ─ (PV)Reactant  
                                      =  U  +  (nRT)Product – (nRT)Reactant    
                                      =  U + (np – nr) RT         Or,         H =  U  + ng RT.     
And,  ng = change in number of moles of the gaseous products and gaseous reactants. 
          For reactions with substances in condensed phases, ng = 0 and H =  U.             
 
Problem: For the combustion of toluene (cited above), ng = 7 – 9 =  – 2 moles.  
                 If H is known then U can be calculated.  
So, U298K = H298K – ng RT = – 930kcal – (–2 mol) × 2 ×10-3

 kcal mol-1K-1×298K  
                   = – 928.8 kcal.  
                              This shows that difference of H and U is not very high. 
When the reacting components are in stable state and at unit activity (1 atm. pressure 
for ideal gaseous substances, 1 M for substances in ideal solution, and unity for pure solid  
and liquid states), the enthalpy of the reaction is called standard enthalpy (Ho), 
at the specified temperature. 

                    For the reaction, H2(g)  + 
2

1
O2(g)  =  H2O(l) ; Ho

298K  = –  68.3 kcal 
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Laws of thermochemistry:  
 
There are two laws in thermochemistry. These are given below: 
 
1st law : Law of Lavoisier and Laplace (1780): 
              “The enthalpy change of a chemical reaction in one direction is equal in    
                magnitude but opposite in sign to that accompanying the same reaction in the  
                reverse direction.”  
Thus, enthalpy of reaction in the formation of water ( l ) from H2(g) and O2(g) is exactly equal to 
the enthalpy of decomposition of water ( l ) into its elements but opposite in sign. Illustrated as, 

H2(g) +
2

1
O2(g) = H2O( l ) ;. H o

298K = – 68.3 kcal, 

                  so, H2O( l ) = H2(g) +
2

1
O2(g);  Ho

298K = + 68.3 kcal. 

The law is a consequence of 1st law of thermodynamics. H is a state function, so it depends on the 
states of the reacting system. Let us suppose, the reactants A and B first change into products C 
and D with enthalpy of reaction, H1 and when C and D give reactants A and B back, the 
enthalpy of reaction is H2. Thus, for the whole cycle, 
                               H = H1 + H2 = 0  or,   H1   =  – H2 .  
 
2nd law : Hess’s law of constant heat summation (1940):  
               “For a chemical reaction, the net heat-change (H or U) will be the same 
                 whether the process occurs in one step or in several steps.” 
Let a chemical reaction when occurs in one step,  A  →  C ; H   =  Q1. 

But when the same reaction occurs in two steps,   A  →  B ;  H  =  Q2   
                                                                         and  B  →  C ;  H  =  Q3.  

Then, according to the law,                                         Q1 = Q2 + Q3.  

This law is also the consequence of the 1st law of thermodynamics.  
If the initial state and final state of a system due to a process are fixed, enthalpy-change 
or internal energy-change will also be fixed, independent of the intermediate steps that occur 
during the process. This is due to the fact that H and U are the state functions. 
This law is sometimes used to calculate the enthalpy of a reaction which is difficult to determine 
by experiments.  

For example, C(s) +
2

1
O2(g) = CO(g), H of the reaction is not possible to determine 

experimentally as some amount of CO2 always forms in association with CO.  
However, the value of H for the reaction can be calculated as follows: 
C(s) + O2(g) = CO2 ; Ho

298K  = – 94.05 kcal,  when it occurs in a single step.  
The same reaction can also occur in two steps. 

                        C(s) +
2

1
O2(g) = CO(g) ; Ho

298K  = Q (say), and  

                        CO + 
2

1
O2(g) = CO2(g) ; Ho

298K = – 63.63 kcal.  

So, according to the law, (– 94.05 kcal) = Q + (– 63.63 kcal) or, Q = – 26.42 kcal. 

Thus,                             C(s) +
2

1
O2(g) = CO(g); H = – 26.42 kcal. 

 
 
 
 

Statement 

Illustration 

Consequence 
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Statement 
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of the law 



 

PRINCIPLES OF THERMODYNAMICS ─  N C DEY 27 

 Various types of enthalpy of reaction: 
 

            Enthalpy of formation: It is the enthalpy change associated with the formation of  
                                                     one mole of a compound from its constituent elements in their  
                                                     stable state of  aggregation. It is represented by Hf. 
           When the elements are in their standard states, it is called standard enthalpy of formation (Ho

f) at 
a specified temperature, generally at 25oC. The examples are given here; 

     C(graphite)  +  O2(g)  =  CO2(g) ;    H o
f  (CO2,g)  = – 94.05 kcal mol-1 

           H2(g)  +  
2

1
O2(g)  =  H2O(l)   ;   o

fH (H2O,l)  = – 68.3 kcal mol-1 

     
2

1
N2(g)  +  

2

3
  H2(g)  =  NH3(g) ;      H o

f (NH3,g)   = – 11.04 kcal mol-1. 

       
2

1
N2(g)  +  

2

1
O2(g)   =  NO(g)  ;      H o

f (NO,g)    =  + 21.60 kcal mol-1 

Positive values of H o
f  of a compound indicates that the compound is les stable than its 

constituents elements. While negative value of H o
f   refers that the compound is more stable 

than its constituent elements. The former compounds may be called endothermic while the latter 
are exothermic. 

Relation between std. enthalpy and std. enthalpy of formation of a compound:    
Let us take that a compound C, which is formed from its constituent elements A and B by the 
reaction,                                   A  +  B  →  C   

and, standard enthalpy of formation of C,  H o
f  (C)  =  ( )o o o

C A BH H H   

However, the absolute value of enthalpies is not easily possible to determine, so usual  
convention is taken that standard enthalpy of an element in their stable state is zero at 25oC 
temperature. That is, Ho(element) = 0 in its stable form at 25oC. 

 So,                        o
AH  = 0    and    o

BH   = 0,     so,    H o
f (C) =  o

CH   

The standard enthalpy of formation of a compound is equal to standard molar enthalpy of the 
compound. 
This relation is widely used to calculate the standard enthalpy of a reaction which is otherwise not 
possible to determine experimentally. 
Let us consider a reaction,                ν1 A1 + ν2 A2  =  ν3A3 + ν4A4   
                  where, ν’s are stoichiometric coefficients and A’s are reacting components. 
The enthalpy of the reaction is,  

                        ∆Ho  =  ﴾ ν3 3
oH   +  ν4 4

oH  ﴿  −  ﴾ ν1 1
oH   +  ν2 2

oH  ﴿ 

                                    =  ν3 H o
f  (A3)  +  ν4 H o

f  (A4)  −  ν1 H o
f  (A1)  −  ν2 H o

f  (A2) 

Or,                    ∆Ho  =  ∑ νi  H o
f  (Ai).  Where,   νi  =  (+)ve for the products, and  

                                                                                     =  (−)ve for the reactants. 
Problems : Calculate the standard enthalpy (∆Ho ) of the following reaction. 

                    Fe2O3 (s)  +  3H2(g)  =  2Fe(s) + 3H2O(l).  

     Given, H o
f  (Fe2O3,s)  =  − 824.2 kJ mol-1 and, H o

f  (H2O, l )  =  − 285.83 kJ mol-1 

Solution: Standard enthalpy of the reaction, taking std. enthalpy of H2 and Fe as zero. 

                ∆Ho  =  ∑ νi H o
f  (Ai).  =  3H o

f  (H2O,l)   − H o
f  (Fe2O3,s)   

                         = 3 (− 285.83 kJ mol-1)   − (− 824.2 kJ mol-1) = − 33.29 kJ.         
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Enthalpy of combustion: 
      
 It is the enthalpy change associated with the complete combustion of one mole of a substance.                                           
When the enthalpy of combustion is measured at 1 atm pressure, it is called standard enthalpy of 

combustion (H o
c ). 

Standard enthalpy of combustion of CH4 is −212 kcal/mole. It means that on complete 
combustion of CH4, 212 kcal of heat is released per mole of CH4 at constant pressure 
of 1 atm. and at a specified temperature. 
The thermo chemical equation of combustion of different substances are given below: 

       CH4(g)  +  2O2(g)  =  CO2(g)  + 2H2O(l)  ;  o
KcH 298, =  − 212.80 kcal mol-1  ----  (1) 

       C(s)  +  O2(g)    =  CO2(g)   ;   o
KcH 298, =  − 94.05 kcal mol-1

       -----------------(2) 

       H2(g)  +  O2(g)   =  H2O(l)   ;      o
KcH 298, = − 68.3 kcal mol-1       -- --------------(3) 

       N2 (g) + O2(g)  =  2NO(g)    ; o
KcH 298,   = + 43.2 kcal mol-1     ------------------(4) 

 
Enthalpy of combustion data can be utilized to calculate the enthalpy of formation of some 
compounds that can not be determined experimentally.  

For example, o
CHfH )4(  can be calculated by using the enthalpy of combustion of 

C(s), H2(g) and CH4(g) . The mathematical operation is (2) + 2 × (3) − (1), 

C(s) + 2H2(g) = CH4(g); o
CHfH )4( = (−94.04) + 2 (−68.30) – (− 212.80) = −7.84 kcal mol-1 

Thus, the standard enthalpy of formation of methane is −18.65 kcal mol-1, though the reaction 
 is not possible to perform in reality. 

Enthalpy of combustion has practical as well as theoretical importance. The purchaser of coal is 
interested in its enthalpy of combustion per ton. The dietician must know, among other factors, 
the number calories obtainable from the combustion of various foods. It is also used to estimate 
the flame temperature and to calculate the bond energies of a compound. In nutrition, the 
‘Calorie’ refers to kcal. 

Determination of enthalpy of combustion:  

Heat of combustion is usually determined in a bomb-calorimeter at constant volume.                                                                                              
Hence, it is internal energy of combustion. The bomb-calorimeter is internally enameled with 
platinum and capable of withstanding high pressure. It has capacity of about 400 cc 

and fitted with pressure-tight screw cap.                                                       
A known weight of a sample is placed in a Pt-cup  inside the calorimeter and is then filled with 
                                                               oxygen at 20-30 atm. The combustion is initiated  
                                                               by a small electric current through the thin Pt-wire 
                                                               dipped into the sample. The substance on ignition   
                                                               gives large amount of heat which is measured by  
                                                               the rise in temperature of the water into which the  
                                                               bomb-calorimeter has been immersed before 
                                                               ignition. The heat capacities of the system is 
                                                               pre-determined by burning a standard substance 
                                                               (say, benzoic acid) of known heat of combustion.   
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 So, heat of combustion at constant volume (∆U) = 

                                   
tan

Total heat capacity temperature rise

Amount of the subs ce taken in gm


  × molar mass of the substance. 

The enthalpy of combustion (∆H) can be calculated by the use of the equation, 
                                                   ∆H =  ∆U − ∆ng RT .           
                                    

Enthalpy of neutralization:  

 
                                               It is the enthalpy change associated with the neutralization of one 
gram-equivalent of an acid by one gram equivalent of a base in their very dilute aqueous solution. 
Neutralization is an exothermic process.  
Some examples are given here: 
       HCl(aq)  +  NaOH(aq)  =  NaCl(aq)  +  H2O(l) ;     Ho

298K  = − 13.7 kcal. 
       HNO3(aq)  +  NaOH(aq)  =  NaNO3(aq)  +  H2O(l) ;   Ho

298K  = − 13.7 kcal. 
       HCl(aq)  + NH4OH(aq)  =  NH4Cl(aq)  +  H2O(l) ; Ho

298K  = − 12.3 kcal. 
      CH3COOH(aq)  +  NaOH(aq)  =  CH3COONa(aq)  +  H2O(l) ; Ho

298K  = − 12.6 kcal. 
       HCN(aq)  +  NaOH(aq)  =  NaCN(aq)  +  H2O(l) ;  Ho

298K  =  −  2.9 kcal. 

Two facts emerge from the examples cited above: 

(i)  Enthalpy of neutralization of strong acid and strong base is found constant and equal to  
     − 13.7 kcal irrespective of the nature of the strong acids and bases. This constancy of enthalpy  
        of  neutralization of strong acids and bases can be explained as follows: 
                                HA(aq)  +  BOH(aq)  =  BA(aq)  +  H2O(l) .    
        But strong acids and strong bases are completely dissociated in aqueous solution. So, 
                            ( H+ + A- )  +  (B+ + OH-)  =  (B+ + A-)  +  H2O(l)                                                                                                    
        Canceling the like ions, we have,   H+  +  OH-  =  H2O(l).  
        Thus neutralization of string acid and strong base is reduced to formation of one mole  
         water from H+ and OH-. Enthalpy-change will be the same for the same change of state for  
         the reaction. 
 
(ii)  Again, if one (or both) is weak electrolyte, the enthalpy of neutralization is found less 
       than − 13.7 kcal. This is explained by the fact that a portion of heat is required to dissociate     
       the weak acid or base or both. For that reason, the enthalpy of neutralization is obtained less.  
       This indirectly helps to calculate the heat of dissociation (or enthalpy of dissociation) of the  
        weak acid or base. For example, enthalpy of dissociation of  
                                 HCN = (− 2.9 kcal) − (− 13.7 kcal)  =  10.8 kcal.  
   
Enthalpy of solution: It is the enthalpy-change when one mole of a solute is dissolved  
                                     in a specified amount of solvent.    
Total enthalpy change when one mole solute is completely dissolved in a solvent is called integral 
enthalpy of solution. Let us illustrate the enthalpy of solution for HCl in aqueous solvent.   
One mole solute HCl(g) when dissolved in  

  10 mol  H2O;       oH1  =  − 16.5 kcal mol-1                                                     

   40 mol H2O,    oH 2   =  − 17.4 kcal mol-1                                                                                            

   50 mol H2O,    oH 3   =  − 17.5 kcal mol-1                                                

   200 mol H2O,  oH 4   =  − 17.7 kcal mol-1                                               

    ∞  mol H2O,    oH    =  − 18.0 kcal mol-1 

As more and more H2O is added, ∆H increases, reaching to a maximum value at infinite dilution. 

Only then the solution is thermally complete.  
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This enthalpy of solution (− 18.0 kcal mol-1) is called integral enthalpy of solution.  
Let, ∆H = f (n1, n2 ),  subscript 1 is for solvent and 2 for solute. 

So, d (∆H) = 

1

( )H

n

  
 

 
 dn1  +  

2

( )H

n

  
 

 
   dn2.   This  

1

( )H

n

  
 

 
 is called differential enthalpy 

of solution.                                                                                                    

  
Bond energies: 
 
                         Bond energy of a given bond is defined as the average of energy required   
                         to dissociate the said bond present in different gaseous compounds into    
                         free atoms or radicals in the gaseous state.  
The bond energy differs from dissociation energy which is defined as the energy required to 
dissociate a given bond of some specific compound. 
Let us consider O−H bond. The heat of dissociation of the O−H bond depends on the nature of 
molecular species from which the H-atom is being separated from O-atom. 
           For H2O molecule,  H2O(g)  →  H(g)  +  OH(g) ; Ho

298K  =  119.95 kcal mol-1.  

But to break the O−H bond in the hydroxyl radical requires a different quantity of heat. 
                    O−H(g)  →  O(g)  +  H(g) ;  Ho

298K  =  101.19 kcal mol-1. 
The bond energy, ЄOH is defined as the average of these two values; 
 i.e.                           ЄOH  =  ½( 119.96 + 101.19) =  110.57 kcal mol-1                                                                                                                         
However, in diatomic molecules like H2, bond energy and dissociation energy are identical. 
Bond energy can be calculated from the enthalpy of combustion and the enthalpy of dissociation 
data:  
For example, bond energy of C−H in CH4(g) is obtained from the following reaction,  
                  CH4(g)  →  C(g)  +  4H(g) ;   ЄC−H =  ¼(∆H) 
    
The value of ∆H for the reaction can be calculated from the summation of the following 

equations. 
CH4(g)  +  2O2(g)  =  CO2(g)  + 2H2O(l)  ;    Ho

298K   =  − 212.80 kcal  

CO2(g)  →  C(graphite)  +  O2(g)              ;    Ho
298K   =  94.05 kcal 

2H2O(g)  →  2H2(g)  + O2(g)                    ;    Ho
298K    =  136.64 kcal 

2H2(g)    →   4H(g)                                    ;    Ho
298K    =  208.38 kcal 

C(graphite)  →  C(g)                                  ;    Ho
298K    =  171.29 kcal. 

Adding these equations, we get,  CH4(g)  →  C(g)  +  4H(g) ; Ho
298K   =  397.60 kcal. 

                  So, at 298K, we get, ЄC−H   = ¼(397.60 kcal)  =  99.4 kcal mol-1. 
 
Bond energy data can be utilized to calculate approximate enthalpy of formation of a                                       
compound of known structure.                                                           
Let us calculate the approximate enthalpy of formation of H2O(g) from its constituent elements, 

H2(g) and O2(g) according to the reaction, 2 2 2

1
( ) ( ) ( )

2
H g O g H O g  . 

The enthalpy of formation of H2O(g),  

2( , )fH H O g   = 
1 1

2 103.2 118.0 2 110.5
2 2H H O O O H             = – 58.8 kcal mol-1.                                                                

Enthalpy of reaction can also be obtained from the bond energies of the reactants and products. 
Let us take the reaction,  
                              C2H4(g)  +  HCl(g)  →  C2H5Cl(g). 
∆H  =  ﴾ Energy required to break reactants into gaseous atoms ﴿ 

                                                 + ﴾Energy released to form products from the gaseous atom ﴿ 
       =  ﴾  4 ЄC−H   +  ЄC ═ C  +  ЄH − Cl  ﴿   +  ﴾ − 5 ЄC−H  − ЄC − C  − ЄC − Cl  ﴿  
       =   (ЄC ═ C   + ЄH − Cl  )  −  (ЄC−H   + ЄC− C  + ЄC − Cl  )   

Examples     

Bond energy 
and enthalpy of 
combustion 

One specific 
example    

Bond energy 
and enthalpy 
of formation 
 

Bond energy 
and enthalpy 
of reaction 
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       =  (147.0 + 103.2 )  − ( 98.8 + 83.1 + 78.5)  = − 10.2 kcal mol-1                                                               
.                                     
Temperature dependence of the heat of reaction (Kirchhoff equation) 
 
                                If we know the ∆Ho of a reaction at temperature,T1, Kirchhoff’s equation 
provides the calculation of ∆Ho  of the same reaction at another temperature,T2. 

Let us take the chemical reaction,                ν1 A1 + ν2 A2 = ν3A3 + ν4A4   
or,             0 = − ν1 A1 −  ν2 A2 + ν3A3 + ν4A4        or,                     0 = ∑ νi Ai    
where, νi = stoichiometric coefficient = (+)ve for the products and (−)ve for the reactants.  

Enthalpy of the reaction,   ∆Ho = ﴾ 3 3
oH + 4 4

oH   ﴿ − ﴿  2 2
oH + 1 1

oH ﴾ = ∑ 
o

i iH  

Since, P is fixed at the standard state value of 1 atm., differentiating with respect to T  

at constant pressure,          
P

o

T

H











 )(
=  ∑ νi 

P

o
i

T

H

















 =  ∑ νi 

o
iPC ,  =  ∆ 

o
PC ,  

called standard constant pressure molar heat capacity change of the process.    

Integrating within limits,          






o

o

H

H

oHd
2

1

)( = 
2

1

T

T

o
PC dT.  

                or, ∆H
o
2  − ∆H

o
1  =  

2

1

T

T

o
PC dT.    Similarly, ∆U

o
2  − ∆U

o
1   =  

2

1

T

T

o
VC dT    

 Latter relation is for internal energy of the reaction with temperature.    

(i) Over a short range of temperature-change, temperature dependence of ∆
o
PC  can  

     often be neglected and  ∆
o
PC   is assumed to be temperature independent. So,  

                                      ∆H o
2    =   ∆H

o
1    +   ∆

o
PC  (T2  − T1) 

(ii) When ∆
o
PC  depends on temperature, we first find its virial form (power series)  

       with T.                        o
iPC , = ai + bi T + ciT2 + …..  

       and                    ∆ o
PC   =  ∑ νi 

o
PC  = ∑  νi (ai + bi T + ciT2 + ……)  

                                           = ∑ νiai + ( ∑ νibi ) T + ( ∑ νici ) T2 + ……. 
                                           = α + β T + γ T2 ……….,  
where α = ∑ νiai , β = ( ∑ νibi ) and γ = ( ∑ νici ). 

Using this expression of ∆
o
PC , we get  ∆H o

2   = ∆H
o
1 + 

2

1

(
T

T

α + β T + γ T2 -----) dT   

            or,               ∆H
o
2    =   ∆H

o
1 +  α ( T2 − T1 ) + 

2


 ( T 2

2  − T
2
1  ). 

The relation of internal energy of reaction with temperature is,    

                  ∆U
o
2    =   ∆U

o
1 + /  ( T2 − T1 ) + 

2

/
 ( T 2

2  − T
2
1  ).                                

These are the Kirchhoff’s equations which relate the heat of reaction with temperature. 

For the reaction, CO + 
2

1
O2  = CO2 , ∆H = − 67,650 cal at 25oC.  

Calculate ∆H of the reaction at 100oC. Given, CP(CO) = 6.97, CP(CO2) = 8.97 
and CP(O2) = 7.0 in cal mol-1K-1 

 The Kirchhoff equation is,   ∆H2 = ∆H1 + ∆CP (T2 – T1),  
          but, ΔCP  =  ∑ νi CP,i  =  CP(CO2)  −  CP(CO)  − ½ CP(O2) 
                          =  8.97  –  6.97  −  ½ (7.0)  =  −  1.5 cal K-1. Thus,  
∆H373K = ∆H298K + (–1.5) (T2 – T1) = – 67,650 cal – 1.5 (373 – 298) cal = – 67,762.5 cal. 
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Calculate the enthalpy–change at 1500 K for the reaction,  
                           2H2(g)  +  O2(g)  =  2 H2O(g).            Given that, ∆H300K = 115.0 kcal  
and the values of CP (cal mol-1 K-1) are for H2(g) = 6.95 – 0.0002 T,  
 O2(g)  =  6.10 + 0.0032 T and  H2O(g)  =  7.19 + 0.0024 T.          [C U’ 1994] 

∆H1 = ∆H300K = 115.0 kcal.    α = ∑ νiai  = 2 × 7.19 – 2 × 6.95 – 6.10 = – 5.62                                                                                    
       and  β = ∑ νibi = 2 × 0.0024 – 2 × (–  0.0002) – 0.0032 = 2 ×10-3. 

 ∆H1500K = ∆H300K + α (T2 − T1) + ½ (T 2
2  − T

2
1 )  

               = –115.0 kcal + [(– 5.62)(1500 – 300) + ½ (2 × 10-3)(15002 – 3002)] ×10-3 kcal   
               = – 115.0 – 6.7 + 2.16 kcal  
               = − 119.54 kcal. 
 
Calculate the enthalpy of formation of NH3, given the enthalpy of combustion of NH3 and H2 as – 
90.6 and – 68.3 kcal mol-1  respectively.  (BU’1986) 

We require the enthalpy of the reaction,    ½N2 + (3/2) H2  =  NH3 ;   ∆H  = ? 
                 Given, (i) NH3 + (3/4) O2  = ½ N2 + (3/2) H2O ;  ∆H  = – 90.6 kcal mol-1 
                            (ii)         H2 + ½ O2  =  H2O ;  ∆H    = – 68.3 kcal mol-1.  
Following mathematical operations (3/2) × (ii) – (i),   we get,  
(1/2) N2 + (3/2) H2  =  NH3 ; ∆H = (– 102.45) – (–  90.6) kcal mol-1  = – 11.85 kcal mol-1.            
                  Thus the enthalpy of formation of ammonia is – 11.85 kcal mol-1. 
 
Calculate the standard enthalpy of the reaction at 25oC,  
                      C2H4(g) + H2O( l ) = C2H5OH( l ). 

                      Given, H o
f (C2H4,g) =12.50, H o

f (H2O,g) = – 68.32 

                       and H o
f (C2H5OH, l ) = – 66.36 in  kcal mol-1. 

 ∆Ho = ∑ νi H o
f (i)  = H o

f (C2H5OH, l ) – H o
f (C2H4,g) – H o

f (H2O,g)  

                         =  (– 66.36)  –  (12.50) – (– 68.32 ) kcal mol-1 = – 10.54 kcal mol-1. 
 It is a hypothetical reaction, but its ∆Ho

 can be calculated by use of standard enthalpy 
 of formation data. 
 
The enthalpy of neutralization of HCN by NaOH is  – 2900 cal.  
Calculate the enthalpy of ionization of one mole HCN.  
Given, enthalpy of the reaction, H+ + OH- = H2O is – 13,800 cal.  (BU’95)  
 
Given,     (i)   H+  +   OH-  =  H2O ;    ∆H  =  –13,800 cal 
               (ii)   HCN + (Na+ + OH-) = (Na+ + CN-) + H2O;     ∆H = – 2,900 cal. 
   (ii) – (i), we get,  HCN = H+  +  CN- ;  ∆H  = (– 2,900 ) – (– 13,800) cal = 10,900 cal.   
               
The heat of formation of NH3(g) at constant pressure is 46.1 kJ mol-1 at 27oC. 
Calculate the heat of formation of NH3(g) at constant volume assuming ideal behavior. How 
would the value differ if the gases under consideration were vander Waals gas? (BU’1990)                                                                                                                    
The equation for formation of  NH3(g) is,       
                                                                   ½ N2 (g)  +  ³/² H2(g) = NH3(g). 
          ∆H = ∆U + (PV)product – (PV)reactant.  Assuming ideal behavior, PV = nRT. 
          ∆H = ∆U + ∆ng RT,     where,    ∆ng = P Rn n  = 1 – ½ – ³/² = – 1. 

The heat of formation at constant volume, ∆U = ∆H – ∆ng RT  
or,  ∆U = – 46.1 kJ mol-1 – (– 1) × 8.31×10-3 kJ mol-1 K-1 ×300K = – 43.609 kJ mol-1. 
2nd part: For vander Waals gas,    (PV)reactant   (PV)product (Amagat’s curve ) 

Solution  
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So in the equation,                   ∆H =∆U + [(PV)product – (PV)reactant] , 
we have, ∆U would be greater than that obtained by assuming ideal behavior.  
What will be the enthalpy of fusion of ice, ∆Hfusion  at ─10oC 
                                                                if, ∆Hfusion   at 0oC is 6.02 kJ mol-1. 
CP(ice) = 37.66 J K-1 mol-1 and CP(water) = 75.31 J K-1 mol-1  (Civil Service Exam.1999). 
 
The Kirchhoff ’equation is ∆Hfusion (263 K) = ∆Hfusion (273 K) + ∆CP (263  – 273)K. 
The process is,  ice → water, so ∆CP = CP(water) –  CP(ice) = (75.31 – 37.66) J K-1 mol-1. 
Or, ∆CP = 37.65 J K-1 mol-1 = 37.65 ×10-3 kJ K-1 mol-1 = 0.03765 kJ K-1 mol-1 
So, ∆Hfusion (263 K) = 6.02 kJ mol-1 + 0.03765 kJ K-1 mol-1 (263 – 273)K 
                                 = 5.6435 kJ mol-1. 
 
How much heat is used up in dissociating HBO2? Use the following data: 
(i) HBO2  + NaOH → NaBO2 + H2O ; ∆H =  – 10.0 kcal 
(ii)          H+ + OH- → H2O ;                 ∆H =  – 13.4 kcal. 
State and explain the principle used in the calculation.  (BU’1996) 
 
1st part: The equation (i), HBO2 + (Na+ + OH- ) = Na+ + BO2

- + H2O ; ∆H =  – 10.0 kcal. 
Or,                                                 HBO2 + OH-  = BO2

- + H2O ;            ∆H  = – 10.0 kcal.  
Subtracting (ii) from this, we get 
                                                      HBO2  → H+ + BO2 ; ∆H = 3.4 Kcal..  
                            Hence, 3.4 kcal heat is used up in dissociating one mole of HBO2. 
2nd part: The principle used in the calculation is known as Hess’s law of constant heat summation 
              which states that for a given chemical process heat change will be the same whether the 
              process is carried out in one or several steps. 
              According to the law, we can add or subtract the heat changes in the processes as it is,  
              seen in the above calculation. In other words, thermodynamical equations can be 
              treated as algebraical equation. 
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                                          SECOND LAW OF THERMODYNAMICS 
 
                                             The first law of thermodynamics states the equivalence of different 
forms of energy in the energy conversional process. In the process, if one form of energy 
disappears, an exactly equivalent amount of another form must reappear.  
But it fails to state under what condition, this conversion of energy occurs.       
Let us explain this limitation of first law by taking the process of heat-flow. A and B are two 
metallic bodies of temperature TA and TB. These are  
connected by a thermal conducting wire. First law states that 
if Q amount of heat is lost by A, then exactly Q amount  
of heat is gained by B provided no heat is lost by any other  
processes.  
But first law fails to provide the answer if one asks the 
following questions relating to the process. 
(i)   Whether heat-flow would occur at all? (feasibility of the process) 
(ii)  If it would occur, then to what directions? (direction of the process) 
(iii) To what extent, flow of heat would continue? (extent of the process). 
First law remains silent about this feasibility, direction and extent of the process. 

However, second law of thermodynamics comes as rescue. It states that  
‘heat flows from higher temperature to lower temperature.’ This simple statement of the 
 second law can answer the above questions. 
                   (i)   If  TA  ≠  TB,  the process of heat-flow is feasible. (feasibility). 
                   (ii)  If  TA    TB,  heat will flow from A to B ( direction ). 
                   (iii) When,  TA  ═  TB,  heat will cease to flow  ( extent ). 

Clausius thus stated the above form of the second law more elegantly as, 
     “Heat, by itself, can not pass from lower temperature to higher temperature.” 

Different scientists stated the law in different ways depending on the nature of the processes. But 
all these statements indicate the feasibility, direction and extent of a process. These different 
statements are listed below. 
(1)  Water flows from higher level to lower level. 
(2)  Air blows from higher barometric pressure to lower barometric pressure. 
(3)  Electricity flows from higher electric potential to lower electric potential. 
(4)  Chemical reaction occurs from higher chemical potential to lower chemical potential. 
       Many other statements can be given to satisfy the requirements of the second law of    
thermodynamics. 

The processes cited above are natural processes and these have two important criteria. These are 
given here. 
(a) All natural processes are spontaneous and thermodynamically irreversible.  
(b) All natural processes tend to attain equilibrium. 

Now, let us consider the conversion of heat into mechanical work and the statement of Planck and 
Kelvin relating to this conversional process is given below. 
    “Heat can not be completely converted into work. If it does so, the working system   
                                                                   will suffer a permanent change.” 
                                                 Let us explain the statement by taking an isothermal  
                                                 reversible   expansion of one mole of ideal gas from  
                                                 volume V1 to V2 at temperature T.     
                                                 The internal energy-change of the system,  
                                                 dU = CV dT = 0 as T = constant. 
                                                 The gas is confined in a cylinder fitted with weightless,  
                                                  frictionless and movable piston. 
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 From the first law,  
                                                            q = dU + w , but       dU = 0   

                                    so,          q =  w  =  RT ln 
1

2

V

V
.  

It is seen that heat is completely converted into mechanical work but in doing so, the working 
system (here one mole gas) suffers a volume-change from V1 to V2 permanently. 
If we try to remove the change by compressing the gas isothermally and reversibly from V2 to V1, 

then work required,         w  = RT ln 
2

1

V

V
.  

The net work obtained from the system without being suffered any permanent change,  

                               w  = w  + w   = RT ln
1

2

V

V
 + RT ln

2

1

V

V
 = 0.   

So the system, by isothermal reversible cyclic process, can produce no work from the supply of 
heat. If the process is not reversible, then also the system can not produce any positive work in 
the surrounding. Thus the P-K statement can also be stated as 
 “It is impossible for a system operating in a cycle and connected to a single reservoir 
        (one temperature) to produce a positive amount of work in the surrounding.”  

This statement rejects the idea of possibility of constructing a perpetual motion machine of the 2nd 
kind. This machine was supposed to produce positive work by taking heat from the surrounding 
and continuously run for indefinite period of time. Thus, it was supposed to run the tram car 
(operating in cycle) by extracting heat from the atmosphere or to run a ship from the heat of the 
ocean. But P-K statement rejects such possibility since engine (operating in cycle) and heat 
source is at the same temperature (isothermal) and so it can not produce any positive work in the 
surrounding. 

Then the question is how the heat can be converted into mechanical work.  
To convert heat into work two conditions are essentially required. 
(1) There requires a mechanism or contrivance, called thermodynamic engine for the  
      conversion of heat into work, the engine must work in cyclic fashion. 
(2) The engine must operate between two heat reservoirs. It takes heat from the higher 
      temperature reservoir (HTR), called heat source, and converts a portion of heat into   
      mechanical work and rejects the rest heat to the lower temperature reservoir (LTR),   
      called heat sink. 
Schematically we can depict the process in the following way. 
                                                                     Q  = heat taken by the engine from HTR (T) 
                                                                     Q= heat rejected by the engine to LTR (T  )      
                                                                                   T T    

                                                                       The efficiency of the engine, η = 
inputenergy

outputenergy
.                            

                                                                         Energy-balance shows that Q – Q  = w .                    
                                                                  

So, η = 
( )

sup ( )

work doneby theengine w per cycle

heat plied to theengine Q per cycle
. Or, η = 

Q

w
 = 

Q

QQ 
 = 1 – 

Q

Q 
  1  

                                                                    
Sadi Carnot, a young French engineer in 1924 deduced theoretical maximum efficiency (η) of this 

idealized thermodynamic engine. The engine consists of four steps – all are reversible. It contains 
1 mole ideal gas as working substance in a cylinder covered with a weightless, frictionless and 
movable piston. The engine works in cycle – two steps are expansions and two are compressions. 
The initial state of the gas is (P1, V1, T). 
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Step 1: Reversible isothermal expansion (AB):  
             The engine is kept in contact with the higher temperature reservoir, at T. 
             (heat reservoir are devices which supply or absorb heat at constant temperature).  
             The gas is expanded isothermally and reversibly from volume V1 to V2.     

                   The final state of the gas is (P2, V2, T). The engine absorbs heat Q from the HTR   
             and does work w1.   

         Q  =  1w   =  RT ln 
1

2

V

V
   -----(1)  since, dU = 0 for ideal gas in isothermal process. 

Step 2: Reversible adiabatic expansion (BC): 
             The engine is detached from HTR and kept insulated. The gas is expanded   
              reversibly and adiabatically from the state (P2, V2, T)  to (P3, V3, T  ).  
              The gas suffers a fall in temperature (T →T  ). The work done by the engine in  
              this step is  

                    2w = – dU = – CV (T ─ T).  Or, w2 = CV (T – T)   --------(2) 

Step 3: Reversible isothermal compression (CD): 
             The engine is now brought in contact with LTR at temperature T   and the gas 
              is reversibly and isothermally compressed from V3 to V4. The state is changed 
              from (P3, V3, T  ) to (P4, V4, T  ). The heat rejected by the engine to LTR is Q . 

              Thus,                          Q  = 3w  = RT   ln 
3

4

V

V
   ------(3) 

Step 4: Reversible adiabatic compression (DA) 
             The engine is again detached from the LTR and kept insulated. The gas is    
             compressed reversibly and adiabatically from V4 to V1. The state is changed 
             from (P4, V4, T  ) to (P1, V1, T). The system comes back to its  initial state. 
             So it works in cycle. Temperature is increased from T   to T. 
The work done by the engine, 4w  = – dU = – CV (T –T  )  or, w4 = – CV (T – T  )--- (4). 

The total work done by the engine, w  = 1w + 2w  + 3w  + 4w  = 1w  + 3w , since 2w  = – 4w   

                                                               = RT ln 
1

2

V

V
  + RT   ln 

3

4

V

V
 . 

                                                                   But for two adiabatic and reversible processes 
                                                                   B C  and  D A, we have the relation,  

                                                                   T 1
2
V  = T  1

3
V   --(a) and, T 1

1
V   = T  1

4
V  --(b) 

                                                                                Thus,  
a

b
  gives   

1

2

V

V
 = 

4

3

V

V
.  
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 So w    =   RT ln 
1

2

V

V
 –  RT   ln 

4

3

V

V
 = RT ln 

1

2

V

V
 – RT   ln 

1

2

V

V
 = R (T –T  )  ln 

1

2

V

V
.                                                                                   

                But,   Q = RT ln 
1

2

V

V
.    So the efficiency of the engine,   

                                            η = 
Q

w
 = 

T

TT 
 or, η = 1 – 

T

T


 

                  This is the expression of maximum efficiency of Carnot engine. 

Critical discussion on the efficiency of Carnot engine:  

                     We have, η = 1 – 
T

T


=
Q

w
 = 

T

TT 
or, w  = Q × 1

T

T

 
 

 
.   

 
1. Perpetual motion of the first kind: 
              If no heat is supplied to the engine, Q = 0 so, from above, w  = 0.  
                       i.e. no engine can do any work if heat is not added to it. 
                   This explains the impossibility of perpetual motion of the 1st kind. 
 
2. Perpetual motion of the 2ne kind: 
              If T =T  , then also w  = 0 i.e. if same heat source (single reservoir) is used, 
     then T = T  , no engine can produce any positive work if it is connected to single   
      reservoir and extracts heat from it. 
 
3. Incompleteness of conversion of heat into work;  

    η = 1 – 
T

T


 then, η can be only unity only when T = 0 K or T = ∞. 

    Both these conditions are never realized in practice,  so η < 1 i.e. w  ∕ Q  1 or, w   Q.  
                   It means that heat is not completely converted into work by an engine  
                                                     (engines work in cycle). 
 
 
4. Unattainability of absolute zero temperature:  
     Second law of thermodynamics states that η  1 (P-K statement ). The efficiency of  
     the Carnot engine is always less than unity.  

                                Thus (1 – 
T

T


)   1,  so, T   can never be equal to zero.  

                                    It means that 0K temperature can not be attained. 
 
5. Comparison of efficiency:  

    The efficiency of the engine, η = 1 –
T

T


. So η can be increased either by lowering T    

    or increasing T or by both. If the efficiency of the engine is compared by decreasing  
    the temperature of the sink (LTR) or increasing the temperature of the source (HTR) to  
    the same extent, calculation shows that in the former attempt, η is higher.  

                                 When T   is decreased by dT  , dη1 = 0 – 
T

Td 
 

      When T is increased by dT,  dη2 = 0 + 
2T

T 
 dT   but,  – dT   = dT   so, 

2

1





d

d
 = 

T

T


  1 .   
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Decreasing temperature of the LTR is more efficient than increasing temperature of the  
   LTR. Though usual practice is to increase the temperature of the HTR keeping the LTR 
   temperature fixed. High temperature boiler is used in steam engine for this purpose.  
   A modern steam engine power plant uses high pressure boiler at 550oC and condenser  
   at 40oC. η = 1 – ( 313 ∕ 823 ) = 62%. Actual η is obtained about 40%. 
 

6. We have,  w  = Q .
T

TT 
 = Q 

T

dT
. The engine converts

T

dT
 fraction of heat  

     supplied (Q) into work 
   . 
7. The efficiency (η) depends on temperature difference (dT) of source and sink and  
    temperature of the source. It does not depend on the nature of the working substance  
    used in the engine. Thus, instead of using ideal gas, if vander Waals gas (real gas) is  
    used, the efficiency would be the same. 
    (See Physical Chemistry by Ira Levine p 79 for more details). 
 
Problem (1): Calculate the efficiency (η) of steam engine working between 100oC and   
                       27oC. Calculate the amount of work done and heat rejected to LTR  
                       if 1 kcal of heat is supplied to the engine. 

Solution: η = 
T

TT 
 = 

373

300373
 = 0.196 = 19.6%.  

              w  = Q .
T

TT 
 = 103 × 0.196 = 196 cal and Q  = Q – w = 1000 – 196 = 804 cal. 

An ideal gas goes through a cycle consisting of alternate  
isothermal and adiabatic curves as shown in the  
following figures.  
The isothermal processes proceed at the temperaturesT1,  
T2 and T3. Find the efficiency of such a cycle, if in each 
isothermal expansion, the gas volume increases in the  
same  proportion. 
 
Work done in each step is given as follows: 
                       Isothermal expansion A → B, 1w  =  Q1 = RT1ln (VB/VA) --- (1) 

                       Adiabatic expansion B → C,   2w  = CV (T1 – T2) ------  (2). 

                       Isothermal expansion C → D,  3w = Q2  = RT2 ln (VB/VA) --- (3) 

                       Adiabatic expansion D → E,    4w  = CV (T2 – T3)  ------ (4) 

                       Isothermal compression E→ F,    5w  = RT3 ln (VF/VE)  -----(5) 

                       Adiabatic compression   B→ C,   6w  = CV (T3 – T1) -----(6) 

Total work done, w  = 1w  + 2w  + 3w + 4w + 5w + 6w   

                                  = 1w  + 3w  + 5w   as, 2w  + 4w  + 6w   = 0. 

Or,                        w  = RT1ln(VB/VA) + RT2 ln (VD/VC) + RT3 ln (VF/VE).  
But according to the condition,       VB/VA = VD/VC.  
So,                        w  = RT1ln(VB/VA) + RT2 ln (VB/VA) + RT3 ln (VF/VE). 

Using adiabatic relations,  1 1 1 1 1 1
1 2 3 2 3 1, ,B C E D F ATV T V T V T V T V TV             .  

                   it is possible to find        VF/VE = (VC/VB)( VA/VD).  
                  But VD/VC = VB/VA. Thus, VF/VE = (VA/VB)( VA/VB) = (VA/VB)2. 
Hence,                              w  = R(T1 + T2 – 2T3) ln (VB/VA). 
 

BU’1994 

  Solution: 
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Again total heat taken by the cycle, Q = Q1 + Q2 = RT1ln (VB/VA) + RT2 ln (VB/VA) 
or,                                                     Q = R(T1 + T2) ln (VB/VA). 

         Thus the efficiency of the cycle, η = 
w

Q
= 1 2 3

1 2

2T T T

T T

 


 or, 3

1 2

2
1

T

T T
  


. 

 
Refrigerator (R): 
                                                               A refrigerator is a device that extracts heat from  
                                                               cold reservoir (LTR) and rejects to hot reservoir 
                                                               (HTR). The process of extraction of heat is called 
                                                               refrigeration. 
 
                                                               A Carnot refrigerator acts in the same fashion as  
                                                               that of Carnot engine but in reverse direction.  
                                                               It takes away heat (Q ) from LTR, work (w) is  
                                                               supplied to it and finally it rejects heat (Q) to 
                                                               HTR. The refrigerator starts from D (shown in the 
                                                               indicator diagram). The sequence of the steps are  
                                                               given below:                                                          
 
                       Step 1: Reversible isothermal expansion at T   (D → A): 

                                    Heat is taken from LTR =  Q  = 1w = RT   ln 
4

3

V

V
------ (1) 

                        Step 2: Reversible adiabatic compression (C → B):  
                                     Temperature increases from  T   to T. 
                                     Work done 2w  = CV (T – T)   -----------------------------(2)  

                         Step 3: Reversible isothermal compression at T (B→A):    

                                     Heat rejected to HTR = Q  = 3w   = RT ln 
2

1

V

V
   ------------(3) 

                              Step 4: Reversible adiabatic expansion (A → D): 
                                           Temperature decreases from T to T  . 
                                           Work done, 4w  = CV (T – T)     ---------------------------- (4) 

            Adding, w  = 1w  + 2w  + 3w  + 4w  = 1w  + 3w  since, 2w  = ─ 4w  

                          w  = RT   ln 
4

3

V

V
  +  RT ln 

2

1

V

V
  =  RT   ln 

4

3

V

V
  – RT ln 

1

2

V

V
   

                                = R (T – T )  ln 
4

3

V

V
   

The efficiency of a refrigerator (the more heat it can extract, the more efficient the refrigerator is),  

                         ψ = 
cycleperinputenergy

cycleperouputenergy
= 

( )

( sup )

Q heat extracted

w work plied


 

                             =  (RT   ln 
4

3

V

V
) ∕ [ R (T –T )  ln 

4

3

V

V
 ] = 

TT

T



..   So,       ψ = 

TT

T



. 

The capacity of refrigerator is expressed in terms of ‘ton’. A 1-ton refrigerator extracts in a day an 
amount of heat just enough to freeze one ton of water at 32oF. 
One short ton = 2000 pound (lb), latent heat of fusion of water = 144 Btu/lb 

Heat extracted in one day = 144 × 2000 Btu / day =
6024

2000144

x

x
Btu/min = 200 Btu / min. 

 

 

ψ = 
TT

T



. 
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Problem: What is the best efficiency of a refrigerator working between 20oC and –10oC?  
                 What minimum work has to be done to enable it to withdraw 1000 cal  
                  from  –10oC and reject heat to the surroundings at 20oC? 

Solution: The efficiency of the refrigerator, ψ  = 
TT

T



. = 

263293

263


 = 8.8.  

                 Again, ψ = Q / w   or, w = Q / w  = 1000 / 8.8 = 114 cal. 

                 and,     Q = Q  + w  = 1000 + 114 cal = 1114 cal.                         
                                                       
Various compression refrigerators:  
 
For a good refrigerator, the heat transfer process in the refrigerator be at constant  

ψ = 
TT

T



.temperature by using vapor compression cycle of refrigeration. The working fluid 

may be in the liquid and in the vapor phase.  
 
 
 
 
 
 
 
 
 
 
 
                                            
Steps used are given below: 
1. The working substance in liquid phase at low P and T is passed through the evaporator  
    at constant P. The liquid absorbs Q  heat from the surrounding cold temperature   

    reservoir (LTR) at T   and turns into saturated vapor (D → C). 
2. The above saturated vapor is compressed adiabatically and at high pressure and  
    temperature to a super cooled vapor (C → B). 
3. The vapor is then led though a coil immersed in the coolant at constant P, The vapor 
    gives up Q amount of heat to the coolant at temperature T, and condensed to liquid  
    state (B → A).  
4. Now the liquid is adiabatically expanded by the valve. The liquid is at low T and P and  
    ready for the next cycle of operation (A → D). 
 
Heat pump: Heat pump (HP) is used to warm the house in the winter by refrigerating 
                      heat from outside or cool the house in the summer by refrigerating out heat  
                      from the house to the outside. 
                                                      For heat pump, the efficiency                                                   
 

                                                      (ψ)  =  
pliedwork

roomtheinsidepumpedheat

sup
  

                                                              = 
QQ

Q


 = 
TT

T

  

                                                                      (See Ph. Ch - Castellan, p 163). 
 
 
 

 Outside of the house, T   
( LTR ) and ( T   T  ). 
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Problem: Calculate the minimum amount of work required to freeze 1 g of water at 0oC   
                 by means of an ideal refrigerator that operates at 25oC. How much heat is  
                 rejected into the surrounding? Answer: w  = 7.33 cal, heat rejected = 87.33 cal.  
Carnot’s theorem: Two important deductions, called Carnot’s theorem are given below 
                                 along with the proof. 
 (1) A reversible engine is more efficient than an irreversible engine and 
 (2) all reversible engines are equally efficient working between the same two temperature limits. 
   (1) Let us first prove the first theorem. Let two engines be considered with the following     
                                                                           characteristics: 
                                                                           Irreversible engine (I): 
                                                                           Heat supplied = Q,     work done = 1w  

                                                                            Heat rejected    = Q – 1w . 

                                                                                                                        Reversible engine (R): 
                                                                            Heat supplied = Q, work done = Rw ,  

                                                                             Heat rejected = Q – Rw  

                                                                                                                          We have to prove that R   I . 

        But if it is not true, then let the reverse is true. i.e.  I   R   and so, Iw   Rw  

                                                               
Since same amount of heat is supplied to the engines. Now let us prepare a couple engine in 
which I is acting as engine while R is acting as a refrigerator. From the diagram, it is clear that 
there is no loss of heat from the HTR. The couple takes heat  
(Q – Rw ) – (Q – Iw ) = Iw  – Rw  from the LTR. 

 The couple engine performs work = Iw  – Rw . This shows that the couple engine converts heat 

into work completely leaving no change in the working system (here couple engine). This goes 
against the P—K statement of 2nd law of thermodynamics. Hence, I  is not greater than R   and 

reverse is true i.e.  R    I .  

(2) Now we prove the second theorem. In the same way as above, let us assume that the 2nd 
assertion is also false as we can show that it violates the 2nd law and thus first    
                                                            assertion is true.  
                                                            Let between two reversible engines, R is more 
                                                            efficient  i.e.  R    R , hence w   w, since same 
                                                            amount of heat (Q) is given to the engines at the     
                                                            same two temperature limits. The composite engine  
                                                            takes heat from LTR = (Q – w ) – (Q – w  )  
                                                                                              = w – w  
                                                            The composite engine does work =  w – w .  
                                                            This shows that the couple engine converts heat  
                                                            into work completely by taking heat from LTR. This goes 
against the P-K statement of the 2nd law. Thus assertion given is true 
 i.e. all reversible engines are equally efficient when working between the same two temperature 
limits. 

Equivalence of the two statements of the 2nd law: 
                                                                       We have two famous statements of 2nd law: Clausius 
statement: ‘Heat, by itself, can not pass from lower temperature to higher temperature.’  
P-K statement: ‘Heat can not be completely converted into work. If it does so, there will be a 
permanent change of the working system.’  
These two statements seem to be widely different but it could be proved that they are equivalent. 
This is shown by using proper arguments as given here. 
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 Let us consider one couple engine consisting of one engine (E) and one refrigerator (R)   
working between the same two reservoirs. Let the engine (E) obeys P-K statement  
i.e. the engine takes heat from HTR, part of heat it converts into work and the rest the engine 
rejects to LTR.  
                                                                But the refrigerator (R) does not obey the  
                                                                Clausius statement i.e. it carries heat from LTR  
                                                                to HTR without having received any work. It can  
                                                                be shown that the couple engine does not  
                                                                obey the P-K statement. 
                                                                As outlined above, the couple engine takes heat  
                                                                from HTR = Q – Q .  
                                                                But work done by the couple engine  =  w. 
                                                                Since Q – Q  = w, this shows that couple engine  
converts heat into work completely by taking heat from HTR. This contradicts P-K statement. 
Though engine obeys P-K statement, refrigerator does not obey Clausius statement, result is that  
P-K statement is violated by the couple engine. 
                                                                       By the same way, it can be shown that if 
                                                                       engine disobeys P – K statement but refrigerator 
                                                                       obeys Clausius statement, result will be that  
                                                                       Clausius statement is not obeyed by the  
                                                                       composite engine. 
                                                                       The couple engine it transfers heat Q   
                                                                       from LTR to HTR and as w – w = 0, 
                                                                       so no work is supplied to it.                                                                      
                                                                       Thus the engine and refrigerator together  
constitutes a self-acting device whose effect is to transfer heat ( Q )from LTR to HTR. This 
couple engine violates the Clausius statement. So, the two statements of the 2nd law are equivalent 
 
Kelvin scale of Temperature  
(Thermodynamic scale):  Lord Kelvin proposed a scale of temperature based on the efficiency 
of Carnot engine which does not depend on the nature of the thermometric substance used in the 
determination of temperature. 

The efficiency of the engine, η = 
Q

w
 =  

Q

QQ   = 
T

TT   or, 
Q

Q

T

T


. Heat change ratio is 

proportional to temperature ratio. And T =
Q

T
Q

 

.  or,  T = 273.16 K × 

Q

Q

 

where, T   is assigned to the triple point of water which is 273.16 K. Q is the heat taken from 
HTR whose temperature (T) is to be determined. Q’ is the heat rejected to the triple point of water 
which is acting as sink. Thus determination of temperature involves calorimetry instead of 
thermometry. 

Again,  η = 
T

TT 
 =  1 ─ 

T

T 
. The zero temperature in the scale is also the temperature of the 

LTR of a reversible engine with efficiency of one i.e. capable of converting heat into work 
completely. This scale is made identical with absolute scale and each degree is equal to the 
Celsius degree. 
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E N T R O P Y 
 

The word ‘entropy’ means en → in, and trope → transformation i.e. in transformation.  
It is the property related to the tendency of the system towards transformation of states. 
1st law introduces internal energy (U) while 2nd law leads to the introduction of entropy (S). 
 
The 2nd law of thermodynamics has different statements depending on the various processes.  

All these different statements point out the feasibility, direction and extent of the processes. 
Clausius tried to unify the different statements under one umbrella in terms of new property, 
called entropy (S). Let us understand the criteria of spontaneity of a process through entropy.  

Entropy measures the randomness or chaotic condition of a system. Higher the randomness, 
greater is the entropy. A system have tendency to pass spontaneously from a state of more 
orderliness to less orderliness, i.e. if a system is left to itself, it passes spontaneously (of its own 
accord) from less chaotic state to more chaotic state. The change of state (i.e. process) will stop 
when the system attains maximum chaotic condition. Thus we can say, a system changes its state 
of lower entropy to higher entropy and attains equilibrium when the entropy becomes maximum. 
 
The above criterion of spontaneity of a process is valid for isolated system only. To include other 
type of systems, the criterion is that the net entropy (i.e. entropy of the universe) increases for 
spontaneous process and it becomes maximum when the process attains equilibrium.  

Thus, it is,                          ∆Ssystem + ∆Ssurrounding   =  ∆Suniverse  ≥ 0.  

Inequality sign refers to the spontaneity and equality for equilibrium.  

All natural processes occur spontaneously and so net entropy of the universe is also increasing. 
Therefore, we can also write the statements of 1st and 2nd law as, 
 
1. 1st law:      The net energy of the universe is constant, and 
2. 2nd law:     The entropy of the universe is increasing. 
 
Concept of entropy: 
 
(1) (dqrev. / T) is perfectly differential but not dqrev. :   
 
     It can be shown that dqrev. is not perfectly differential as it is not integrable and its value  
     between two definite states depends on the path of the system. But ( dqrev / T ) is perfectly  
     differential and its value does not depend on the process of the system. This can be shown  
     as follows.  
     Let one mole of ideal gas undergoes a change of state from ( T1,V1) to (T2,V2) in a reversible 
     process. The heat change that occurs is dqrev. 

                   
2

1

.revdq =  
2

1

dU + 
2

1

PdV  = CV 
2

1

dT  + 
2

1

PdV  = CV (T2 – T1) + R 
2

1 V

dV
T .    

     But the second integral of the RHS of the equation can not be integrated until we know 
     the relation between T and V. If T is kept constant, the integral will have one value and 
     if T is not constant, it will give another value.  
     It means that dqrev.  depends on the nature of the process. On the other hand. 

                     
2

1

.

T

dqrev  = CV 
2

1 T

dT
 + R 

2

1 V

dV
 = CV  ln 

1

2

T

T
  +  R ln 

1

2

V

V
.  

     Thus, the value of 
2

1

.

T

dqrev   is definite between the two states (T1,V1) and (T2,V2). 

Meaning of 
the term 

Different 2nd 
law statements 

under one 
umbrella 

Physical 
significance of 

entropy and 
criteria of 

spontaneity 
and 

equilibrium 
 

Statement 
of 2nd law 
in terms of 

entropy 
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     So (dqrev. / T) is perfectly differential quantity and it is the difference of a certain fundamental 
     property of the system. This property, Clausius called, entropy(S) and (dqrev. / T) = dS. 
 
(2) Concept of entropy from Carnot cycle:   Carnot cycle operates in reversible path.                                                                                 

                                                          The efficiency of the Carnot engine, η = 
Q

w
 = 

T

TT 
    

                                                                   or, 
Q

QQ 
 = 

T

TT 
 or, 

T

Q
 = 

T

Q



  

                                                             Now let us consider the nature of the quantity,  

                                                                                 
etemperatur

reversiblychangeheat
 

                                                               For change of state of the system, A→ C via B,  

                                                                  
etemperatur

reversiblychangeheat
   =  

T

Q
 + 0  =  

T

Q
 .                                                                                       

Again, for the same change of state of the system, A→C via D, 

                                                   
etemperatur

reversiblychangeheat
  =  0 + 

T

Q



 = 

T

Q



. 

But from the Carnot cycle, we have deduced the relation,  
T

Q
= 

T

Q



.       

Hence we can conclude that 
heat change reversibly

temperature

 
 
 

   term is same for the change of the  

two definite states of the system and independent of path of the change. 

Again, the term for the whole cycle,  etemperatur

reversiblychangeheat
 = 

T

Q
 + 0 ─ 

T

Q



 + 0  

                                                                                                         = 
T

Q
 ─ 

T

Q



.   = 0. 

Since, Q  heat is rejected so it is (─) ve. Therefore,  
heat change reversibly

temperature

 
 
 

  

is a difference of some fundamental property and this property is a state function and called 
entropy of the system (S).   

(a) Clausius defined the entropy as a state function and its change between two states of  

     a system is,   dS = 
T

qrev.  = 
occurschangeheatwhichatetemperatur

reversiblyoccursthatchangeheat
 

    When heat change occurs at different temperatures,  

               dS = 
1

1

T

q
+ 

2

2

T

q
+ ---- = 

2

1

.
T

T

rev

T

q
,  since T changes continuously. 

In the reversible phase change, heat-change occurs at constant temperature. 
           One mole of ice melts into liquid water at 0oC and 1 atm. pressure. 
               1 mole ice (0oC, 1 atm)    →    1 mole of water (0oC, 1 atm). 
                         Initial state (S1)      ∆S               Final state (S2)   

 Hence, ∆S = S2 – S1 = 
T

qrev.  =  (18 × 80) / 273 cal K-1  = 5.27 cal K-1. 

This shows that S2 > S1 i.e. randomness in liquid water is greater than in solid water. It is also 
important to note that we determine only the entropy-change and not the absolute entropy values. 

 

Calculation 
of entropy-
change (∆S)  
 

Problem (1) 
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This is just like the case of the internal energy (U) whose change is determined by adiabatic work, 
but whose absolute values are undefined. The absolute value of entropy could only be determined 
with the help of third law of thermodynamics.   
When heat-change occurs at different temperature. 
 
   One mole of water is heated reversibly from 27oC to 37oC at 1 atm pressure.  
             1 mole water (27oC, 1 atm)      →      1 mole of  water (37oC, 1 atm) 
                       Initial state (S1)              ∆S                  Final state (S2) 
 

∆S = 
2

1

.
T

T

rev

T

q
 =  nCP 

K

K T

dT310

300

 = 1 mol × 18 cal mol-1K-1 × ln 
K

K

300

310
    = 0.59  cal K-1 

The result shows that ∆S = (+)ve.   Hence, S2    S1  i.e. entropy increases with rise in temperature.   
(b) Absorption of heat increases the entropy of the system while evolution of heat decreases 
     its entropy.   
(c) Reversible adiabatic process is isentropic. For reversible adiabatic process, qrev = 0 so, dS = 0. 
     This means that entropy remains constant for a reversible process in isolated system. 
     This is why it is called isentropic process. 
 
Relation of entropy with internal energy and enthalpy of the system.  
                          (Basic thermodynamic equations). 
 
1st law states, qrev. = dU + PdV                      while                2nd law states, dS = qrev./ T. 
Combining the two, we have TdS = dU + PdV  
                              or,                           dU  =  TdS – PdV ------ (1) 
 
Again,    H = U + PV     or,       dH = dU + PdV + VdP  = TdS + VdP.   
                                         Thus,             dH  = TdS + VdP   ----- (2)  
 
These two relations, called basic thermodynamic equations. These are of immense help for 
formulating different relations.  

Entropy and unavailable energy (Illustration through Carnot cycle): 

 

From Carnot cycle, 
T

Q
= 

T

Q



, where, Q amount of heat is supplied to the engine from the source 

(HTR at temperature, T and  it rejects Q  amount of  heat to the sink (LTR).  

The Carnot engine utilizes only (Q – Q ) amount of heat into useful work.  

So this energy ( Q ) out of supplied heat (Q) is not used for doing mechanical work, and the 
engine rejects it to the sink. 

Therefore the unavailable energy ( Q ) at T   = T   × 
T

Q
 = T   × ∆S 

So unavailable energy ( Q ) = temperature at which the unavailable energy is considered  
                                                × entropy increase due to heat take-up. 
 
Thus when a system absorbs a certain amount of heat in a process, a part of the absorbed heat is 
utilized for producing work while the rest heat goes to increase the randomness of molecular 
motion which increases the entropy of the system. It is the randomness of molecules which is 
responsible for incomplete conversion of heat into work. 
Thus entropy-increase of a system measures the unavailable energy for doing useful work and 
this leads to the degradation of energy or run-down ness of the system. 

Problem 
(2) 

Solution 
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Formulation of expressions of entropy-change in different processes. 
 
(A) Entropy-change of a system in reversible process. 
The basic thermodynamic equation is, dU = TdS – PdV.  
But for n moles ideal gas, dU = nCV dT . Substituting these and rearranging we get, 

dS = nCV
T

dT
 + 

T

P
dV = nCV

T

dT
 + nR 

V

dV
 as, 

T

P
 = 

V

nR
 

Replacing (P / T) and integrating within limits we get, 
2

1

S

S

dS = nCV 
2

1

T

T T

dT
 + nR 

2

1

V

V V

dV
  

      ∆S = nCV  ln
1

2

T

T
 + nR ln

1

2

V

V
  -------- id. gas, rev. proc. ---------- (1)  

This is entropy-change of the system for the change of state (T1,V1) to (T2,V2)  
and CV is assumed to be independent of T for small change of temperature. 
If we use 2nd basic equation, dH = TdS + VdP and insert dH = nCPdT  

we get,  ∆S = nCP ln
1

2

T

T
 ─  nR ln

1

2

P

P
  ----(2)  This is the expression for ∆S of the system for the 

change of state (T1,P1) to (T2,P2) in reversible process involving ideal gas. 
For isothermal process, T1 = T2,  

∆S = nR ln

2

1

P

P
      and      ∆S =  nR ln

1

2

V

V
  .,----- (3)        id. gas, isotherm. rev. proc 

For isochoric process, V1 = V2,     ∆S = nCV ln
1

2

T

T
 ---------- id. gas, rev. isochor. proc. 

and for isobaric process, P1 = P2,   ∆S = nCP ln
1

2

T

T
---------- id. gas, rev. isobar. proc. 

Reversible adiabatic process is called isoentropic process and ∆S = 0. Thus for a change of state 
from  (T1,V1) to (T2,V2) of a system containing n moles ideal gas  in reversible adiabatic process,  

0 = nCV ln
1

2

T

T
 + nR ln

1

2

V

V
  Or, R ln

1

2

V

V
  =  ─ CV  ln

1

2

T

T
.  

This leads to the fact that entropy-change due to volume-change compensates that due 
to temperature-change in the reversible adiabatic process of an ideal gas. 
           Again this relation shows that for reversible adiabatic expansion (V2  V1), temperature of 

the system falls (T1  T2). 
And reversible adiabatic compression leads to increase of temperature. 
           We can also find the T-V relation from the above deduction. 

   
2

1

1

2 lnln
T

T

V

V

C

R

V

        but     
V

VP

V C

CC

C

R 
 = γ – 1     so,    

2

1

1

2 lnln)1(
T

T

V

V
    

or,                                ln 

1

2

1

V

V

 
 
 
 

 =  ln 
1

2

T

T
 or,  

1

2

1

V

V

 
 
 
 

=  
1

2

T

T
  

                                or, T1
1

1
V  = T2 

1
2

V   -------- for ideal gas in reversible adiabatic process.      
                                            This is our required relation. 
                                    
Change of a pure substance from one phase to another at constant temperature and pressure 
occurs reversibly. For example, phase change of ice to liquid water occurs at 0oC and 1 atm 
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∆S for 

reversible 
phase change 

of a pure 
substance 

 



 

PRINCIPLES OF THERMODYNAMICS ─  N C DEY 47 

pressure. Heat change in the process at constant pressure is equal to the enthalpy change for this 

type of phase transformation and                           ∆S = 
H

T





 

where,   
H  is the enthalpy change at the transition temperature (Tε),   

                                                                                      

For vaporization of a liquid at its boiling point,      ∆S = v

b

nL

T
.  

For the process of fusion of a solid at the melting point,         ∆S = m

m

nL

T
 

and for freezing of liquid its freezing point,                             ∆S = –
f

f

nL

T
. 

If qrev  heat is taken by the system from the surrounding reversibly at constant T, exactly same 
amount of heat is lost by the surrounding.  

Thus,                           ∆Suniv  = ∆Ssyst + ∆Ssurr = 
T

q

T

q revrev   = 0 

 
This can also be proved by the use of Carnot cycle. Here, system is Carnot cycle which is 
operating in cycle so, ∆Ssyst  = 0. The surrounding constitutes HTR and LTR. 

                              ∆Ssurr = ∆SHTR + ∆SLTR = 
T

Q

T

Q



  = 0.   Since,  

T

Q

T

Q



 .  

This concludes that entropy-change of the universe (net entropy-change) in reversible process 
(equilibrium process) is zero. When a process occurs reversibly, it proceeds through 
infinitesimally equilibrium steps. So, the criterion of a process to be at equilibrium, is ∆Suniv = 0. 
However, if the system is an isolated one, then ∆Ssurr = 0 always and so,  ∆Ssyst = 0  
                                        i.e. ∆Ssyst = 0  --------- rev. proc. isolated syst. 
 
(B) Entropy-change of a system in irreversible processes:  
 
        Entropy (S) is a state function and so the entropy-change of a system between two fixed 
states will be same irrespective of the process ─ reversible or irreversible.  
 
                                                               B AS S S    will be the same for both the processes. 

                                                                                                             
                                                                             But according to Clausius definition, 

                                                                                revq
S

T
   and not equal to  irrevq

T
. 

           
To evaluate entropy-change of a system in an irreversible process, a reversible path is assumed 
between the same two given states of the system. In this reversible path, heat absorbed at each 
point is divided by the temperature and the quotients are summed up to get the entropy-change of 
the system between the two given states in the irreversible path. 
 
Example: Entropy-change in irreversible phase-change of a pure substance. 
Let us consider the phase transition of 1 mole of super cooled water at – 10oC and 1 atm 
pressure into ice that occurs suddenly and spontaneously (irreversible process) 
                                                                                                                 [C U’2000] 
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Thus the entropy-change for this irreversible process of phase transition is 
                 ∆S =   ∆S1 + ∆S2 + ∆S3 = 0.67 – 5.27 – 0.34 = –  4.94 cal K-1 mol-1.     

When a system changes its states from (T1,V1) to (T2,V2) in reversible adiabatic process  

The relation,              R ln
1

2

V

V
  =  ─  CV  ln

1

2

T

T
 holds.  

However, if the system proceeds from the same initial state (T1,V1) (by  irreversible adiabatic 
process) to the final volume V2, the final temperature becomes different and let it be 2T  .  

If reversible path is assumed for the change of state from (T1,V1) to ( 2T  ,V2), 

                              ∆S = CV ln
1

2

T

T 
 + R ln

1

2

V

V
  =   CV  ln

1

2

T

T 
 ─ CV  ln

1

2

T

T
. 

But it could be shown that 2T   T2 from the assertion, , ,r a ir aw w  

                or, CV (T1 –  T2) > CV (T1 –  2T  )              or,               2T     T2 
Thus,             ∆S   = (+)ve                 i.e.             ∆S > 0 ------   irrev. adiab. proc., id. gas. 
Entropy of the system increases in this process. 
So, irreversible adiabatic process in not isentropic and it leads to increase of entropy. 

This can also be shown by assertion that ∆Suniv   0 for process occurring spontaneously  
(i.e. irreversibly). as there is no interaction with the surroundings.  
Adiabatic process occurs in isolated system which has no interaction with the surroundings.  
 Hence,   ∆Suniv   =  ∆Ssyst   +  ∆Ssurr    0. But,      ∆Ssurr  = 0,     So,     ∆Suniv   =   ∆Ssyst    0,  
 
                                           thus  ∆Ssyst    0  ------------ isolated syst. irrev. adiab. proc.  
 
Clausius inequality and ∆S of the Universe in irreversible process: 
 
                                                      Let us first see what is meant by Clausius inequality. For an 
irreversible Carnot cycle (in which let one step is irreversible), the efficiency is less than that of a 
reversible Carnot engine working between the same two temperature limits.  

    i.e.      ηir    ηr .   But,     ηr  =  
T

TT 
            and      ηir  = 

Q

wir    or,  ηir  = 


 

Q

QQ
, 

where,      Q  = irreversible heat-change      and       Q  = reversible heat-change. 
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Irreversible path is shown by dotted line and reversible path by solid lines.  
 

                                                                   


 



Q

QQ

T

TT
 or, 

T

Q

T

Q







.   

                                                                   Thus, dS
T

Q




    or,    TdS   Q . 

                                                              So in general, entropy-change of a system is always greater  
                                                                   than (irreversible heat-change / temperature) 
                                                         ,            i.e.                    dS    ( qirrev / T ).     
                                                                                 This is called Clausius inequality.                                                                                   
                                                                         
             The relation helps to find out the criteria of spontaneity of a process. 
         Now we see the entropy-change of the universe in an irreversible process. 
 Taking the example of the above irreversible Carnot cycle,  
                                                                               ∆Suniv  = ∆Ssyst + ∆Ssurr ,  
                                                               here,    ∆Ssyst = ∆Sengine = 0, as it works in cycle. 

                                                                ∆Ssurr  = ∆SHTR  +  ∆SLTR = 
T

Q

T

Q







  =  (+)ve,  

                                                                            since,               
T

Q

T

Q 





 

For reservoir (which is large heat-content),     ∆S =
etemperatur

lyirreversibchangeheat 
  ( granted). 

Therefore,                ∆Suniv   0  for irreversible process (which is spontaneous also). 
The criteria of spontaneity (irrev.) and equilibrium (rev.) of a process is  
                                                             ∆Snet ≥ 0  
          inequality sign refers for spontaneous and equality sign for equilibrium processes. 

For a spontaneous process, net entropy will increase and attains maximum when the process 
reaches equilibrium. 
Though the criterion appears simple but it poses difficulty to calculate ∆Ssurr , as the process 

is occurring in the system only. So this criterion is rarely used in actual calculation for 
spontaneity of a process.  
We shall seek criteria of spontaneity of a process in terms of the change of other  
thermodynamic property of the system.  
In the universe, thousands of natural processes are happening and for that the entropy of the 
Universe is also increasing. The chaotic condition or randomness of the Universe is also 
increasing. The unavailable energy for doing useful work in the Universe is also increasing due to 
these natural (irreversible) processes. When the entropy of the Universe attains maximum, there 
will be no available energy for doing useful work.  
       All the natural processes will attain equilibrium and there will be death of the Universe. 
 
Some examples for ∆Suniverse of spontaneous processes: 
 
(1) Irreversible (spontaneous) flow of heat: 
      Let a small amount of heat, q flows from HTR at temperature T to LTR at temperature T  . 
            Temperature is assumed to be not affected by this small heat-transfer.   

            ∆Suniv = ∆SHTR + ∆SLTR = 
T

q

T

q


 = 









 TT
q

11
= (+) ve, since TT  . 

              This is definitely an irreversible process and ∆Suniv   0  for the process. 

 
Clausius 

inequality 

Limitation of 
the criteria of 
spontaneity of 

a process, 
∆Snet ≥ 0 

 

Speculation 
for death of 
the Universe 

 

∆SUniverse in an 
irreversible 

process. 



 

PRINCIPLES OF THERMODYNAMICS ─  N C DEY 50 

(2) Joules free expansion of ideal gas: 
       Let n moles of an ideal gas is expanded against vacuum (P = 0) under insulated condition. 
                                                                    
                                                            For the process, w = Pext. dV = 0, q = 0.    
                                                            The expansion is irreversible and so spontaneous. 
                                                            From the 1st law of thermodynamics of ideal gas, 
                                                            q = n CV dT + w. Since q = 0 and w = 0,                                                 
                                                            dT = 0 and T is constant i.e. isothermal process. 
                                                            The system thus moves from (T, V1) to (T,V1+V2),                                                    
                   The entropy-change for the process, 

                  ∆Ssyst = nR ln 
1

21

V

VV 
and  ∆Ssurr = 0   as no heat-change occurs between system  

   and surrounding.                ∆Suniv = ∆Ssyst + ∆Ssurr = nR ln
1

21

V

VV 
 0. 

                                         Thus for this spontaneous process also, ∆Suniv  0. 

Physical significance of entropy: 
                                                        Calculation shows that entropy of a substance increases when 
it changes from solid to liquid to gas. If we consider from the molecular point of view, then 
randomness or chaotic condition of the molecules are also increasing from solid to liquid to gas. 
This promptly suggests that entropy is a measure of randomness of the system. 
                                   As randomness increases, entropy is also increased. 
Randomness or chaotic condition of the molecules is expressed by a term, called thermodynamic 
probability (W). It is the number of ways the molecules can be arranged in different energy cells 
of the system. As the randomness of the molecules increases, the thermodynamic probability also 
increases. Therefore, we can build up a relation between entropy (S) and probability (W) of a 
system. 
                                                                   So we can write the relation as  S α f (W).  
                                                              Let two systems  containing identical  particles are mixed 
up to give                                                       up to give total entropy S and probability W. 
                                                              Since entropy is an additive but probability is a 
                                                              multiplicative property so, S = S1 + S2 and W = W1 × W2. 
                                                          
                 Therefore, S α f (W1 × W2)  but  S1 α f (W1) and  S2 α f (W2), 
                                   Hence, f (W1 × W2) = f (W1) + f (W2). 
To satisfy this mathematical condition, the function must be logarithmic and so S α ln W  
                                 or, S = k ln W.    This proportionality constant is Boltzmann constant.  
When a solid is at 0 K and attains perfectly crystalline structure, W = 1 and S = 0. 
                                 This is the third law of thermodynamics.                                         
 
What would a Carnot cycle look like in a T – V diagram? Label the states and various processes 
involved. What does the enclosed area signify?      [BU'91, m = 2+3+2] 
 
 
                                                          
 
   
 
 
It looks like a rectangle. The various states involved are listed below: 
(i) Reversible isothermal expansion of 1 mole ideal gas: T1 remains constant but entropy  
      increases from S1 to S2 
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(ii) Reversible adiabatic expansion: entropy remains constant but temperature falls from  
      T1 to T2 
(iii) Reversible isothermal compression at T2: temperature remains constant at T2 but  
      entropy decreases from S2 to S1 
(iv) Reversible adiabatic compression: entropy remains constant at S1 but temperature  
      increases from T2 to T1.  The cycle is complete. 
The enclosed area (ABCD) = BC × AB = (T1  –  T2) × (S2 – S1) = T1 ∆S – T2 ∆S  
                                                                                                  = Q1 – Q2 = w. 
So the enclosed area signifies the total work done by the Carnot cycle. 
Show that isobaric temperature coefficient of entropy, (∂S ∕ ∂T)P is greater than isochoric 
temperature coefficient of entropy, (∂S ∕ ∂T)V.  And plot S vs. T curves for 
             (i) reversible isothermal, (ii) reversible adiabatic,  (iii) reversible isobaric and  
            (iv) reversible isochoric processes, using ideal gas.  
                                                                (i) S increases at T so S vs. T plot is vertically   

     straight line.  
(ii) S is constant with increase of T, so S vs. T is 
      horizontal straight line  
(iii) We have basic thermodynamic equation,  
                        dH = TdS + VdP.  
        For 1 mole ideal gas, dH = CPdT.  
        Thus, CPdT. = TdS + VdP.  
                        Or, (∂S ∕ ∂T)P = CP / T 
          So, S increases with T at constant P with (–) ve   
          curvature. 
 (iv) Another basic equation is    dU = TdS – PdV.  

                                  Putting dU = CVdT,    we get,       CVdT = TdS – PdV  
                                                                                          or, (∂S ∕ ∂T)V = CV /T.  
       S increases with T at constant V with (–) ve curvature. 
                                             Since CP   CV,     so      (∂S ∕ ∂T)P  (∂S ∕ ∂T)V.     

                                                Isobaric curve is steeper than isochoric in the S – T diagram. 
           The plots S vs. T for isobaric and isochoric processes produce curve with decreasing slope  
       as T increases. The curvature of the plots are (∂2S ∕ ∂T2)P =  –  CP / T2    and 
                                       (∂2S ∕ ∂T2)V =   – CV /T2 , both are (–)ve. 
 
Calculate the entropy-change when Argon at 25oC and 1.00 atm pressure in a container  
of volume 500 ml is allowed to expand to 1000 ml and is heated simultaneously at 100oC.  
  (CV = 12.48 J mol-1 K-1 for Argon at 25oC and 1 atm).     [IISc’03, adm. to MSc. m=5]. 

 ∆S = nCV ln
1

2

T

T
 + nR ln

1

2

V

V
  for n moles of ideal gas. 

      = 1 mol×12.48 J mol-1K-1 ln
K

K

298

373
+1 mol×8.31 J mol-1K-1 ln

ml

ml

500

1000
= 8.55 J K-1.       

 
For NH3, CP = 6.2 + 7.9 × 10-3 T cal mol-1K-1. Assuming ideal behavior, estimate the entropy-
change in heating 34 gm of the gas from a volume 100 lit at 300 K to a volume of 60 lit at 800 K. 
Since 34 gm = 2 moles and CV = CP – R = (6.2 +7.9 × 10-3 T – 2) cal mol-1K-1  

                                                                                                 = 4.2 + 7.9 ×10-3 T cal mol-1K-1.  
dS = nCV (dT/ T) + nR (dV/ V)  
     = 2 mol×(4.2 +7.9 ×10-3 T cal mol-1K-1)(dT / T)+2 mol×(2 cal mol-1K-1) (dV / V),  
Integrating within limits,  

                                       
2

1

dS = 8.2   

2

1

2

1

3
2

1

4108.15
V

dV
dT

T

dT
  

Problem 
(2) 

 Answer: 

Problem 
(3) 

Solution 

Problem 
(4) 

Solution 

.                



 

PRINCIPLES OF THERMODYNAMICS ─  N C DEY 52 

or,                            S2 – S1 = 8.2 ln 
1

2

T

T
+ 15.8 10-3 (T2 – T1) + 4 ln 

1

2

V

V
  

or,      ∆S = 8.2 ln (800/300) + 15.8 ×10-3 (800 - 300) + 4 ln (60 lit / 100 lit) = 14.1 cal K-1. 
  
A certain mass of an ideal gas expands into vacuum to twice its initial volume.  
Calculate ∆U and ∆S for the process.                                [BU, 1999, Q 7(a), m = 2+2] 
 
It the free expansion of ideal gas against vacuum (P = 0)     so,  w = Pext (V2 – V1) = 0. 
This expansion occurs without any heat exchange (Joule’s expansion), so,           q = 0. 
Therefore using 1st law of thermodynamics, q = ∆U + w      
                                         or,     0 = ∆U + 0 or,               ∆U= 0. 
Again for ideal gas ∆U = nCVdT  =  0 but T = constant. So,the process is also isothermal.. 
The entropy change of the process, ∆S = R ln (V2 / V1) = 2 cal mol-1K-1 ln (2V1/ V1) 
                             or,   ∆S = 2 ln 2  cal mol-1K-1    or,   ∆S  = 1.386 cal mol-1K-1.  

 
(i)Use the appropriate statement of the Carnot theorem to establish Clausius inequality, 

    0irrevdq

T
 .                                                                               [CU’93, Q5(a), m = 4] 

The Carnot theorem which may be used to prove the Clausius inequality is that  
‘A reversible engine is more efficient than an irreversible engine working between the same two 

temperature limits.’ 
Let dqirrev amount of heat is taken by the irreversible engine from the HTR at T irreversibly and 
dqrev  heat is given out by the engine reversibly to the LTR at T  .  

Then it is possible to show that         irrev revdq dq

T T



.   But,   , .rev irrevdq dq

dS so dS
T T

 


 

Thus for the cyclic integral,  , 0, 0.irrev irrevdq dq
dS but dS hence

T T
       
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Helmholtz Free Energy or Work Function (A) 

 
This thermodynamic property is a derived one and is defined as,  A = U ─ TS 

Since U, T and S are all state functions, so A is also a state function and perfectly differential 
quantity. 
                            U and TS are energy terms so A is also an energy term.  
Further, U = internal energy of the system while TS = unavailable energy for doing useful work. 
So, A = U ─ TS = part of the internal energy of the system which is available for doing useful 

work. 
Let us consider, a system changes its state by an isothermal reversible process. So the change of 
A of the system is,        ∆A = ∆U ─ T∆S,       since,    ∆T = 0 for isothermal process. 
But,        T∆S = Qrev. = ∆U + wmax , as reversible isothermal process produces maximum work. 
Therefore,      ∆A = ∆U – (∆U + wmax.)   or,   ─ ∆A  =  wmax.   -----    rev. isotherm. proc. 
The result signifies that the decrease of work function of a system is equal to the maximum work 
done by the system in reversible isotheral process.  
Thus, A measures the working ability of a system. Greater the value of A, greater amount of  
work the system can do. If a system does work, its value of A decreases. 
            When the process is only reversible isothermal, the system can do maximum work.  
For other processes,         – ∆A ≠ wmax.        and           – ∆A > w.  
That is, there will be same drop of A of the system but work done becomes less. 

We have,                   A = U – TS,     on complete differentiation.   

dA = dU – TdS – SdT.  But, TdS = dU + PdV, when work is considered only mechanical. 
So,                dA = dU – (dU + PdV) – SdT          or,          dA = – SdT – PdV.  
This is also one basic thermodynamic equation and is widely used for formulating different 
thermodynamic relations. 

(1) When the process is reversible and isothermal, dT = 0, the above equation becomes  

      dA = – PdV .     If the ideal gas is used,      P = 
V

nRT
     so,       dA = ─ nRT 

V

dV
. 

      Integrating within limits,    

2

1

2

1 V

dV
nRTdA      or,       A2 – A1 = -nRT ln 

1

2

V

V
. 

Thus,                        ∆A = nRT ln 

1

2

V

V
------------- id.  gas, rev. isotherm. proc.    

 
(2) When the process is isochoric, dV = 0        so,            dA = – SdT   
or, (∂A/∂T)V =  ─ S.  Since, entropy (S) of a system is always a (+)ve quantity,  
so,                                                         (∂A/∂T)V =  (─)ve.  
This implies that work function of a system is always decreased with rise in temperature. 
Further, Sgas > Sliquid > Ssolid, hence we can infer that decrease of A per degree increase of T  
is highest for gaseous substance, lowest for solid and in-between for liquid.  
                             This is also in conformity with our physical experience.  
As T increases, randomness increases, working ability decreases. 
The above basic equation also leads to the fact that for a reversible isochoric isothermal process, 
                                     dA = 0   as    dT = 0     and       dV = 0.          This draws interest 
when a chemical process occurs at constant T and V, ∆A = 0, the process is at equilibrium.  
 
Again, entropy (S) and pressure (P) of a system can be defined from the use of the basic equation. 
                                                 S = ─ (∂A/∂T)V    i.e., entropy (S) of a system is its decrease of A 
per unit increase of T at constant V. 
Likewise, S is defined as,         P = ─ (∂A/∂V)T,    
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                                                                                              Gibbs free energy (G) 
 

      It is also a derived very powerful thermodynamic property. It is defined as, G = H – TS. 
Since H, T and S are all state functions, so G is also a state function and perfectly differential 
quantity. 
                  Again, H and TS are energy terms, so G is also an energy term of the system. 
In the similar way as A, G is also defined as the part of enthalpy (total heat-content) of the system 
that is available for doing useful work by the system. 
             Let us consider a system is undergoing a reversible isothermal and isobaric change  
(viz. reversible phase-change of a substance at constant T and P).  
The change in G of the system,     ∆G = ∆H ─ T∆S.     But H = U + PV so, ∆H = ∆U + P∆V 
since, T and P are constants.  
Thus,                         ∆G = (∆U + P∆V) – T∆S.             Again,           T∆S = ∆U + w. 
 This work may be partly mechanical or partly non-mechanical or fully mechanical or fully  
  non-mechanical. Putting the terms,  
      ∆G = (∆U + P∆V) – (∆U + w) = P∆V – w.      or, –  ∆G = w – P∆V = w non-mechanical. 
                                         – ∆G   =   wnon-mechanical      ---------------     rev. isotherm. isobaric proc. 
This implies that decrease of free energy of a system in reversible isothermal isobaric process is 
equal to the non-mechanical work done by the system. 
When a voltaic cell is full-charged, its G is maximum, but as it gives electrical energy when used, 
its G is decreased and when the cell is totally exhausted, its G becomes minimum. 
When the process is not reversible isothermal and isobaric, there occurs same decrease of G but 
wnon-mech becomes less between the two specified states.  
                                                     i.e.,  – ∆G > wnon-mech. 

 

          By definition,    G = H – TS   =     U + PV – TS     which on complete differentiation, 
                            dG = dU + PdV  + VdP – TdS – SdT .    But,     TdS = dU + PdV .  
              Substituting, we get another basic thermodynamic equation, 
                                                dG = VdP ─ SdT.  
 
So far we have formulated  four basic equations. These are:  
                         (1)      dU = TdS – PdV.                (2)   dH = TdS + VdP.               
                         (3)      dA = – SdT – PdV.            (4)   dG = – SdT + VdP 
 
                                    The basic equation is,     dG = – SdT + VdP,   
so, for a reversible isothermal and isobaric process (reversible phase-change at constant T and P),   
                        ∆G = 0. Thus for ice → water at 0oC and 1 atm pressure, ∆G = 0 and 
                                      Gice = Gwater exists so long transition of ice to water continues. 
 

(1) For reversible isothermal process, dG = VdP.  When n moles of ideal gas is used in the   

       system, 
P

nRT
V  , so   dG = nRT 

P

dP
.   Integrating within limits,    

2

1

2

1 P

dP
nRTdG  

                G2 – G1 =  nRT ln
1

2

P

P
         or,     ∆G = nRT ln

1

2

P

P
 ---- id. gas, rev. isotherm. proc.  

                             This relation can be used to calculate ∆G of a system. 
When  P1 = 1 atm (standard state), G1 = Go (standard free energy of the system), the relation 
becomes, 
                                                G  =  Go + nRT lnP,  
where,                 G is the free energy of the system at pressure P.     
This shows that G varies linearly with lnP. Dividing by n,    (G/n) = (Go/n) + RT lnP 

Definition 

Physical  
significance 

Basic 
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equations 

Calculation 
of ∆G of a 

process 

∆G of a 
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pressure- 
change in 
reversible 
isothermal 
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This (G/n) is the molar free energy and Lewis called it ‘chemical potential’ and is denoted by μ. 
So,                                                            μ = μo + RT lnP, here,  μo = Standard chemical potential 
and it depends only on T of the system.  
More precisely, it should be written as,   μ (T, P) = μo (T) + RT lnP 

The gas flows from higher pressure to lower pressure spontaneously. The above equation 
suggests that the gas will flow from a state of higher chemical potential to a state of lower 
chemical potential and the process will stop when chemical potential becomes equal. 

Like other kinds of potential – electrical, gravitational, magnetic etc., chemical potential (μ) is 
always in the direction from high to low potential. 

(2) For isobaric process,    dP = 0              and so,                  (∂G/∂T)P = – S  = (–)ve. 
This means that with rise of temperature (T), free energy (G) of the system will decrease 
i.e. amount of available energy for doing non-mechanical work will also decrease.    
With similar arguments as in work function, we can conclude that the decrease of G per unit 
increase of T is highest for gaseous substances and lowest for solid substances.   
The volume (V) and entropy (S) of a system are defined as,  
                         V = (∂G/∂P)T            and            S =  – (∂G/∂T)P. 
          These are the definitions of V and S in terms Gibb’s free energy of the system.   
     The relations also states that G will increase with increase of P at constant T and 
                             G will decrease with increase of T at constant P. 
 
Calculate the change in Gibbs free energy for a process carried out from 300 K to 500 K at 
constant pressure. Given, ST = 50 + 12 lnT.                                         [NET—CSIR, UGC]. 
 
The basic equation is, dG  =  – SdT + VdP,       P is constant so,       dP = 0. 
The equation is then   dG = – SdT = – (50 + 12 lnT) dT.  Integrating within limits,      

                                    

2

1

2

1

2

1

ln1250 dTTdTdG .  

or,                     G2 – G1 = –50 (T2 – T1) –12 [( T2 lnT2 –T2) – (T1lnT1 – T1)]  
or,           ∆G = ─ 50 (500-300) – 12 [(500ln 500 – 500) – (300ln300-300)]  = ─24,352 cal. 
 
The temperature of one mole of  N2 gas at 2 atm pressure is raised from 300 K to 400 K. 
Calculate ∆G for the process if entropy of N2 gas is given by S = A + B lnT 
with A = 25 J/K and B = 29 J/K.  (Ans. – 19,494 J)                       [BU’91, Q 10(b), m = 10]  
 
Point out whether for an ideal gas the following are an enthalpy or an entropy effect: 
                 (i) increase of μ with increase of P at constant T 
                (ii) decrease of μ with increase of T at constant P               [BU’97, Q 9(b), m = 4] 

(i) We have  
T

VP
 


 as, V  of a substance is always (+)ve hence  
TP




 = (+)ve.  

     It is definitely an entropy effect as with increase of P, (V ) decreases and entropy decreases  
     due to less randomness of the system, non-mechanical working ability (μ) is increased.  

(ii)  
P

ST
  


 = (–)ve, it is obviously an entropy effect.  

 
 
 
 
 
 
 

Chemical 
potential of 

a pure 
substance 

 

Free energy 
and 

temperature 

Definition of V 
and S in terms 
of free energy 

 

Problem 
(1) 

  Solution 

Problem 
(2) 

Problem 
(3) 

  Answer: 



 

PRINCIPLES OF THERMODYNAMICS ─  N C DEY 56 

                                                                                         Gibbs-Helmholtz equations 
 
                   We have by definition, G = H – TS, and – S = (∂G/∂T)P,   so eliminating S,    
we get,                                         G = H +T(∂G/∂T)P ---------(1).    
By similar way, we may get,        A = U + T (∂A/∂T)V ------ (2). 
These two equations are called Gibbs Helmholtz equations and applied to a given state of the 
system. 
However, equation (1) can be written in the following form also. 

  – H = – G + T
PT

G












,        dividing by T2,     

TT

G

T

H 1
22
  

PT

G












= 

P
T

G

T 



















. 

Or,     H = – T2 
P

T

G

T 



















.    Again, H = 

 
 

PT
T

T
G



















2

   or,    H = 
 
 

PT

T
G



















1
----- (3). 

              Since, H is a state function, so RHS of the equation is also a state function. 
                 These relations are used for a pure substance or system in a given state. 
 
      Now let us consider, the system undergoes a change of isothermal isobaric process, and for 
that,          ∆G = ∆H – T ∆S,     but,    – S1 = (∂G1/∂T)P      and      – S2 = (∂G2 /∂T)P,  
         where, S1 and S2 are the entropies of the system in the initial and final states,  
                                   G1 and G2 are their corresponding free energies. 

So,            ─ (S2 – S1) = 
 

PT

GG











 12     or,     ─ ∆S = 
 

PT

G












.  

Replacing ∆S,     

                               ∆G = ∆H + T
 

PT

G












--------- isotherm. isobar. proc.            (4) 

This equation is very important and it is specially called Gibbs Helmholtz equation. 
Rearranging, we can get,  

     
 

P
T

T
G

T

H























2
               and               ∆H = 

 
 

PT

T
G



















1
. -----------------(5) 

Similar equations with ∆A and ∆U can be formulated in the similar way:    
 

– ∆S = 
 

VT

A












,  ∆A = ∆U + T

 

V

A

T

  
 

 
, 

 

V
T

T
A

T

U























2
and  ∆U =

 
 

VT

T
A



















1
. 

 
                                    These equations are useful to calculate ∆G at a given temperature if it is 

known at other temperature. 
If ∆H is assumed to be independent of T, then the plot of (∆G/T) vs.(1/T) gives a straight line 

with slope of ∆H. 
∆G,  ∆S  and  ∆H of a reaction can be calculated from the measurement of potential of galvanic 

cell by the use of the above relations. If n gm equivalent chemical change occurs in the galvanic 
cell of potential Ecell, then the electrical energy produced from the cell is nFE, where F is one 
faraday (96,500 C /mol.). The above thermodynamic properties of the cell reaction can be 
calculated by using the following relations. 

 ∆G = ─ nFEcell,      ∆S = ─
 

PT

G












= nF 

P

cell

T

E












   and     ∆H= nF 





















cell

P

cell E
T

E
T . 
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Calculate ∆G per mole for freezing of super cooled water at – 5oC, given latent heat of fusion 
of ice = 1440 cal mol-1. 

We have, 
 

P
T

T
G

T

H























2
or, d 

PT

G







 
= dT

T

H
2


 . Integrating within limits and 

assuming ∆H independent of T,  






 
2

1
2

2

1 T

dT
H

T

G
d  or, 















121

1

2

2 11

TT
H

T

G

T

G
.  

At 0oC (273 K), the process is reversible phase change at constant T and P,     so,   ∆G1 = 0. 

Therefore,            











273

11

22

2

T
H

T

G
 or, 












273

1

268

1
1440

268
2G

, 

                             since latent heat for freezing of water = ─ 1440 cal mol-1. 

Thus,       ∆G2 = ─1440 × 268 × 
273268

5


 cal mol-1,  Or, ∆G2  = ─ 26.37 cal mol-1. 

 
For a certain reaction, ∆G = ─ a + bT lnT where a and b are constants.  
Express ∆H as function of T.                                                          [Brilliant Tutorials]  

From the relation, we have, ln ,
G a

b T
T T


    so 

 
2

P

G
HT

T T

     
 
  

. 

Or, 2 2 2
ln

H a a b a bT
b T

T T T T T T

   
       

  
. Comparing we get, ─∆H = a + bT. 

 
Calculate ∆G for the formation of H2O( l ) from its elements at 25oC, ∆Hf = ─ 286 kJ. 
Entropies of H2(g), O2(g) and H2O( l ) are respectively 130.6, 205.0 and 70.3 J K-1mol-1. 
                                                                                                              [Brilliant Tutorials]      
The reaction for the formation of water is, H2(g) + ½ O2(g) = H2O(l); 

∆S = ∑ i iS  = ─ 130.6 ─ ½ × 205.0 + 70.3 = ─ 162.8 J K-1. 

But ∆G = ∆H ─ T∆S = ─286 kJ ─ 298 K × (─ 162.8 × 10-3 kJ K-1) = ─ 237.5 kJ. 
 
For a certain reaction, ∆G (in cal/mole) = 13,580 + 16.1 T logT – 72.59 T. 
Find ∆S and ∆H of the reaction at 27oC.                                        [CU’ 87, Q 6(c), m = 4] 
 
Given, ∆G = 13,580 + (16.1/2.303) T lnT – 72.59 T  =   13,580 + 6.99 T lnT – 72.59 T. 

At 27oC,       ∆S =
 

P

G

T

  
  

 
= – [0 + 6.99 + 6.99 lnT – 72.59] = 25.82 cal K-1 mol-1. 

                     ∆G = 13,580 + 16.1 ×300 log300 – 72.59×300 = 3,763.83 cal mol-1.  
                     ∆H = ∆G + T ∆S = 3,767.5 + 300 × 25.73 = 11,509.88 cal mol-1 

 

The free energy change, ∆G accompanying a given process is – 20.5 Kcal mol-1 at 25oC, while at 
35oC it is – 20 Kcal mol-1 at constant pressure. Calculate the approximate entropy change, ∆S and 

the change in heat content, ∆H for the process a 30oC. [CU’88] 

  2 1

2 1P

G G G
S

T T T

     
       

   
= 

20.0 20.5

10

  
  
 

= - 0.05 KcalK-1mol-1.  

At 30oC,                ∆G = ─ 20.25 Kcal mol-1.        Again,         ∆H = ∆G + T∆S .  
Putting the values, we get,           ∆H = ─20.25 + 303 × (─ 0.05) = ─35.40 Kcal mol-1.    
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  Maxwell’s relationships 
 
We have four basic equations which are the basis of formulation of the Maxwell’s relations. 

These are: 
                                 (1) dU = TdS – PdV,         (2) dH = TdS + VdP, 
                                 (3) dA = – SdT – PdV,      (4)  dG = – SdT + VdP, 
     
Each basic equation will produce one relation. Let us formulate one such relation from 
the  basic equation (1),                     dU = TdS – PdV 
This gives (∂U/∂S)V = T. Differentiating again with respect to V at constant S, 

                                                       
SV

T

SV

U
















 2

-------- (A).  

Again from the basic equation, we can write, (∂U/∂V)S = – P. Differentiating with respect to S at 

constant V, we have                        
VS

P

VS

U
















 2

-----  (B) 

 Since U is a state function and so it obeys Euler’s reciprocal relation,  




SV

U2

VS

U



 2

.    

Equating, we get the relation,                 
VS S

P
V

T





                                                                                                                                                                      

By similar procedure, we can formulate other relations ─ one from each basic equation.  
These are given here: 

                                          (1) dU = TdS – PdV,                      
VS S

P
V

T





 . 

                                          (2) dH = –TdS + VdP,                    
PS S

V
P

T





 . 

                 (3) dA = – SdT – PdV                   
TS V

S
T

P





 .              

                   (4) dG = – SdT + VdP,                
TP P

S
T

V





 . 

 
These relations are obtained from the mathematical theorem, dz = M dx + N dy  

             and z, M and N are all functions of x and y, then   
yx

x
N

y
M












 .  

A short-cut way to bring out the relations is given as: 
If S and P are in quotient, then put (–)ve sign in the term. 
These relations do not refer to a process but express relations 
which hold at equilibrium state of a system. These relations  
are very useful as it provides relationships between measurable  
quantities (LHS) with immeasurable quantities (RHS). 
 
Formulation of thermodynamic equations of state 
 
(1) We have basic equation, dU = TdS – PdV. Dividing by dV at constant T, we have  

             P
V

S
T

V

U

TT


























. But Maxwell’s relation is    

TS V
S

T
P





 .    

      Substituting, we get the relation,         P
T

P
T

V

U

VT


























.  

                                 This is one thermodynamic equation of state. 
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 (2) Another basic equation is dH = TdS + VdP.   Dividing by dP at constant T  

       and using Maxwell’s relation, we have V
P

S
T

P

H

TT


























.  

       But Maxwell’s relation is      
TP P

S
T

V





 . Using the relation, we get, 

                                                V
T

V
T

P

H

PT


























. 

                             This is another thermodynamic equation of state. 
 

If we calculate (∂U/∂V)T for ideal gas using the above equation, then we find (∂U/∂V)T = 0 
and for vander Waals gas,                     (∂U/∂V)T = an2/V2. 
This predicts that U = f (T) only and independent of V for ideal gas  
but,                       U = f (T,V) for vander Waals gas and U is a function of T and V. 

Again,                 0












TP

H
 for ideal gas so, H = f (T) only.  

But for vander Waal’s gas,         
22

32

TR

abP

RT

a
b

P

H

T













     

                           and so H = f (T,P),  that is H is a function of T and P. 
 
Show that the total differential of entropy in terms of temperature and volume can be  

expressed by the equation,       dVdT
T

C
dS V




 .              [Civil Service Exam, 01] 

 S = f (T,V)       so,         dV
V

S
dT

T

S
dS

TV


























 .  

 But Maxwell’s relation is 

T V

S P

V T





    
    

    
 . And the basic equation is dU = TdS – PdV.  

 
    Taking for one mole ideal gas,  dU = CVdT,  the equation becomes  CV dT = T dS – P dV  

or, 
T

C

T

S V

V













. Putting these expressions, we get,  dVdT

T

C
dS V




 .  (Shown) 

By integration of   PV
A

T



 , Derive an expression for work function (A) of vander Waals 

gas (include integration constant). 

For 1 mole vander Waals gas, 
2V

a

bV

RT
P 


 .    So,         




2V

dV
a

bV

dV
RTdA  

Rearranging and integrating we get,         A = ─RT ln(V ─ b) + (a/V) + IC 
 

Find the value of  
TV

S


 for vander Waals gas. 

 Maxwell relation gives,    
VT T

P
V

S





 . For 1 mole vander Waals gas,
2V

a

bV

RT
P 


 .  

So,            
VT T

P
V

S





 = 0
 bV

R
.       Therefore,        

TV
S


 = 
bV

R


. 

 
Derive an expression for the change in entropy for the isothermal expansion of 1 mole vander 
Waals gas from V1 to V2. 

U and H are 
functions of 
T only for 
ideal gas 

Problem 
(1) 

Answer: 

Answer: 

Problem 
(3) 

Answer: 

Problem 
(4) 

Problem 
(2) 
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       The expression for the entropy change in isothermal expansion is  
TV

S


 . 

In the problem (3), we have already deduced,  
TV

S


 = 
bV

R


,   so      dS  =  R

bV

dV


. 

Integrating within limits,  


2

1

2

1 bV

dV
RdS   or,  

2

1
2 1 ln

V

V
S S V b       or,  ∆S = R ln 

bV

bV





1

2 . 

This is the expression of entropy change in isothermal expansion of 1 mole vander Waals gas 
from V1 to V2. 
 

Derive expressions for  
TV

S


 and  
VT

S


 and show that they are always (+)ve.  

What do the results signify?                                                     [BU’90, Q 9(b), m = 4+1] 

From Maxwell’s relation, we get,                          
VT T

P
V

S





 = (+)ve.  

                           Thus P increases with rise of T always at constant V. 
 
Again,                                dU = TdS – PdV    or,   CV dT  = TdS – PdV    

or,                      
VT

S


 =  T
CV  = (+)ve always, as CV and T both are (+)ve quantity.                                             

The results signify that isothermal expansion of a gas always leads to increase of entropy and 
isochoric increase of temperature also results in increase of entropy. 
 

Justify /criticize the following 
 
 

PT

T
G



















1
is a state function.         [BU’93, Q 7(c) m = 3] 

The above term is equal to H and H is a state function so the term is also a state function. 
 
An adiabatic transformation is always an isoentropic. Justify / criticize. 
                                                                                                         [BU’94, Q 12(c) m = 4]              
The statement is wrong. Only reversible adiabatic process is isentropic (∆S = 0),  
but irreversible adiabatic process leads to increase of entropy (∆S > 0) so it is not isentropic.  
(See the Text, page        ). 
 

An ideal gas is expanded under the condition PV  = constant. Will the entropy of the system 
increase, decrease or remain the same? Justify tour answer. 
                                                                                                               [CU’94, Q 4(a), m=2] 
The relation is valid only for reversible adiabatic process for which ∆S = 0. 
                                         So, the entropy will remain same. 
 
The maximum useful work obtained in a process is given by the relation 
(A) ∆H – T∆S        (B) ∆U – T∆S         (C) ∆H + T∆S      (D) ∆U + T∆S  [CSIR-UGC NET] 
Ans. (B).  
 
Amongst the quantities qrev,  w,  qrev / T and qrev – w,  the state functions are  
(A) qrev /T , qrev – w     (B) qrev,  qrev – w       (C) qrev, , qrev /T     (D) qrev /T , w. [CSIR-UGC NET]   
Ans.  (A).   
 
 
 
 
 
 

Answer: 

Problem 
(5) 

 Answer: 

Problem 
(6) 

Solution 

Problem: 
(7) 

Answer: 

       
Problem 

(8) 

Answer: 

Problem 
(9) 

Problem 
(9) 
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                 Thermodynamic criteria for a spontaneous and equilibrium process. 
 
                                           Thermodynamic principles provide conditions for physico-chemical 
equilibrium and spontaneous processes. Various properties like U, H, S, A and G can be chosen 
for stipulating these conditions. The condition for reversible process is also a necessary and 
sufficient condition for equilibrium. In fact, a reversible process consists of a very large number 
of equilibrium stages. 

A spontaneous process is one which takes place of its own accord; it is an irreversible process 
which ends towards an ultimate state of equilibrium. 

 
Let us take a system in which an infinitesimal irreversible process is taking place and the system 
is kept in contact with a reservoir at temperature T. The quantity q* (small heat change) is 
exchanged with the reservoir. Since the process is irreversible, the entropy-change (dS) for the 
system must be greater than q*/T           i.e.,            dS   q*/T (Clausius inequality)  

or,                          T dS    q*                  or,                  TdS – q*   0. 
                      If the system does only pressure-volume work then q* = dU + PdV. 
Hence,            the Clausius inequality can be expressed as,     TdS – dU – PdV > 0 

This inequality is always applicable if the process is spontaneous (which is irreversible) and 
work is only mechanical. But when the process is under equilibrium, which is thermodynamically 
reversible, the inequality sign is replaced by equality sign and the above relation becomes 
                                                    T dS – dU – P dV = 0. 
              When both the stages of a system are considered simultaneously, we may write                                                       
                                                       T dS – dU – P dV  ≥ 0 
                                                                                                                                                 
Now if volume and entropy of the system is kept constant when the process occurs within it,    
                                                                 (dU)S,V ≤ 0.   
 
Thus, for spontaneity of a process occurring at constant S and U, the internal energy decreases 
and at equilibrium, U attains minimum (dU = 0).  
                               This is the familiar condition for a conservative mechanical system that stable 
state is one of lowest internal energy. 
 
The Clausius inequality is         T dS – dU – P dV  ≥ 0        or,            dU  + P dV – T dS  ≤ 0 
or,                                          d (U + PV)S, P ≤ 0      or,      dH S, P ≤ 0.  
                            The significance is same as that is used in case of dUS,V  ≤ 0. 

If volume and internal energy of the system remain constant during the process 
                                           (the system is isolated as q = dU + PdV = 0), 
                                                             Or, (dS)U,V  ≥ 0.   
 
For the spontaneous process, entropy of the isolated system (in which the process is occurring) is 
increasing (dS > 0). When the process in the system attains equilibrium, entropy becomes 
maximum (dS  = 0).  
However, if the system is not isolated (i.e U and V do not remain fixed), the entropy-change 
of the surrounding must also be taken into account. The condition then becomes 
                                                                       dSuniv ≥ 0. 

If T and V are kept constant during the process occurring in the system, the above starting 
relation becomes,         d(TS – U)T, V ≥ 0      or,     d(U – TS)T, V ≤ 0        

or,                                                             (dA)T, V  ≤ 0 

 
For a spontaneous process, A of the system decreases and attains minimum at equilibrium. 

Rev. process is an 
equilibrium 

process 
 

Irrev.  process is 
a spontaneous 

process 
 

Clausius 
inequality  
 

Single equation 
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condition of 
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process 
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                                                           When a process occurs in a system at constant T and P  
(most  physico-chemical changes happen under this condition), the criteria of spontaneity and 
equilibrium is expressed in terms of free energy (G) of the system. 
     We have the general condition,   TdS – dU – PdV  ≥ 0   or,    dU  + PdV – TdS  ≤ 0  
or,                          d(U + PV – TS)T, P  ≤ 0        or,      d(H – TS)T, P  ≤ 0      
or,                                                                  dGT, P ≤ 0    
This states that for a spontaneous process occurring at constant T and P, free energy (G) of the 
system decreases and attains minimum when the process reaches equilibrium. 
 
     Each condition stated above represents the mathematical form of 2nd law of thermodynamics 
since they state the feasibility, direction and extent of a process. 
     The above relations are deduced for small changes, hence for finite or macroscopic changes,  
d is replaced by ∆. These relations are thus, 
                ∆US, V ≤ 0,         ∆HS, P ≤ 0,         ∆SU, V ≥ 0,       ∆AT, V ≤ 0,      and      ∆GT, P ≤ 0. 
It is interesting to note that the thermodynamic properties of the system are increasing in a 
spontaneous process then attaining maximum at equilibrium or decreasing to attain minimum 
value.   
               However, the condition of spontaneity of a process does not say anything about the rate 
of occurring the process. 

This condition is deduced as, ∆GT, P ≤ 0.  This can be obtained alternatively as follows: 
                       G = H – TS or, dG   =   dH – T dS at constant T.        
But,                 PdH q  at constant P           so,          dG   = q  – TdS  = revq q  

Now two possibilities may be considered.  
                             When the process is at equilibrium,  revq q  and     dG = 0.  

But when the process is spontaneous,   irrevq q    and                  dG = irrev revq q  

But,     rev irrevq q    for the same change of state of the system.       Thus,        dG < 0. 

Thus,                           for finite reversible process,    ∆GT, P = 0,   
The initial state and final state exist at equilibrium with each other with no net change of G. 
And for finite irreversible  (spontaneous) process,      ∆GT, P  < 0   i.e.,    G is decreasing .   
When stated jointly,                               ∆GT, P ≤ 0.       
The inequality sign refers for spontaneous change and equality sign for equilibrium. 
This condition is most useful since the most chemical reactions occur at constant T and P. 

                                     The free energy criteria for spontaneous change and equilm. are more 
useful than the entropy criteria. Let us remember these criteria, ∆SU, V ≥ 0 and ∆GT, P ≤ 0. It is 
difficult to keep the internal energy (U) of a system constant, whereas the temperature and 
pressure can easily be kept constant. Hence is the greater utility of the criteria in terms of G.  
Another point is that for a system at constant U and V   is an isolated system.  
But for other system, the entropy criterion is (∆Ssyst. + ∆Ssurr.) ≥ 0. So to use the entropy criteria, 
we must make measurements not only of the system but also of the surroundings.  
            But the latter measurement is not so easy. Hence the entropy criterion is not quite useful. 
                For free energy criteria, only ∆G of the system is to be measured at constant T and P.    
 
The 2nd law states that the entropy of universe (system + surrounding) increases in a 
spontaneous process, (∆Ssystem + ∆Ssurrounding ) ≥ 0. Give arguments that at constant T and P, 
∆Ssurr. is related to the system enthalpy-change by  ∆Ssurr. = ─ ∆Hsyst./ T.  
Hence come to the conclusion that ─ ∆GT, P  ≥ 0 for spontaneous process. [BU’97, Q9(c), m=5].                                                                      
For heat-change at constant T and P between system and surrounding is    ∆Hsyst. + ∆Hsurr. = 0   
or,                      ∆Hsyst + T ∆Ssurr. = 0          or,             ∆Ssurr.  =  ─ ∆Hsyst / T. 
Again,                (∆Ssyst. + ∆Ssurr. ) ≥ 0       or,     ( ∆Ssyst ─ ∆Hsyst / T ) ≥ 0    
or,                   ─ (∆Hsyst – T ∆Ssyst) ≥ 0               or,              ─ ∆GT, P  ≥ 0. at constant T and P. 
                                              

Criteria 
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Evaluation of ∆G of a process: 

              ∆G of a system in a process is evaluated by the relation, ∆G  = ∆H – T ∆S,    

T and P constancy are omitted due to simplicity of the term, ∆G. But T and P constant terms 

are implied.                         
∆H is evaluated by the use of bond energies of the products and reactants or calorimetric 
estimation or use of Van’t Hoff equation or emf measurement of cell in which the reaction 
occurs.  
∆S is calculated from the third law of thermodynamics or by emf measurement of cell. 

We have, ∆G  = ∆ H – T ∆S,  when ∆G < 0, the process occurs spontaneously. 
Thus, (1) When  ∆H of the process = (─)ve and ∆S = (+)ve, ∆G  0 always. 
                 The reactions of this type occurs spontaneously always.  
          (2) When ∆H = (─)ve but ∆S = (─)ve, i.e. exothermic reaction with decrease of   
                randomness. ∆G   0 only when | ∆H |   | T ∆S | .This type of reactions favors  

                at low T. For example,    2H2(g) + O2(g) = 2 H2O( l ).                                           
          (3) When  ∆H = (+)ve and   ∆S = (+)ve, i.e. endothermic with increase of 
                randomness due to the reactions.   ∆G   0 only when | ∆H |   | T ∆S |. This  
                type of reactions favors at high T. The thermal dissociation of the gaseous  
                substances is this type of reaction, PCl5(g) = PCl3(g) + Cl2(g). 
          (4) When ∆H = (+)ve and ∆S = (–)ve, ∆G   0 always, so endothermic reactions 
                with decrease of randomness will never happen.  

 
(A) Feasibility of the process,   A + A = A2 (dimerisation) with ∆H = 0. 

∆G = ∆H –T∆S, but ∆H = 0 and ∆S = (–)ve, since two molecules unite to give one  
molecule, randomness decreases. Thus, ∆G   0 always and the reaction is not feasible. 

 
(B) Spontaneous vaporization of water at constant T and 1 atm pressure. 

For spontaneous vaporization of any liquid at constant T and P, the condition is ∆G  0  
and at equilibrium,  ∆G = 0.  Since, ∆G = ∆H –T∆S, so for ∆G ≤ 0, the condition is  
∆H – T∆S  ≤ 0 or, T ≥ ∆H /∆S 
For vaporization of water, ∆H = 18 × 540 cal mol-1 and ∆S = 26 cal mol-1K-1.  
Putting the values, T ≥ (18 × 540 /180) K or, T ≥ 373.16 K or, T ≥ 100oC. 
The condition implies that so long T remains 373.16 K (100oC), the liquid water and  
vapor remains equilibrium but when T exceeds 373.16 K vaporization starts  
spontaneously. Calculation is made when P = 1 atm. That is when water is heated above  
its boiling point, it vaporizes spontaneously. 
 
(C) Feasibility study of the reaction, C(s) + H2O(g) + CO(g) + H2(g) at 100oC  
and 1000oC .  (Given, ∆H = 31,400 cal and ∆S = 32 cal mol-1) 

Let us study the feasibility of the reaction at 100oC (=373 K). We have, ∆G = ∆H –T∆S. 
So,   ∆G = 31,400 – 373 × 32 cal = + 19,464 cal. The reaction does not occur at 100oC. 
At 1000oC (=1273 K), ∆G = 31,400 – 1273 × 32 cal = – 9,336 cal.  
                                 The reaction is feasible at 1000oC.  
 
It is to be noted that both at 100oC and 1000oC, same values of ∆H and ∆S are inserted in the 
calculation of ∆G, though they vary with T. But variation of ∆G with T is very high in 
comparison to that of ∆H and ∆S with T. This is why, for approximate computation of ∆G, 
the values of ∆H and ∆S are taken independent of T. So, ∆H and ∆S of the reaction are 
determined at any convenient T and are used in calculation of ∆G at the required T  
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(D) Study of the reaction:       NH3(g) + HCl(g)   
Tlow

Thigh
      NH4Cl(s).  

Forward reaction is exothermic, ∆H = (–)ve, as bonds are formed. Again when the  
reaction proceeds. ∆S = (–)ve, two gaseous molecules unite to give one solid molecule 
of  NH4Cl. Randomness decreases. Thus for ∆G   0, we need  | ∆H |   | T ∆S |. 
                                          The reaction is favored at low T.  
Again, backward reaction is endothermic, as heat is required to break the bond of NH4Cl, 
∆H = (+)ve  and  ∆S = (+)ve, as randomness increases.  
                      Thus, for ∆G   0, | ∆H |   | T ∆S |. The reaction favors at high T.   
 
Give qualitative arguments to explain the fact that for the reaction, N2(g)  2N(g), 
∆Go at very low T is positive while its value is negative at very high T.   [BU’92, m = 4]. 
 
For the reaction, ∆Ho = (+)ve, endothermic, heat is required to break the bond of H2(g).   
∆So = (+)ve, randomness increases as one molecule is dissociating into two atoms. 
Thus, ∆Go = ∆Ho ─ T∆So, at low T, ∆Ho   T∆So and ∆Go is positive.  

                             But at high T, T∆So   ∆Ho and ∆Go is  negative. 
 
At 27oC and 1 atm pressure, will the vaporization of liquid water be spontaneous?  
                       (Given, ∆H = 9,710 cal mol-1 and ∆S = 26 cal mol-1 K-1) 
 
                      ∆G = ∆H ─ T∆S = (9,710 – 300 × 26) cal mol-1 = 1910 cal mol-1.  
Since ∆G > 0 at 27oC and 1 atm pressure, the vaporization of liquid water is not spontaneous. 
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                                                                              Changes of phase of a pure substance 
 
The phase-changes of a pure substance such as sublimation, melting, vaporization etc. are called 
first order phase transition. These transitions are associated with an abrupt change of first order 

derivative of free energy. Though G changes continuously but  
TP

G


  and  
PT

G


 will 

change discontinuously at the point of transition when plotted against T.  

The basic equation is dG SdT VdP     so,  
T

G
P




 = V  and  
P

G
T




 S . 

Three criteria of the first-order phase transition, phase α → phase β are given as: 
 

                 (i)G G                 (ii) 0V V            and           (iii) 0S S   .  

The difference of  V   and  V   or, S  and S   are very large.  

These criteria are shown by the following diagram of vaporization of water at its boiling point. 
 
                                                                      

  
 
On the other hand, there are some cases of transitions where second order derivative of free 
energy of the substance changes abruptly. For example, change of ferromagnetic material to 
paramagnetic material at the Curie point, liquid He II to liquid I at the λ-point etc. 
 
Clapeyron Equation (effect of P on the transition temperature): 
 
                                                            If two phases of a pure substance are in equilibrium with 
each other, they have same molar free energy at that T and P. when P is changed at constant T, or 
T is changed at constant P, one of the phases will disappear. But if T and P are both changed in 
such a way as to keep the two molar free energies (chemical potentials) equal to each other, the 
two phases will continue to co-exist and  
remain equilibrium. 
                                                      Thus for two phases α and β of the substance at equilibrium, we 

have G G  . If T and P are changed so that equilibrium is maintained, then, dG dG  .  

But,      dG  = V dP ─ S dT                   hence,            V dP ─ S dT  = V dP ─ S dT.   

Or,                                           
S SdP S

dT V V V V
 

   

 
 

 
 

But for the phase-change at constant T and P,       S  = T
H , 

                                     where, H  = molar latent heat transition or molar enthalpy of transition.  

Therefore,                           
dT

dP
 = 

 
H

T V V 




.  This is called Clapeyron equation. 

However molar properties can be replaced and then Clapeyron equation becomes 

First-order 
   phase 
transition: 
 

Derivation 
of the 

equation. 
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dT

dP
 = 



















)(  VVT

H
. 

 
 

From Maxwell’s relation, we get             
TV V

S
T

P





 . 

When two phases are in equilibrium (say, liquid and vapor), the vapor pressure is independent of 

the mass and hence volume. So,                   
dT

dP
T

P
V



  .  

Again, if we consider latent heat of transition, L as nearly constant, independent of T, then 

                                     
 T

dS LS
V dV T V V 

  
 

.  

Therefore the Clapeyron equation is      
dT

dP
 = 



















)(  VVT

H
 

      Sign of 
dT

dP
 depends on the sign of L and (Vβ ─ Vα) 

(1) For vaporization of liquid, L = (+)ve and (Vβ ─ Vα) = (Vg – Vl) = (+)ve,  

      hence 
dT

dP
 = (+)ve. This signifies that the vapor pressure of a liquid increases with      

      temperature. It also states that the boiling point of a liquid increases with increase  
      of pressure. 
(2) For melting of paraffin or any solid except ice, L = (+)ve and (Vl – Vs) = (+)ve, 

     hence 
dT

dP
 = (+)ve so melting point of paraffin increases with increase of pressure. 

(3) For melting of ice, L = (+)ve and (Vl – Vs) = (─)ve, since Vice  > Vwater.   

      This indicates that 
dT

dP
 = (─)ve,  indicating that melting point of ice decreases with 

       increase of pressure 
.  
Clausius Clapeyron equation: 
                                                    Clausius simplified the relation for sublimation and vaporization 
processes by assuming that vapor obeys perfect gas equation and neglecting the molar volume of 
the liquid or solid in comparison to that of the vapor.  For the process of vaporization, the 

Clapeyron equation is      
dT

dP
 =

( )
V

g l

L

T V V

 
 
  

. 

 Since gV   lV , hence  
dT

dP
= V

g

L

TV
 = 

2
VL P

RT


. Separating the variables and integrating,  

we get,            
2

VLdP dT

P R T
  .         Or  ln P = 

1
.VL

R T
   + C (IC).   

                           When integrated within limits, we get,   2 2 1

1 1 2

ln VLP T T

P R TT

 
  

 
.  

                    This is Clausius-Clapeyron equation or simply called Clausius equation.  

                                              VL  is assumed to be independent of T. 
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Using this relation, it is possible to calculate the latent heat of vaporization or latent heat of 
sublimation from the vapor pressure at two temperatures.  

However if VL  of the process is known, vapor pressure at a given temperature can also be 

calculated if that at other temperature is known. 

Trouton’s rule:  From the relation,         ln P = 
1

.VL

R T
   + C,  

we can put P = 1 atm,  when T = Tb (normal boiling point). Thus, 0 = 
1

.V

b

L

R T
  + C 

 or,                  
b

V

T

L
 RC  = constant  ≈ 21 (Approx.) for non-associated simple liquids. 

Trouton made an important generalization from experimental observation that the ratio of molar 
heat of vaporization to the normal boiling point is constant for simple and non-associated liquids 
and the constant is about 21 cal mol-1K-1. 
The rule also states that molar entropy-change of vaporization at normal boiling point is same and 
is about 21 cal mol-1K-1. 

That is,                   BPnormalatvapS .  ≈ 21 for all simple and non-associated liquids. 

This consistency of entropy of vaporization from liquids to vapor is readily understood from 
Boltzmann hypothesis relating entropy to disorder. The change from liquid to vapor leads to 
increased disorder. The entropy of vaporization is zero at the critical temperature because liquids 
behave alike not only at their TC but also equal fraction of their TC. Hence different liquids should 
have same entropy of vaporization at their boiling point provided there is no association or 
dissociation upon vaporization. 
 
The vapor pressure of water is 23.75 torr at 25oC and 760 torr at 100o

 C.  
What will be the heat of vaporization?                                [Civil Service Exam. 2003] 

Clausius Clapeyron equation is,    
1

2ln
P

P
 








 

21

12

TT

TT

R

LV  

or, 
75.23

760
ln  













298373

298373

2
VL

 , or VL  = 12 373 298 760
ln 10,272.8

75 23.75
cal mol

 
 . 

 
Calculate the boiling point of water at a pressure of 75 cm of Hg, given that latent heat of 
vaporization is 540 cal mol-1. 
We know that boiling point of water is 100oC when the pressure is 76 cm of Hg.  

Putting the values in the Clausius equation, we have,      
75

76
ln  












373

11

2

54018

T
 

Solving the equation, we get the BP of water is 372.63 K = 99.63oC at 75 cm of Hg 
 
If the rate of change of vapor pressure of water with respect to T is 2.7 cm of Hg per degree 
around 100oC, Calculate the molar volume of liquid water (given specific volume of water vapor 
= 1674 cc gm-1). Calculate also the boiling point of water at a pressure of 75 cm of Hg.   
                                                                                                                   [ BU’91, Q 7(b) m = 6+3] 

Given, 
dT

dP
 = 2.7 cm of Hg per degree around 100oC. Putting the values in the Clapeyron 

equation, 
dT

dP
 = 

)( lg

V

vvT

l


  or,   2.7 ×13.6×980 dyne cm-2 K-1 = 

)1674(373

1018.4536
11

17

lvgmccK

gmerg








. 

      Calculation gives lv   = 5 cc/gm. So molar volume of liquid water = 5 ×18 = 90 cc/mole. 

Problem (1) 

Solution 

Problem (2) 

Solution 

Problem (3) 

Solution:  

Utility of 
the 

equation 

Reason in 
support of 

the rule 
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2nd part:                 given, 
dT

dP  = 2.7 cm of Hg per degree around 100oC  

or,           2 1

2 1

P P

T T




= 2.7 cm of Hg/oC, Putting the values, 

1

76 75
2.7

100 t





  or,   t1 = 99.63oC 

Derive Clapeyron equation and show that it can be represented by the equation,  

P = P* }]
*

11
){/exp[(

TT
RH vap  . For liquid – vapor boundary assuming ideal gas behavior 

and making certain approximation.         [ Civil service Exam, 2001] 

Derive Clausius equation, }
*

11
{

*
ln

TTR

H

P

P vap



 and get the required form. 

 
At the normal melting point of NaCl  801oC, its enthalpy of fusion is 28.8 kJmol-1. the density of 
solid is 2.165 gm cm-3 and that of the liquid is 1.733 gm cm-3. What is the increase of pressure 
needed to raise the melting point by 1.00 oC.         
                                                                                      [IISc, Bangalore, adm. test for Int. Ph. D.] 
The process is melting,      NaCl (s)   →   NaCl ( l ). 
In the Clapeyron equation, dT = 1.00K,   T =  273+801=1074K, ∆Hm = 28.8 kJ mol-1 . dP = ? 

dP = dT  × 
 

m

l s

H

T V V




  = 1 K ×

1 10 1

1

28.8 10
1 1

1074 58.5
1.733 2.165

kJ mol erg kJ

K cc mol

 





 
  

 

  

                                        = 3.98 ×107 dyne cm-2   = 
9816.1376

1098.3 7



  atm. 

 
Average value of enthalpy of vaporization (kJ / mole) of water between 363K and 373K  
                       is  (a)  42.50    (b) 40.80        (c) ─ 40.65      (d) – 40.80. 
Given vapor pressure of water at 363K & 373K are 529 Torr & 760 Torr. 
The correct answer is (b). Use Clausius equation to get the answer.  
  
At 373.6 K and 372.6 K, vapor pressure of water is 1.018 and 0.982 atm respectively.  
Calculate the molar entropy of vaporization and ∆V, the change of volume per mole when 
 liquid water vaporizes at 373 K. Assume that the vapor behaves ideally. 
                                                                                                              [B U, 1994 & 1996] 
Clausius equation (assuming vapor behaving ideally) is  

       
1

2ln
P

P
2 1

1 2

VL T T

R TT

 
 
 

. Putting the values given,
1.018 1

ln
0.982 2 373.6 372.6

VL  
  

 
  

 or,  VL  = 10,023.7 cal mol-1 ,    S   =   T
LV  =   373

7.023,10  = 26.87 cal K-1mol-1. 

Now the Clapeyron equation is 
V

S

T

P









  or, 

V

molKcal

K

atm




  1187.26

1

)982.0018.1(
  

 or,                       V = 1

987.1

082.0

036.0

87.26  mollit   = 30.8 lit mol-1 . 

 
“The Clausius-Clapeyron equation is a special case of the van’t Hoff  
  equation for liquid-vapor equilibrium.” ─ Justify or criticize.  (2). 

The van’t Hoff equation is, 2

ln Pd K H

dT RT


 , where ∆H is the enthalpy of the reaction and KP is 

the equilibrium constant of the reaction. 
 

Problem  
    (4) 

 Answer :  

 Solution :  

Problem 
    (5) 

Problem (6)  

Solution :  

Solution :  

Problem (7) 

BU’2008, 
Q 1(g) 

   Answer:  
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But for the liquid-vapor equilibrium, the Clausius-Clapeyron equation is given by, 

2

lnd P H

dT RT


 , here P is the equilibrium pressure and ∆H is also the enthalpy of  

vaporization. Thus the statement is correct. 
 
With increase of pressure, the melting temperature of paraffin increases but that of 
 ice decreases. ─ Explain. (2).         Answer: See the Text, page 63.   
 
Deduce thermodynamically the first order phase transition. Give illustrations.  

Establish the relation
V T

P S

T V

    
   

    
. Hence deduce the Clapeyron equation. (4+4+4) 

See the Text, page. 
 
Calculate the freezing temperature of water if the pressure be increased by 1 atm, 
 given L = 80 cal/gm, 

2(0 ) (0 )
0.9168 / 0.9998 /o oice C H O C

gm cc and gm cc   .  (4). 

For the process   water → ice, the Claypeyron equation is 
dT

dP
 =.

( )ice water

H

T V V

 
 

 
. 

1 atm

dT
=

1

1

80
1 1

273 ( )
0.9168 0.9996

cal gm

K cc gm





 
 
 
  
 

, dT=
1

1

1 273 (1.0907 1.0004)

80

atm K cc gm

cal gm





 


 

or, dT =
 2 1

7 1

1 76 13.6 981 273 1.09075 1.0004

80 4.18 10

dynecm K cc gm

erg gm

 



    

  
 = ─ 0.075 K.  

Thus the freezing point of water becomes ─ 0.075oC if pressure is increased by 1atm. 
 
If in a phase transition the first order partial derivative of G with respect to temperature and 
pressure change continuously in going from one phase to the other, will it be possible to obtain 
the Clapeyron equation? Give reasons for your answer. (4). 
 
It is not possible to obtain Clapeyron equation.  

The equation is,     
S SdP

dT V V
 

 





 .   But,          

TP
G


 = V    and      
PT

G


 = ─ S. 

As   
TP

G


  and  
PT

G


 change continuously in going from one phase to the other, 

 so V and S will change continuously and at the transition point, V V   and S S  . 

        Putting in the Clapeyron equation, RHS of the equation becomes meaningless. 
 
 
 
 
 
 
 
 
 
 
 
 

BU’2008,  
   Q 4(b) 

BU’94 
Q 3 

(a) 

(b) 

BU’96 
Q 5(a). 

Answer: 

Solution: 

Answer: 
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                                                                                    Joule Thomson Expansion 
 
Let us imagine a cylinder thermally insulated and equipped with two non-conducting pistons 
on opposite sides of a porous wall. This wall may be porous plug of narrow constriction or a 
series of small holes. Between the left hand piston and the wall, there is 1 mole gas at a 
                                                       pressure P1 and volume V1.    

                                                                                       The gas passes through the porous wall against the constant 
                                                        pressure P2. This is a throttling expansion.  
                                                        This process is slow and it allows the gas to be slowly forced 
                                                        from one chamber to another. The pressure equilibrium is 
                                                        maintained in each chamber.  
                                                       Let the volume of the gas after passing through the wall be V2. 
                                                       The initial equilibrium state of the gas is (P1,V1)  
                                                       and final equilibrium state becomes (P2, V2).  
                                                       However, it is an irreversible process since the gas expands 
                                                       against constant external pressure. 
         Experimental results show that when most gases, in a compressed condition are allowed to 
expand through orifice or throttle under adiabatic enclosure, they undergo cooling.  
However, H2 and He are warmed up at room temperature by such process.  
                                            This is known as Joule Thomson effect.  
 

Experiment shows that temperature-dependence of this expansion effect switch over from 
cooling to heating as temperature is increased. There is a temperature, characteristic of the gas, 
below which the gas cools down but above which it is heated up by this J-T expansion.  
This temperature is called ‘inversion temperature’ of the gas. For H2, it is 193 K and for He,  
it is 53 K. Below these temperatures, the gases can be cooled down by such expansion. 

Let 1 mole gas is expanded under this adiabatic process. 
From first law of thermodynamics, q = dU + w,   but,   q = 0. 
                                             The change in internal energy, dU = U2 –U1.   

                              The work done,    w = dVPdVP
V

V
 

2

1 0

2

0

1  = – P1V1 +  P2V2   

                                    since P1 and P2 remain constant during the process.  
Therefore, 0 = (U2 –U1) + (P2V2 –P1V1) = (U2 + P2V2 ) – (U1 + P1V1) = H2 –H1  or, H1 = H2 

or,                                                          ∆H = 0.             
                                   It means that the process is isenthalpic. 
This states that the initial enthalpy and final enthalpy of the gas are equal.  
However, one is not entitled to say that the enthalpy remains constant during the process.  
One is not sure to the enthalpy of the intermediate stages of this non-equilibrium (irreversible) 
process. In plotting a throttling process on any diagram, the initial and final equilibrium states  
are known and so may be represented by points. However, the intermediate states are not 
known and so can not be plotted.  
 

In order to quantify the temperature change due to the pressure change of the gas, we can 
define a term, called Joule Thomson coefficient, TJ .  

It is defined as,                    TJ  =  
HP

T


 . 

 
It is an intensive property since it is the ratio of infinitesimal changes of two intensive properties.  
 
P1  P2,   so,  dP = P2 – P1 = (–)ve, hence for cooling effect, T1  T2 and TJ  = (+)ve.  

Similarly, for heating effect,      T1   T2     and    TJ  = (–)ve. 

   Experiment 

Joule Thomson 
effect: 
 

Inversion 
temperature (Ti): 

Thermodynamic 
condition of the 
experiment: 
 

 

Joule Thomson 
Coefficient( µ JT) 
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                                        When there is no effect, T1 = T2    and   TJ  = 0. 

Therefore,       when T   Ti,  TJ  = (+)ve ,  and  when T   Ti ,  TJ  = (–)ve 

                                                   and at T = Ti , TJ  = 0 

 
        We have enthalpy, H = f (T, P). On partial differentiation, 

                      dH = 
PT

H












dT + 

TP

H












dP = CP dT  + 

TP

H












dP,    

CP  = constant pressure molar heat capacity of the gas which is undergoing the J T expansion.  
                                                  For this process, dH = 0  

hence,    0 = CP dT  + 
TP

H












dP or, 

HP

T












= 

TP P

H

C














1
 .  

                          But 
HP

T












= TJ       so,      TJ  = 

TP P

H

C














1
. 

Again,                                                H = U + PV.   

 So,  TJ = 
TP P

PVU

C














)(1
=  























































TPTTP P

PV

CP

V

V

U

C

)(11
 

                                           This relation of TJ consists of two parts. 

(a) For ideal gas,       
TV

U












= 0          and             

TP

PV











 )(
= 0,     hence TJ = 0.  

                      This means that ideal gas does not undergo any J T effect. 

(b) For real gas, 
TV

U












= (+)ve always, and 

TP

V












= (–)ve. 

      Hence 1st term = (+)ve always  and it is practically independent of P. But value of PV 
      decreases with increase of P at low T (below the Boyle temperature, TB of the gas) and low P. 

               So, 
TP

PV











 )(
= (–)ve, and 2nd term is also then (+)ve.  

      Therefore, TJ  = (+)ve i.e. there is cooling effect of the gas. 

      But at high P even at low T, PV increases with increase of P  

       so 
TP

PV











 )(
= (+)ve and 2nd term = (–)ve.  

       When the magnitude of the 2nd term exceeds the 1st term,  
       TJ = (─)ve, and there will be heating effect. 

        However, when T is high (above TB), PV increases with increase of P always and  

       
TP

PV











 )(
= (+)ve always , 2nd term becomes (–)ve. When the 2nd term dominates over 

        the 1st, TJ = (–)ve. There occurs heating effect. 

        So to conclude, heating effect of the gas in this process may occur at high T and ordinary P  
        or at high P at ordinary T. 
        Hence in between the cooling effect and heating effect of the gas, there might be  
         temperatures depending on P at which TJ = 0.  

                                     These temperatures are called ‘inversion temperatures’ (Ti). 
 

Concept of 
inversion 

temperature (Ti): 
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          The 2nd thermodynamic equation of state is,             
TP

H












= – T 

PT

V












+ V. 

Again,             TJ  = 
TP P

H

C














1
           or,         TJ  = 

PC

1





















V

T

V
T

P

.  

                                             This is the general expression of TJ  

 
(a) For ideal gas, the equation of state is PV = RT for 1 mole gas. So, V = RT/P  

      or,  
PT

V


 = P
R   or, T  

PT
V


 = P
RT  = V.   Therefore, TJ  =  VV

CP


1

 = 0.  

                                 This shows that ideal gas will not suffer any J T effect. 
 

(b) For one mole of vander Waals gas, the equation of state is (P + 2V
a ) (V – b) =RT.  

     Or, PV – Pb + (a ∕ V) – (ab / V2) = RT.  The (a /V ) and (ab / V2) are correction terms, 
     their values are very small, hence to replace V, ideal gas equation can be employed    

     i.e.       V = (RT / P).         Thus, PV – Pb + 
RT

aP
─ 

22

2

TR

abP
= RT  

                                         or,  V – b + 
RT

a
22TR

abP
= 

P

RT
--(A)  

     or,       V  = 
P

RT
+ b –  

RT

a
+ 

22TR

abP
       or,     

PT
V


 = 
P

R
+ 0 + 

2RT

a
─ 2 3

2abP

R T
 

    or,       T  
PT

V


 = 
P

RT
+

RT

a
– 2 2

2abP

R T
.   Replacing 

P

RT
 from equation (A), we get 

     

     T  
PT

V


 = V – b + 
RT

a2
–  

22

3

TR

abP
        or,     T  

PT
V


 – V = 
RT

a2
─ b ─ 

22

3

TR

abP
. 

     Thus,                           TJ = 
PC

1
2 2

2a 3
 

RT

abP
b

R T
 

  
 

--------- (B)        

At low pressure of the gas, 
22

3

TR

abP
 can be neglected and the expression becomes, 

                                             TJ = 
PC

1 2a
b

RT
 

 
 

   -----  (C) 

This shows the advantage for TJ  for liquefaction of gases. TJ  is linearly related with  

reciprocal of T. Hence, lower the temperature of the gas, larger is the drop in temperature for a 
given pressure-change. 
(i) At the inversion temperature, i.e. T = Ti , TJ = 0, putting in equation (C),  

     0 = 
PC

1 2a
b

RT
 

 
 

.   Or,   Ti  = 
Rb

a2
.  

     This is the expression of inversion temperature of the gas obeying vander Waals equation.  

(ii) When T   Ti , 
RT

a2
  b , TJ = (+)ve, there will be cooling effect.  

      Intermolecular forces of attraction dominates over the repulsive forces (size effects).  

Expression  
    of µJT :  
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So, during expansion, the intermolecular separation increases and in this process, the molecules 
have to work against the attractive forces. A part of the internal energy of the gas is utilized for 
this work and the temperature falls. 

(iii) When T   Ti ,  b 
RT

a2
and TJ  = (–)ve. Intermolecular repulsive forces (size effects) 

      dominate over the attractive forces in the gas under this situation and there is warming 
      on expansion. For H2 and He, a is very small and hence at room temperature, 

                                 
RT

a2
  b and TJ  = (–)ve, so occurs heating effect. 

 
Calculate inversion temperature of N2 gas, given that for the gas,  
 a = 1.40atm lit2 mol-2 and b = 0.039 lit mol-1. 

We have the expression, Ti  = 
Rb

a2
 = 

111

22

039.0083.0

40.12








mollitKmolatmlit

mollitatm
  = 875 K                                                                  

 

We have expression (B),         TJ = 
PC

1
2 2

2 3a abP
b

RT R T
 

  
 

 

      At high P,       
22

3

TR

abP
can not be neglected.    So   at T = Ti ,      TJ = 0  

so,                                        0 = 
PC

1
(

iRT

a2
─ b ─ 

22

3

iTR

abP
). 

Or,                      0 = 
iRT

a2
─ b ─

22

3

iTR

abP
        or,     b ─ 

iRT

a2
+ 

22

3

iTR

abP
 = 0.  

Multiplying  2
iT ,      we get,                 b 2

iT ─  
R

a2
Ti + 2

3

R

abP
= 0. 

 
                                                        This is a quadratic equation of Ti .  
                                                        Hence there should be two inversion temperatures of the gas.      
                                                        This situation is also realized by experiment with N2 gas. 
                                                        The above equation contains two variables Ti , P and they 
                                                        are interrelated. So if P is changed, Ti is also changed. 
                                                        We can  plot Ti against P, the curve will be parabolic. 
                                                        Thus we see that at every pressure (initial) of the gas, there 
                                                        exist two inversion temperatures – higher Ti and lower Ti                                              
below lower Ti there will be heating and above higher Ti there will be also heating.  
Only when the initial temperature is below higher Ti and above lower Ti,   

                                                 TJ = (+)ve     and    cooling occurs. 

As the pressure increases, the separation between the two inversion temperatures decreases and  
at a certain pressure, P2 the two become equal. When the pressure increases further, no more 
inversion phenomenon is possible and TJ = (─)ve. The area enclosed by the parabola represents 

‘cooling zone’ on J T expansion, while the area outside the curve corresponds to ‘warming zone’. 

Let for a vander Waals gas, 2 21.4a atm lit K   and 10.04b lit mol . Calculate the inversion 
temperatures of the gas at 10 atm pressure. 

 We have the equation, 2
2

2 3
0i i

a abP
bT T

R R
   . Now putting the values, we get  

 

Problem: 

Solution: 

More than  
one inversion  
temperature: 
 

Calculation of two Ti 

of a gas 
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 
2

2

2 1.4 3 1.4 0.04 10
0.04 0

0.082 0.082
i iT T

   
   . 

 Solving the equation, we have, 846.4iT K  and 7.38 K.  

When we use the relation, 
2

i

a
T

Rb
  and put the values, we get  853.6iT K . 

So the 853.6iT K  is the higher inversion temperature of the gas. 

 

(1) Adiabatic cooling occurs due to decrease of internal energy of the gas by the adiabatic   
     cooling 
     But J T cooling occurs due to also decrease in internal energy of the gas for doing work  
     intermolecular attraction when the intermolecular separation is increased for this against   
     expansion. 
 
(2)  Adiabatic cooling occurs for both ideal and real gas at any experimental temperature. 
       But J T cooling occurs only for real gas and that also when the experimental  
       temperature is below its inversion temperature. There is no J T cooling for ideal gas since  
       it has no intermolecular attraction. 

For CO2(g) at 300 K and 1 atm pressure, 
TP

H












= ─ 10.2 cal mol-1 atm-1 and  

CP = 8.919 cal mol-1 K-1. Calculate the J T coefficient ( TJ ) of the gas at the  

given T and P.                                                                               [C U, 1990] 

We have the relation TJ  = 
TP P

H

C














1
 

                                           = )2.10(
919.8

1 11
11




 atmmolcal

Kmolcal
 

                                           = 1.1436 K atm-1. 

Find out the relation between TJ and 
TP

H












. TJ  for a vander Waals gas is given by  

TJ = 
PC

1 2a
b

RT
 

 
 

.    Calculate the value of ∆H in calorie for te isothermal  

(300 K) compression of 1 mole of N2 from 1 to 500 atm. (a = 1.34atm lit2 mol-2 and  
b = 0.039 lit mol-1)                                              [C U, 1986] 
For the answer of 1st part, see the text.  

                The relation is TJ  = 
TP P

H

C














1
or, 

TP

H












= ─ CP × TJ  = .

2








 b

RT

a
  

      









2

1

2

1

2
dP

RT

a
dH       or,      ∆H = .

2








 b

RT

a  12 PP    

                                                                =    atmlit1500039.0
300083.0

34.12














 mol-1 

                                                                = ─ 0.353 × (2 / 0.083) cal mol-1 = ─ 8.51 cal mol-1 

 

Difference 
between 

adiabatic cooling 
and J T cooling: 

 

Problem (1) 

Solution : 

Problem (2) 

Solution : 
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Calculate  
HP

T


 for a vander Waals gas at 27oC and 1 atm. pressure and mention its 

significance. Given, CP = 5 cal mol-1 K-1, a = 2 atm lit2 mol-2 and b = 30 cc mol-1   
                                                   [C U, 1999]                                                                                                                                                                                                  
But, CP = 5 cal mol-1 K = 5 × 0.082 / 2 = 0.205 lit atm mol-1 K-1 and b = 30 cc mol-1  

= 0.03 lit mol-1 we have the relation,         TJ =  
HP

T


 = 
PC

1
(

RT

a2
─ b).  

Hence,    
HP

T


 = 
PC

1
(

RT

a2
─ b) 

                               = 











 







1
11

22

11
03.0

300082.0

22

205.0

1
mollit

KKmolatmlit

mollitatm

Kmolatmlit
  

                                = 0.634 K atm-1 

 
It signifies that the gas will be cooled down at 27oC and 1 atm. pressure by J T expansion and per 
atm pressure drop, the temperature drops by 0.634 K. 
 
 
Show that J T expansion is an isenthalpic process. What conclusion can be drawn from the 
sign of J T coefficient ( TJ )?  

             Derive an expression of TJ  for a gas obeying the equation, P (V ─ b) = RT.  

                  Comment on the result you obtain.                          [CU’ 90, Q 5(a), m = 2+2+4+2] 
                                                                                            
For answer of the 1st, 2nd and 3rd parts, see the text. Answer of 4th and 5th parts are  

given here. From the equation, b
P

RT
V   or,  

PT
V


 = 
P

R
.  

Or,    T  
PT

V


  = bV
P

RT
 . Therefore, TJ  = 

PC

1





















V

T

V
T

P

 

                                                                                   = 
PC

1
[V – b – V] = – 

PC

b
 = (–)ve always. 

The result shows that the gas will be heated up always by the J T expansion and it has no T i. 

 
 

                                    
 

                                                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem (3) 

Solution: 

Problem (4) 

Solution: 
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THIRD LAW OF THERMODYNAMICS 
 
 Nernst heat theorem : 
 
In 1902, T. W. Richards studied the free energy change and enthalpy change of a number of 
chemical reactions in reversibly in electrochemical cell using the relations,            

            ∆G = – nFEcell   and   ∆H = nF 



















cell

P

cell ET
ET .  

The emf of the cell is determined by potentiometer at very low temperatures. He found that the 
value of ∆G and ∆H are approaching each other (i.e. ∆G → ∆H) rapidly with lowering of 
temperature and at extremely low temperature (up to about – 27oC), ∆G becomes equal to ∆H 

(i.e. ∆G = ∆H) 

Gibbs Helmholtz equation gives very interesting conclusions from the above experimental results. 

The equation is,                        ∆G = ∆H + T 
 

PT

G












.  

Since at T → 0K,  ∆G = ∆H, hence T 
 

PT

G












= 0. When T = 0K, T

 

PT

G












= 0  

whether,  
 

PT

G












is zero or any finite value. But the equality, T

 

PT

G












= 0  

holds true for some range above and in the neighborhood of 0K.  

Hence, 
 

0
P

G

T

  
 

 
, as 0T  . This is an important deduction from the experimental results. 

 

            In 1906, Nernst made bold postulate that for a process in condensed system 

            
 

PT

G












= 0 in the vicinity of absolute zero temperature (up to about – 27oC). 

The constancy P may be omitted, since the effect of P in the condensed system is very small. 

Thus we may write,                    Lt T → 0K, 
 

T

G




= 0.  

That is, at extremely low temperature, G would be constant and independent of T. Richard’s 

experiment further shows that not only at T → 0 K, ∆G = ∆H, but they approach equality for the 

processes at the neighbourhood of 0 K and some range above. This helps Nernst further to 

suggest                                                     
 

T

H




= 0, Lt T → 0K.  

Thus, for condensed system, Nernst postulates are stated as,      

                                       Lt T → 0K,  
 

T

G




    and     Lt T → 0K,  

 
T

H




= 0, 

These two postulates, we call Nernst Heat Theorem. This pair of simple relations has far-reaching 
implications in condensed phase of the system. 
As we have seen, absolute zero temperature is unattainable so we shall use the limit T→ 0. 
He remains a liquid as T goes to zero at one atm. All other elements are solids in this limit.  
 
It could be shown that when ∆G decreases with lowering of T, ∆H at the same time increases and 
vice-versa and when T is very low, ∆G → ∆H. 
To prove that we have, Gibbs Helmholtz equation,  

Change of 
∆G and ∆H 

with T are 
opposite 

 

Introduction 

Nernst 
postulate
s 

Important 
deduction 
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∆G = ∆H + T 
 

T

G




. So the change with T, 

 
T

G




 = 

 
T

H




 + 

 
T

G




 + T 

 
2

2

T

G




  

or, 
 

T

H




 = ─ T 

 
2

2

T

G




. Both terms have 

opposite signs, and since ∆G is converging  
(tending to meet) to a limiting value, so slope and  
curvature have the same sign. That is,   

 
 

T

G




and 

 
2

2

T

G




 have the same sign.  

 

This shows that   
 

T

G




 and  

 
T

H




 have opposite signs.  

i.e.  if ∆G decreases then ∆H increases with lowering of T and vice versa. 
 

We have the relation,             ∆G = ∆H – T ∆S        or,            T ∆S = ∆H –∆G. 
For a finite T, we have in a process say,  ∆S = (+)ve i.e. ∆S  0 then, ∆H   ∆G so with lowering 
of T, ∆H decreases and ∆G increases, and when Lt T → 0K, ∆G = ∆H. 
Again for a process with ∆S = (–)ve, i.e. ∆S   0 then, ∆H   ∆G thus with lowering of T, 
∆H increases and ∆G decreases, and when Lt T → 0K,  ∆G = ∆H. 
This concludes that variation of ∆G and ∆H as T is lowered will have opposite sign. 

Implications of the theorem: 
(1) ∆S = 0 for processes near 0K:   
     One of the basic equations is,   dG = – S dT + V dP but at constant P,     dG = – S dT 
     For the initial and final states of a system in a process, the forms are, dG1 = – S1 dT and  
         dG2 = – S2 dT     so,    dG2 – dG1 =  – S2 dT + S1 dT    or, d (G2 – G1)  = – (S2 – S1) dT  

     or,      d(∆G) = – (∆S) dT    or,     
 

T

G




 = –  ∆S.    P is constant but omitted for simplicity. 

     But Nernst theorem states                Lt T → 0K, 
 

T

G




 = 0  

     hence, we can infer that                         Lt T → 0K, ∆S = 0. 
     Or,                                                                  S2  =  S1.  
     It means that in the vicinity of absolute zero temperature, the processes occur without change    
     of entropy. Thus in chemical reactions, reactants and products have the same entropy if it   
     occurs near 0K (in condensed state). 

Nernst heat theorem suffers some limitations.  
(a) Let us imagine a mixed crystal which is to be formed from a pure crystal A and a pure 
      crystal B at 0K, then for this mixing process,   
                                     Pure A + Pure B → Mixed crystal. 
      The entropy change of the process, ∆Smix. = S (mixed crystal) – S (pure A) – S (pure B) 
                                                                         = – nR ( Ax  ln Ax  + Bx  ln Bx ) = (+)ve and not zero. 

(b) Again, if a super cooled liquid is converting into crystalline solid at 0K, the entropy decreases 
      and ∆S < 0 since the randomness in super cooled liquid is greater than in the crystalline solid. 
      But Nernst theorem states that Lt T → 0, ∆S = 0, so there is limitation in the statement of the  
      theorem. 

The above limitations of the theorem were removed by Simon and the Nernst-Simon statement is  
‘For any isothermal process that involves only pure substances and each in internal equilibrium, 
the entropy change goes to zero at T goes to zero.’ 

Another 
argument of 
justification 

 

Modified 
statement of 
the theorem 

Limitation 
of the 

theorem 

 

∆S = 0 for 

processes 
near 0K 
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An example of this type of processes is the reversible phase transition involving pure crystalline 
solid, such as,                            Sα → Sβ    at the transition temperature and pressure.  
Mixed crystals are not pure substances or super cooled liquids are not in their internal 
equilibrium. So the Nernst heat theorem is not applicable.         
(2) ∆CP = 0 for processes at near 0K: 

     The constant pressure molar heat capacity is defined in thermodynamics as, CP  = 
PT

H












. 

     The change in the properties of a system in a process is,    ∆CP = 
PT

H











 )( . 

     ∆CP and ∆H are the change of constant pressure molar heat capacity and enthalpy of final state  
     and initial state of the system for the process respectively. 

But Nernst theorem states that,    Lt T → 0K, 
 

T

H



 = 0,     hence  Lt T → 0K,  ∆CP = 0. 

It implies that heat capacities of the initial substance (reactant) and final substance (product) for a 
process are same when it occurs at near 0K. 
 
Application: Calculation of ∆G of a process from thermal data: 
 
 CP of a substance can be expressed in the form of power series of T.  
                                        CP  = a + bT + cT2 + ------   
where a, b, c, etc are virial coefficients of the substance in the condensed state. 
Hence,                  ∆CP = 

12 PP CC   =  (a2 – a1) + (b2 – b1 )T + (c2 – c1) T2 + ---- 

or,                         ∆CP =  α = α + β T + γ T2 + ----  where α, β, γ etc. depend on the nature of the 

initial state and final state of the system for the process.  
                          But at T = 0K, ∆CP = 0     so,    putting this we get, α = 0. 
Hence, the expression of CP of a process near 0K is,              ∆CP = β T + γ T2 + ----  
 
We may recall one basic equation,        dH = TdS + VdP. 
Or,                                                      CP dT = TdS + VdP  
but at constant pressure,                          dS = (CP /T) dT. 

 Considering the change for two states of the system, 
 

T

S




 = 

T

CP
. Constancy P is omitted.  

Separating the variables and integrating,   dT
T

C
Sd P

 


 ,  

or                                    dT
T

C
S P



  + ∆So (integration constant).  

But at 0K,                      ∆S = 0, and     ∆CP = 0, hence,       ∆So = 0. Thus, dT
T

C
S P



 . 

Putting                            ∆CP = β T + γ T2 + ---, dT
T

TT
S  







 


2
.  

Values of β and γ are determined from the equation, ∆CP = β T + γ T2 + ---- by measuring ∆CP 
values of the system for the process thermally at two temperatures.  
Therefore, ∆S can also be calculated from the values of β and γ for the system by using the 

expression,                     ∆S =  2

2
TT


   

 
 

Expression 
of ∆CP of a 
process at 
near 0K 

Expression 
of ∆S of a 

process near 
0K 

 

∆CP = 0 for 
processes 
at near 0K 
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Again,                            
PT

H











 )(
= ∆CP.  Using the expression of ∆CP and integrating,      

  we get,                           dTTTHd
T

 
0

2
2

1

)(     

                                       or, ∆HT = ∆H0 + .
32

32  TT


 

∆H0 of the process can be obtained from the ∆HT and β, γ values of the process. 
 

Now, we may proceed to find expression of ∆G so that it can be calculated from the thermal data 
of the system for the process. 
We have relation, ∆G = ∆H – T ∆S. Now inserting the expression of ∆S and ∆H of the process 

from above,                ∆G = (∆H0 +  32

32
TT


) ─ T (  2

2
TT


 ). 

Or,                              ∆G = ∆H0   32

6

1

2

1
TT   ------------.   

This equation is utilized to calculate ∆G of a process from the thermal data β, γ, and ∆H0 etc. (by 
thermal data we mean measurement of properties like ∆H, heat capacities). 
 
Example: Calculation of transition temperature of sulphur: 
                 For the process of transition,  Sα → Sβ, we can write  ∆CP = β T. 
                 Measuring heat capacity of the two forms of sulphur at a known temperature, β can be   
                 obtained. The value of β is found for the process, β = 2.30 × 10-5 cal mol-1K-2.   
                 Again ∆H is determined for the process at any temperature and thus ∆H0  

                 (enthalpy-change at 0K) can be evaluated from the relation, ∆H = ∆H0 + 2

2
T


and  

                   ∆H0 = 1.57 cal mol-1.  

Worked out:    Now ,                        ∆G = ∆H0  – 2

2
T


.   

                          But at the transition point, T = tT  and tG = 0, since the two forms of sulphur  

                          are in equilibrium. Hence,               0 = ∆H0 –
2

2 tT


 

                          or,  
tT  = 


02 H

= 
215

1

1030.2

57.12








Kmolcal

molcal
  or,  

tT  = 369.5 K,  

                          The experimental value is 368.4 K, so the matching is excellent and this verifies 
                          Nernst heat theorem. 

From Nernst heat theorem, we have Lt T → 0K, ∆CP = 0 i.e. heat capacities of all substances 
(reactants or products) at 0 K temperature must be same. 
 ∆CP = PC (product) – PC (reactant) = 0 or, PC (product) = PC (reactant), at 0K temp. 

This must hold good what ever may be the chemical nature of the products and reactants.  
This suggests that CP of any substance itself may be  zero at 0K. 
                   This also finds justification from the quantal principle. At this very low temperature, 
heat energy of a solid consists of only vibrational energy and vibrational energy levels have 
energy gap so high that there is insufficient energy to provide even for change of one vibrational 
level. So solids can be heated near 0K without absorbing appreciable amount of energy.  
In other words, Lt T → 0K, CP = 0. [đq = CV dT, but CV is very small and so small heat supplied 
(đq) can raise T to an appreciable amount. 

Expression 
of ∆H of a 

process 
near 0K 
 

Expression of 
∆G of a 

process near 
0K 

Nernst heat 
theorem is a 
precursor of 
third law of 

thermodynamics 
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From the expression of   CV (≈ CP) = 3R
2

2

)1( x

x

e

ex
 ≈ 3R x 2 xe at low T where, x = 

kT

h 0  

This shows that CP decrease rapidly with decrease of T as the exponential term becomes zero 
much ahead than x  gets infinite value and CP is equal to zero when T approaches to zero.  
That is,    CP = 0    at   T → 0K. 
 Planck Formulation of the Third Law of Thermodynamics: 
 
           Let us take the basic thermodynamic equation, dH = TdS + VdP  
but,                                                                                dH = CPdT,  
putting we get,                                                              CPdT = TdS + VdP.  

Again at constant P,                                                      CPdT = TdS,   or,      dS = PC
dT

T
.  

From Einstein approach of CP, we infer that PC

T
is zero or a finite positive quantity, as T→ 0K. 

Therefore, integration of the entropy term we get,       
0

T

o

S T
P

S

C
dS dT

T
    

or,                                                                                ST ─ So

0

T
PC
dT

T
   , 

where,  ST  and So are the entropy of the system at temperature T K and 0 K respectively.  

Since CP is positive or zero, hence                            
0

T
PC
dT

T
 = (+)ve or 0.  

hence,                                                                         ST ─ So = positive or zero.  
This refers that                                                           ST   So ,  

i.e. entropy of a substance at any temperature, T must  be greater than its entropy at 0 K.  
Thus at 0 K, the entropy has its smallest possible algebraic value S0, the entropy at any higher 
temperature is greater than S0. 
Max Planck in 1913 made a striking proposal and stated third law as , 
 
                 ‘The entropy of a solid or liquid is zero at absolute zero temperature’  
Thus for condensed system,            (i) Nernst theorem states,   Lt T → 0 K,  ∆S = 0  
                                      and,            (ii) Planck law states,          Lt T → 0 K,  S = 0. 
It is obvious that the third law does not contradict the heat theorem rather it supports and makes 
the later quantitative. At 0K, solid reactant or solid product each has zero entropy and hence 
entropy change (∆S) is zero.  
Planck’s generalization may be true for solids but not for liquids. Since statistical mechanics 
shows that entropy becomes least when the substance is present in a perfectly arranged crystalline 
state, the Planck’s relation is, 
                                                    S = k lnW,     W is the thermodynamic probability.  
                            For S = 0, W must be 1 only when there is one arrangement of the molecules. 
This is possible only when the system is pure and perfectly crystalline state. In the case of super 
cooled liquid or in case of solid solution or mixture, even at 0K, W   1 and entropy (S) will be 
some what greater than zero.  
                         Thus for pure and perfectly crystalline substances (W = 1), S = 0 at T = 0. 
 
Lewis and Randall Statement of the Third Law 
Lewis and Randall stated the law more precise way as under:    
“Every system has finite positive entropy but at the absolute zero of temperature the entropy may 

become zero and does so become in the case of a pure crystalline substance.”  

Plank statement 
of third law 
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Application of the Law : Determination of Absolute Entropy of a Substance  

The above expression of entropy is ST ─ S0  
0

T
PC
dT

T
    

where ST  is the entropy of the solid at temperature T and pressure P atm. When P = 1 atm, it is 

called standard entropy of the solid at temperature T and denoted by 0
TS .  

S0 is the entropy at 0 K and it is equal to zero according to the  
third law of thermodynamics.  

Therefore,                           TS .
0

T
PC

dT
T

     or,  
0

ln
T

T PS C d T  .  

TS  is determined graphically by plotting  PC

T
 against T  

or PC  against lnT and finding the area enclosed between the two  

temperatures 0 to T K 

Since the change in the state of aggregation (melting or vaporization) involves an increase in 
entropy, this contribution is to be included in the calculation of the entropy of a liquid or of a gas.  

Thus, for the entropy of a liquid above the melting point of a substance,  

                                          
0

( ) ( )m

m

T T
fusionP P

T
m T

HC s C l
S dT dT

T T T


      

Similarly, for a gas above the BP of the substance,    

                                        
0

( ) ( ) ( )m

m b

T T T
fusion vapP P P

T
m bT T

H HC s C l C g
S dT dT dT

T T T T T

 
           

                                               = ∆S1 + ∆S2 + ∆S3 +∆S4 + ∆S5  
 
To calculate the entropy, the heat capacity of the substance in its various states of aggregation 
must be measured accurately over the range of temperature. The values of the heats of transition 
and the transition temperature must also be measured. All these measurements can be done 
calorimetrically. 
Measurements of the heat capacity of some solids have been made at temperature as low as a few 
hundredths of a degree above 0K. However, ordinarily, measurements of CP are made down to a 
low temperature which frequently lies in the range from 10 K to 15 K. At such temperature, CP 
follows Debye T- cubed law accurately.  

CV  = 
3

D

T
A



 
 
 

, where A is universal constant  

                         = 464.5 cal mol-1 K-1,  
and D  is called Debye temperature,  a characteristic 

constant of the solid.  
Determination of CV at any appreciably higher temperature T  
gives the value of  D . Substituting this value of D  of the  

substance in the above equation it is possible to calculate CV 
in the vicinity of 0 K.  
At the extremely low temperature, the difference of CP and CV  
is negligible and so these values can be taken for CP as well.  
The hike of the curve at Tm and at Tb is due to ( ) ( ) ( )P P PC l C s C g  .                              
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Example: Evaluation of ST of a substance in the gaseous state at 25oC. 
         The evaluation of ST  at 25oC  is done by adding the ∆S values keeping in mind that S0 = 0. 
 (1) ∆S of the solid from 0K to 10K and to the melting point of the solid,   

                         ∆S1 = 
10

0

0 10

( ) ( )
( ) ( )

m

m

TK
P P

T K

K K

C s C s
S s S s dT dT

T T
    .  

    1st CP is calculated by using Debye T3  relation and 2nd CP is determined by actual experiment. 

(2) ∆S for the fusion of the solid at Tm temperature is given as, 

                                        ∆S2 = ( ) ( )
m m

fusion f
T T

m m

H L
S l S s

T T


   .  

      This is done by simple calculation of molar latent heat of fusion ( fL ) and the  

       melting point (Tm) of the solid.      

(3) ∆S for raising the temperature of the liquid from Tm to Tb of the substance,  

                                          ∆S3 = 3

( )
( ) ( )

b

b m

m

T

P
T T

T

C l
S S l S l dT

T
     .  

                                  Where CP( l ) is the molar heat capacity of the liquid 
 (4) ∆S for the vaporization of the liquid at its Tb, 

                      ∆S4 = 4 ( ) ( )
b b

vap v
T T

b b

H L
S S g S l

T T


     .  

                Where vL  is the molar latent heat of vaporization of the liquid. 

(5) ∆S for raising the temperature of the gaseous substance from Tb to 298 K, 

                      ∆S5 = 
298

5 298

( )
( ) ( )

b

b

K
P

K T

T

C g
S S g S g dT

T
     .  

              Where CP(g) is the molar heat capacity of the substance in the gaseous phase. 
             Adding all these ∆S values, we get the entropy (S298K)  of the substance at 25oC. 
If the solid exists in different allotropic forms,  

                                  transition

trans

H
S

T


   is to be added to the ∆ST values, 

To compare the ST values of different substances, it is better to express the molar entropy at 1 atm 

pressure (standard state). This gives standard molar entropy ( 0
TS ) of the substance at T 

temperature. 
 
Problems: Calculate the entropy of ethylene gas at 25oC. Given the following data: 
                  (i) 0K ─ 15K (by extrapolation with Debye T3 law),  ∆S = 0.24 cal mol-1 K-1 
                  (ii) 15K ─ 104K (graphically, using CP(s) vs. T plot),     ∆S  = 12.25     ,, 

                  (iii) Fusion at 104K (= Tm),   ∆S  =  
3237

169.4
V

B

L

T

 
 

 
                    or ∆S  = 7.70       ,, 

                  (iv) 104K ─ 169.4K (graphically, using CP(l) vs. T plot),  ∆S  =  7.90      ,,         

                  (v)  Vaporization at 169.4K (= Tb),  ∆S  = 
3237

169.4
V

B

L

T

 
 

 
  or ∆S  = 19.10     ,, 

                  (vi) 169.4K ─ 298K (graphically, using CP(g) vs. T plot ), ∆S  = 5.12       ,, 
 
Thus molar entropy of ethylene gas at 25oC = 0.24 + 12.25 + 7.70 + 7.90 + 19.10 + 5.12   
                                  Or, S298K (ethylene, g)  = 52.31 cal mol-1 K-1. 



 

PRINCIPLES OF THERMODYNAMICS ─  N C DEY 83 

Test of the third law of thermodynamics: 
 
(1) The third law of thermodynamics predicts that in the neighborhood of 0K,  
      the heat capacity (CP) and coefficient of thermal expansion (α) would vanish.  
      These have been  confirmed experimentally in many instances. 

      [
1

,
P P T

V V S
but Maxwell relation states that

V T T P


       
       

       
.  

      But third law states that at 0K temperature, S = 0 for any perfectly crystalline solid whatever  

       may be the pressure. Therefore,  0
T

S

P

 
 

 
 and so α = 0.] 

 
(2) The third law may be used to calculate the change of entropy in the transformation of one    
      form of a substance to another form.  
                            The calculated value corresponds to the experimental results. 
      Let us consider the change of one crystalline form (X) to another crystalline form (Y) at the 
      transition temperature (Tt),  X → Y. Since ∆G = 0 for the process,  

      hence in the equation,        ∆G = ∆H ─ T∆S,         or       ∆S = t

t

H

T


,  

      where, ∆Ht = enthalpy  of transition,  i.e.              t
Y X

t

H
S S

T


  .   

      Y XS S  can be determined from the enthalpy of the transition and the transition temperature.  

      The third law states that  the entropy value at 0K is zero for both X and Y, 

       so,                                  Y XS S  = 
0 0

( ) ( )t tT T

P PC Y C X
dT dT

T T
  .  

       Thus, at the transition temperature (Tt), both SX and SY can be determined using the third law.  
                                         These two values of ∆S are found to be same. 
 
Example:  White tin → Grey tin at 298 K. The third law entropy of white tin and grey tin are  
                   11.17 and 9.23 in cal mol-1 K-1 respectively. 
Solution: Thus,         ∆S = SGrey tin ─ SWhite tin = 11.17 ─9.23 = 1.94 cal mol-1 K-1 

                 The value of ∆S is obtained from measured enthalpy of transition and free energy  
                 of transition. The value of ∆S at 298 K is found to be 1.87 cal mol-1 K-1. 
                                   The result is quite satisfactory with the third law value. 
Residual entropy ─ Apparent deviation of third law:  
 
                                   In most cases, entropies determined by heat capacities agree well with those 
determined by statistical method. In few cases, there appear discrepancies; the third law entropies 
(obtained from heat capacity) are being slightly less than the statistical entropies. 
                              That these substances have actually residual entropies at 0 K. 
 It appears that the substances which appears to deviate from the third law, are not pure and    
  perfectly crystalline in the Lewis-Randall sense of the term. Some of such cases are given here, 
 
(1) Super cooled liquids: Glass, glossy materials, plastics etc have residual entropies.  
     For example, glossy glycerine has residual entropy of 5.6 cal mol-1 K-1. 
 
(2) Solid solutions: Different atoms and molecules are distributed in random way and  
     so they have residual entropy. Such as AgCl-AgBr. 
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(3) Mixture of isotopes: It is same as above. Cl2 at 0K consists of solid solution of  
      Cl35 ─ Cl35,   Cl35 ─ Cl37   and  Cl37 ─ Cl37 molecules. We ignore in chemical reactions  
      as the products also have residual entropy like the reactants. 
 
(4) Nuclear spins: Hydrogen is a typical example. Hydrogen is a mixture of ortho-form  
     (nuclear spin parallel) and para-form (nuclear spin anti parallel).  
     At ordinary temperature, the two forms remain in equilibrium.  
     But near 0K, hydrogen should remain completely in the para form (lowest energy form).  
     In practice, as the temperature is lowered, the shift towards the para form is sluggish.  
     Even near 0K, hydrogen still is a mixture of the two forms and it has nuclear spin entropy. 
(5) Geometrical arrangements or orientations:  Examples belonging to this type are CO, N2O,  
     NO and COCl2 where the sizes of the atoms  are comparable. Let us take the CO molecules.  
     They can arrange in solid as CO and OC. 
                                   CO      OC      CO      OC    
                                           OC      CO      OC       etc. 
     The dipole moment of CO is very small (0.1D) so the energy difference between the two     
     arrangements is small. Due to free rotation, one arrangement can easily pass into other.  
     The Boltzmann distribution of population in the two different energy levels corresponding  
     to the two orientations of the molecule is given by  

                                    
   1 2 2 1

1

2

kT kT kT
n

e e e
n

    
   . 

     At the normal freezing temperature (66 K), when the crystal of the substance is formed,  

     kT
  is very small and 01

2

1kT
n

e e
n



   . The crystal is formed with approximately 

     equal number of carbon monoxide molecules in two different orientations.  

    But as T → 0 K, 
kT

  becomes significant. At 0 K, kTe


→ e  .  

    That is, if thermodynamic equilibria were maintained, all the CO molecules would adopt the   
    same orientation of lower energy. How ever, to have incorrectly oriented CO molecules rotate    
    180o in the crystal requires substantial activation energy which is not available to the molecule  
    at low temperature. The CO molecules remains locked into their nearly random orientations as  
    T is lowered. That is, the rotations are frozen.  
   If the randomization were equal in the arrangements, then the entropy of 1 mole of the  
   substance would be, lnS k W , where W is the number of ways by which Avogadro number  

   of molecules can take the orientations with equal proportion and it is 2 AN  i.e.,  W = 2 AN . 

                   So the entropy, S = k ln W = k ln 2 AN = ln 2 ln 2Ak N R  = 1.386 cal mol-1 K-1. 

    But experimental value of the residual entropy of CO is 1.0 cal mol-1 K-1.  This suggests that   
   one orientation prevails over the other and complete randomization does not occur. 
 
 (6) Unsymmetrical hydrogen bindings:  
      Examples are ice, KH2PO4 etc. Ice had residual entropy  
      of 0.82 cal mol-1K-1 at 0K and this is due to different  
      ways of orientation of water molecules. In ice, each  
      O-atom is tetrahedrally surrounded by four  
       H-atoms ─ of these two are  covalently bonded and 
       other two are hydrogen bonded. Thus each O-atom has 
       two H-atoms are near and two other H-atoms are 
       relatively far located.  
       Two ways of arrangements are shown. 
 
       

O: Oxygen atom, o: hydrogen atom 
─ : covalent bond, ---- : H-bond. 
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  It could be shown that thermodynamic probability for the two the orientations at 0K is 1.5.         
                                           The entropy,  S = R lnW = 2ln1.5 = 0.81calK-1mol-1. 
        Thus it appears that for the application of third law, the substance must be in perfectly  
         crystalline state and should be in a single quantum state.                   
      
Unattainability of absolute zero: 
                                                         The third law has also been stated in an elegant fashion as:    
     “It is impossible to attain absolute zero temperature in a finite number of operations.” 
 
                                                That is, we can not, by any process occurring in finite dimensions, 
cool a body to absolute zero temperature. 
By considering the functions of a reversible  
refrigerator, we can easily arrive at the above 
statement. Let us suppose a substance at a low  
temperature (T K) is being cooled further by  
withdrawing heat ( Q ) from it.  

We can use a reversible refrigerator working between TK and T K (T    T  ).  
The minimum amount of work (w) needed to extract Q  heat from the cold substance is given as: 
The efficiency of the refrigerator, 

                                                 Q T

w T T

 
  


     or,      T T

w Q
T


 


 

Now as the temperature T  is lowered, more and more work would be needed to extract the same 

amount of heat Q , since as T   is decreasing,  T T

T




 increases rapidly. 

If the temperature of the substance (which is to be cooled) is lowered to 0K (i.e. T  = 0K), 
then infinite amount of work would be required. That is, any finite amount of work would not be 
sufficient to cool the body to 0K. Hence, absolute zero of temperature can not be attained. 
 
 
Write down the Lewis-Randall statement of third law of thermodynamics and justify it from 
the concept of thermodynamic probability.      (4)                                                 [BU ’92] 

For statement, see the Text, page 
This statement finds justification from the concept of thermodynamic probability.  
When a pure substance remains in a perfectly crystalline state, all the lattice points are in 
perfectly ordered form. At 0K temperature, the lattice points are all in the lowest energy  level, 
so, the thermodynamic probability,  

                          W =  
0

0 0 0

N

N
= 1. the Planck relation, S = k lnW = k ln1 = 0 

i.e. the entropy of a pure and perfectly crystalline substance at 0K is zero which is also the 
statement of Lewis-Randall. 

 

T3 law predicts that Lt.T→0, CV = 0. Justify this also from the third law of thermodynamics.  (2) 
                                                                                                                                       [BU ’92]                

The T3 law is , 
3

V
D

T
C A



 
  

 

, where A is Universal constant = 464.5 cal mol-1K-1 

                     and D  is Debye temperature which is a characteristic of the substance. 

   Problem(1): 

Ans 

Ans 

 

Problem (2): 



 

PRINCIPLES OF THERMODYNAMICS ─  N C DEY 86 

The third law also states that the entropy of a pure substance is zero at the absolute zero 

temperature. Hence ST = 
0

T
PC

dT
T

, thus when T = 0, ST = 0, and this can happen only when  

                                       CP = 0. At this 0K temperature, CP = CV . 
Thus T3 law justifies the Planck’s statement of the third law of thermodynamics. 

At 25oC, the third law entropy of water is about 82 JK-1mol-1 less than that of bromine at the same 
temperature. What does this signify?            (2)     [BU ’92] 

Since both are liquids and at the same temperature, hence the data given signify that liquid water 
is in more ordered state than liquid bromine. This is due to the H-bonding in the liquid water that 
forms the water molecules in intermolecular association resulting more ordered state than liquid 
bromine. 

Calculate the entropy change accompanying the mixing of 1 mole of a substance A with 1 mole 
of another substance B, the process being carried out at T = 0. Does the result go against or in 
favor of the Nernst heat theorem? Explain.       (2½)    [BU ’92] 

The entropy change, ∆S = 2.772 cal K-1. See the Text, page,    
This goes against the Nernst heat theorem as the theorem states that at T = 0, the process 
will occur without entropy change. 
 

 Write the expression for the Standard entropy ( 0
TS ) of a gas above its boiling point. (2) [BU ’93] 

See the Text, page          0
TS  =

00 0

0

( ) ( )m b

m

T T
fusionP P

m T

HC s C l
dT dT

T T T


    +

0 0 ( )

b

T
vap P

b T

H C g
dT

T T


  . 

Show that heat capacity remains unchanged in any transformation in the vicinity of absolute zero.                                                   
                                                                (2)               [BU ’93] 

We know that 
PT

H











 )(
= ∆CP.  But Nernst law states that 

PT

H











 )(
= 0 when T → 0 

thus, as T → 0, ∆CP = 0 or CP(product) ─ CP(reactant) = 0 or CP(product) = CP(reactant).          
This means that heat capacity remains unchanged in any transformation in the vicinity of absolute 
zero. 
 
Is there any need for a third law of thermodynamics? Discuss the Nernst heat theorem and point 
out its significance.                                                                 (4)   [BU ’98] 

2nd law of thermodynamics provide the calculation of ∆S of a process.  
For reversible phase transition, X → Y, we can only calculate ∆S of the process using the 

relation,                           ∆S =  t

t

H

T


               but,         ∆S = SY  ─ SX,  

thus, the individual absolute value of SX and SY cannot be determined by the use of the 2nd law. 
Only 3rd law can provide method to determine the absolute value of entropy of a substance 
 i.e. absolute values of SX and SY are known only from the 3rd law. 
(See the test of 3rd law, page,  ). 
2nd part; State the Nernst heat theorem.  
The significance of the theorem is that at extremely low temperature, ∆G and ∆H would be 

constant with change of T. Two values tends to equality as T→0.  
                                    This instantly leads to ∆S = 0 as t = 0K. 

 
 
 
 

Problem(3): 

Problem(4): 
 

Ans 

Ans 

Ans 

Ans 

Problem(5): 

Problem(6): 
 

Ans 

Problem(7): 
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Justify / criticize: Entropy of a solid is zero at zero Kelvin temperature.          (3) [BU ’99] 

The statement is not fully correct. Only when the solid is pure and perfectly crystalline state and it 
remains in one quantum state (W = 1), the entropy of the substance is zero at zero Kelvin 
temperature. 
When the solid is in mixed state (alloy), its entropy is not zero but has (+)ve value. 
If the solid is not in one quantum state, the solid has some residual entropy.  
(see the residual entropy). 
 
                                                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ans 

Problem(8): 
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         MULTI-COMPONENT OPEN SYSTEM WITH VARIABLE COMPOSITIONS 
    
                                 In open system, both mass and energy are exchanged with the surrounding.  
So, the extensive properties of the open system depend, besides the other variables, on the mole 
numbers of the components present in the system. 

Let us consider a multi-component open system which contains n1 moles of component A1,  

         n2 moles of component A2, n3 moles of component A3 etc. at constant T and P. 

The volume (V) is an extensive property and hence V = f (T, P, n1, n2, ---- ni) 
On partial differentiation, we get,  

dV  =  
, jP n

V dTT



 +  

, jT n

V dPP



 +

1

1
1 , , jT P n

V dnn


   
 + 

2

2
2 , , jT P n

V dnn


   
  + -----    

                                   ----------   +  
, , j i

i
i T P n

V dnn


   
. 

But,                     
1

1 , , jT P n

V
n



   
  = 1V , called partial molar volume. 

                      The free energy (G) is also an extensive property like volume (V).  
So,                                 G = f (T, P, n1, n2, n3,-------).  

So,  dG =   dTT
G

jnP,
  +   dPP

G
jnT ,

  + 1
1 , , j iT P n

G dnn


   
 + 

2

2
2 , , jT P n

G dnn


   
 + ----   

                                         --------   + 
, , j i

i
i T P n

G dnn


   
.   

 But, 
, , j i

i T P n

G
n



   
 = 1G , called partial molar free energy and it is called chemical potential  

                                                of the 1st component (μ1). 

Thus,                        
, , j i

i T P n

G
n



   
= chemical potential of the ith component (μi). 

Therefore, dG =   dTT
G

jnP,
  +   dPP

G
jnT ,

  + μ1 dn1 + μ2 dn2 + μ3 dn3 + -----+ μi dni. 

 But,                                ST
G

jnP





,
       and          VP

G
jnT





,
.  

So the expression of dG for the multi-component open system is,  
                        dG = ─ SdT + VdP + μ1 dn1 + μ2 dn2 + μ3 dn3 + ------+ μi dni. 

or,                                     dG = ─ SdT + VdP + jj dn . 

Chemical potential is an intensive property of the system and defined as change of free energy of 
the component when 1 mole is added to infinitely large system so to keep the composition of the 
system fixed. It may also be defined as the change of free energy when infinitesimal amount, idn  

of the ith component is added to a finite system and then calculated per mole, 

                                                          μi =  
, , j i

i T P n

G
n



   
. 

 It is the actual free energy per mole of the component in the system. Its unit is energy /mole and 
so Joule/mole or cal/mole. Its dimension is M L2 T -2 mole-1.                                                 

Chemical potential of a component is a measure of escaping tendency of the component from 
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the state where it exists to another available state. Thus, a component (i) moves spontaneously 

from its phase (α) to phase (β) if 
  ii   . Flow of the component stops and attains equilibrium 

when   ii  . This leads to the conclusion that when a substance remains in different phases  

at equilibrium, the chemical potential of the substance will be same in every phase.  
This idea plays vital role in formulating the thermodynamics in general phase equilibrium. 
 
Let us take the volume as the quantity as for explanation. The molar volume is denoted by  

0
iV   and partial molar volume by iV  of the ith component. 

(a) Molar volume ( 0
iV ) is the volume of 1 mole of the ith component when it is in pure state  

      while partial molar volume ( iV ) is the actual volume of 1 mole of the component that  

      occupies in a multi-component system at a given composition. 

(b) In case of ideal systems, where either there exists no interaction between the constituents  

     (ideal gas) or all interactions are of same magnitude (ideal solution), the two volumes are same 

          i. e.                                                    iV   =  0
iV . 

In non ideal systems, due to intermolecular interactions, the partial volume ( iV ) is not equal to 

the molar volume ( 0
iV ). The extent of interaction depends on the nature of the components 

presents and their relative amounts (composition). Since iV  is not same in all compositions thus 

for non-ideal system, 0
iV   ≠   iV  at given T and P of the system. 

Gibbs –Duhem equation: 

The free energy change for open system at constant temperature (T) and pressure (P) 

is given by             dGT,P = 1 1 2 2 i idn dn dn     =  j jdn . 

Now, if the addition of each component is of same proportion (∆ x ) of initial moles, then free 
energy change will also be the same proportion of its initial value. That is,  

  if                 1 1 2 2 1 1, , , , .i idn n x dn n x dn n x then dG G x        Therefore,  

 , 1 1 2 2T P i iG x n x n x n x               or, , 1 1 2 2T P i iG n n n           (1)     

                                                        ,T P j jG n  . 

On complete differentiation, we get,      

                           , 1 1 1 1 2 2 2 2T P i i i idG dn n d dn n d dn n d                                                       

Subtracting equation (1) from the above, we have 0 = 1 1 2 2 i in d n d n d       . 

                                                        or, 0 = j jn d  

                           This equation is called Gibbs-Duhem equation. 

 

We have,         μi =  
, , j i

i T P n

G
n



   
   so,       

, , j i

i

T P n
T





 
  

= 
inT

G



 2

    

Again,        dG = ─ S dT + V dP + jj dn       or,            ST
G

jnP





,
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or, 
Tn

G

i 

 2

= ─  
, , j i

i T P n

S
n



   
= iS ,  called partial molar entropy of the ith component.                                                                                                                 

As G is perfectly differential quantity, it obeys Euler’s theorem i.e. 
inT

G



 2

 = 
Tn

G

i 

 2

  

Hence we have the effect of T on μi as,            i
nP

i ST
j













,

  .     By similar way, 

we can formulate i
nT

i VP
j













,

    where, iV = partial molar volume of the ith component.                                                                                                                        

These two expressions signify that chemical potential of a component decreases with rising 

temperature and increases with increase of pressure since iS  and iV are always positive. 

 
For open system, the terms containing the change in mole numbers of the components are 
included in the basic thermodynamic equations. So the equations are: 

                         (1) dG = ─ SdT + VdP + jj dn   and  μi =  
, , j i

i T P n

G
n



   
 

                      (2) dA = ─  SdT – PdV + jj dn   and  μi =  
, , j i

i T V n

A
n



   
 

                         (3) dH = TdS  + VdP + jj dn      and   μi =  
, , j i

i S P n

H
n



   
 

                         (4) dU = TdS  ─ PdV + jj dn      and   μi =  
, , j i

i S V n

V
n



   
 

 

 

Expression of chemical potential (μi) in ideal system:  

(1) For pure ideal gas: VP
jT










 .    But,      V =  

P

RT
,  

      substituting and integrating, we get, 
                                                                 μ (T, P) = μo ( T ) + RT ln P,  
      where,  μo ( T ) is standard chemical potential of the substance at temperature T, and  
       μ (T, P) is its chemical potential at T and pressure P. 
 

(2) For an ideal gas mixture:  The expression is, μi (T, P) = 0
i ( T ) + RT ln pi , 

      where, pi = partial pressure of the ith component in the ideal gas mixture and 

      0
i ( T ) = standard chemical potential of the ith component at temperature T   i.e., 

      it is the chemical potential of the pure ith component at temperature T and 1 atm pressure. 
 
(3) Chemical potential in terms of mole fraction ( ix ): 

       We have,                                      pi = ix × P.   

When partial pressure, pi is replaced by mole fraction, ix ,  the expression of chemical potential    

 is                                    i (T, P) = 0
i ( T ) + RT ln ( ix × P) 

                                                       = [ 0
i ( T ) + RT ln P ] + RT ln ix  

Basic 
equations for 

multi-
component 

open system 
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or,                                      (T, P) = 0
i ( T, P ) + RT ln ix , 

where,  0
i ( T, P ) = 0

i ( T ) + RT ln P, called chemical potential of the ith component in pure       

                                                                   state at T and pressure P. 

Since, ix    1, so, ln ix    0. Thus i (T, P)  0
i ( T, P ). That is, chemical potential of a  

                                                       component in a mixture is less than that in pure state 
                                                       under the same T and P. 
                                                       Osmosis can be explained on the basis of the above concept. 
                                                       Chemical potential of the solvent in solution is lower  
                                                        than that in pure state. 
                                                        Thus solvent will flow spontaneously from the higher 
                                                        chemical potential to the lower chemical potential,  
                                                        i.e. from the solvent side to the solution side through the  
                                                        semi permeable membrane. It is osmosis. 
 
This expression of μ can be utilized to calculate the free energy change due to mixing of two 
ideal gases at constant T and P. 

                          ∆Gmix. = G mix. – Gpure  = (n1 μ1 + n2 μ2) – (n1
0
22

0
1  n )  

                                     = n1 (
0
1  + RT ln 1x ) + n2 (

0
2  + RT ln 2x ) – (n1

0
22

0
1  n )  

                                      =  n1 RT ln 1x   + n2 RT ln 2x   = nRT ( 1x  ln 1x  + 2x  ln 2x ). 

 Or, ∆Gmix. =  nRT ∑ ix  ln ix .    Since, ix   1, ln ix   0. Therefore, ∆Gmix.  0. 

Again, ∆Smix. = ─ 
 

P

mix

T

G











 . ,        or,               ∆Smix. =  ─ nR ∑ ix  ln ix    0.  

                                                              So,             ∆Hmix   = ∆Gmix  + T ∆Smix = 0. 
 
                                                            The greatest decrease of free energy and greatest increase 
                                                            of entropy occur when equal number of moles of the 
                                                            components are mixed up. This can be shown as follows. 
                                                             
                                                                    ∆Gmix. =  nRT ( 1x ln 1x + 2x  ln 2x ). But 2x  = 1 – 1x   

                                                                                               so,    ∆Gmix.  = nRT [ 1x ln 1x + (1 – 1x ) ln (1 – 1x )]. 

                                                            Differentiating ∆Gmix with respect to 1x  at constant T and P 
                                                            we get,  

              
PT

mix

x

G

,1

. )(












 = nRT [ ln 1x  + 1x  × )1(

)1(

1
)1()1ln()1(

1

1
11

1





x

xx
x

]      

                                         = nRT [ ln 1x  – ln (1 – 1x  ) ] = nRT ln 









 1

1

1 x

x  = 0   

                   Thus, for  ∆Gmix attains minimum,     ln 









 1

1

1 x

x  = 0,   or,  1

11

x

x

 
 
 

 = 1 , 

or,                           1x  = 0.5            and          2x  = 1 – 1x = 1 – 0.5 = 0.5. 

 
Likewise, it can be shown that for the ideal mixture, ∆Smix attains maximum when equal number 
of moles of the components are mixed up  i.e.,  1 2 0.5x x   
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Show that in a binary system, the decrease in free energy of mixing is maximum if 1x = 2x = 0.5 

 (where 1x  and 2x are the mole fraction of the 1st and 2nd components respectively)  
                                                                                                                             [IIT, KGP ‘1999] 

Since, the solid or liquid state remains under equilibrium with its vapor, chemical potential of the 
substance in condensed phase is also given by: 

                                                  μi (T, P) = 0
i ( T ) + RT ln P,   

            where, P is the vapor pressure over the condensed phase of the substance. 

When the substance remains in a mixture, it is,               μi (T, P) = 0
i ( T ) + RT ln pi. 

                         where, pi is the partial vapor pressure of the substance in condensed state. 

We can write in terms of ix , i (T, P) = 0
i ( T, P ) + RT ln ix .   

Since molar conc. (ci) is directly related to mole fraction ( ix ),  

                                                 hence,                  i (T, P) = 0
i ( T, P ) + RT ln ci ,  

                                 where, ci = molar conc. of the component in the condensed mixture. 
 
Chemical potential in real system: 

                                                            We have,         
T

VP
 


.  

But for real system, V is to be replaced in terms of T and P using real gas equation but it is not 

very easy mathematically. To remove such difficulty and to retain the same functional form as in 
ideal system, G.N.Lewis expressed the form for real gaseous system as,  

                                                         μ = )(0 T  + RT ln f 

              where, f  is the fugacity (fictitious pressure) of the real gas as called by G.N.Lewis.    
Fugacity (f) measures the chemical potential of a real gas in the same way as the pressure 
measures it in ideal gas. Thus, it has the same role as pressure but not exactly equal to pressure.  
It is rather called corrected pressure in real system. 

Fugacity is related with the pressure by the relation, (f / P) = γ, called fugacity coefficient.  

When,         γ = 1, f = P, and the system is ideal. When γ ≠ 1, f  ≠ P, the gas is not ideal.  

Departure of the value of γ from unity measures the extent of non-ideality of the gas.  

                      Fugacity of a gas is measured by the relation 
RT

BP
ln   

                             where, B is the 2nd virial coefficient of the gas.  

For vander Waals gas,  
1 a

B b
RT RT

 
  

 
.   Thus, RT

BP
e      or,     f = P RT

BP
e .  

                  For mixture, the ith component will have    μi = 0
i  +RT ln fi. 

 
The expression of chemical potential in the real condensed system is given as,  

                                               μi (T, P) = 0
i  (T, P) +RT ln ai,    

                                     where, ai = activity of the ith component in the mixture, 
           and,      ai = ix i     where, i  = activity coefficient of the ith component. 

When,        i  = 1, ai  = ix , solution is ideal and when  i  ≠  ix , solution is non-ideal.  

                     0
i  (T, P)  = standard chemical potential of the ith component  

                       i.e. chemical potential of the pure ith component , i.e.  ix → 1 
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Standard states in thermodynamics:  For all states of aggregation (solid, liquid and gas), 
standard state is defined as the state of unit activity (a = 1). 
For ideal gas, standard state is the state of unit pressure (1 atm, now 1 bar) at a specified 
temperature. 
For real gas, it is the state of unit fugacity (f = 1) at a given temperature. 
For liquid, standard state is the pure liquid at unit pressure at a given T. 
For solid, it is the state of pure solid at unit pressure at the given T. 
For ideal solution, the solvent’s standard state is the pure solvent ( 1solvsentx  ) at unit pressure  

(1 atm) at the  given T and solute’s standard state is at unit molar concentration. 
For non-ideal solution, activity = 1 is taken the standard state at a given temperature. 
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                                                  ZEROTH LAW OF THERMODYNAMICS                                                    
 
This law is derived from experience and states that  
              ‘Two systems that are each found to be in thermal equilibrium with third system 

will be found to be in thermal equilibrium with each other.’ 
 Or, in other words, it is,  
             ‘If A is in thermal equilibrium with B, and B is in thermal equilibrium with C, then A is 
also in thermal equilibrium with C’ 
 
Like as, systems in mechanical equilibrium have a common pressure, it seems possible that there 
is some thermodynamic property common to systems in thermal equilibrium.  
                                      This property, we call temperature (T).  
                 Thus, two systems in thermal equilibrium have a common temperature.  
    But, when the systems are not in thermal equilibrium, they have different temperatures.  
Thus the zeroth law of thermodynamics can be illustrated in terms of temperature.  
Since A and B are each in thermal equilibrium with C, hence TA = TC and TB = TC.  
Then TA must be equal to TB, and A and B are in thermal equilibrium. This means that if A and B 
are brought in contact to each other via conducting wire, there will be no flow of heat. 
                     This law is formulated after the 1st and 2nd law of thermodynamics. 
Moreover, a statement of the zeroth law logically precedes the other three, hence it is the zeroth 
law.  
This law allows us to define the concept of temperature as a thermodynamic state function. 
 
To measure temperature of a system, we use commonly liquid mercury thermometer that is kept 
in contact with the system. The volume change of the mercury is noted when it becomes in 
equilibrium with the system. This volume change gives the reading of temperature from the scale 
of the thermometer. 
To set up a temperature scale, we need a reference system (r) which, we call thermometer.  
We choose the reference system to be homogeneous with fixed composition and a fixed pressure. 
Further we require that the substance inside the thermometer (called thermometric substance) 
must always expand when heated. This requirement ensures that at a fixed pressure, volume 
always increases with temperature (say linearly).  
This is why, liquid water is not suitable since it contracts at temperature below 4oC and expand 
above 4oC when heated at one atmosphere pressure. 

        We can thus define temperature as T = Q Vr + R , where Vr is the volume of fixed amount of 
liquid mercury at 1 atm and Q, R are constants, with P being (+)ve. 
Once Q and R are specified, a measurement of volume (Vr) can give temperature T. 

           The mercury in thermometer is kept in a glass container that consists of a bulb and narrow 
capillary tube. Let the area of cross section of the tube is ‘a’, then,  

                        T = Q Vr + R =  Q (Vbulb + al) + R = (Q a) l + (Q Vbulb + R)  or, T = S l + A  

where, S and  A are constants for the thermometer. To fix S and A, we define temperature of 
equilibrium between pure ice and air saturated liquid water at 1 atm pressure as 0oC and we 
define temperature of equilibrium between pure liquid water and water vapor at 1 atm pressure as 
100oC. These points are called ice point and steam point. Since our scale is linear with the length 
of the mercury column, we mark off 100 equal intervals between 0oC and 100oC. We can extend 
the marks above and below these temperatures.  

   
Now having this thermometer with us, we can determine the temperature of any system B.  
To do so, we put system B in contact with the thermometer through a thermally conducting wall, 
wait until thermal equilibrium is reached and then read the thermometer’s temperature from the 

Statement 
of the law 

Concept of  
temperature 

Measurement 
        of 
temperature 

Set-up of 
temperature 

scale 

Formulation 
of the scale 

Description 
of the 

thermometer 
 

Reading of 
temperature 

in the 
thermometer 



 

PRINCIPLES OF THERMODYNAMICS ─  N C DEY 95 

graduated scale. Since B is in thermal equilibrium with thermometer, B’s temperature equals that 
of thermometer. 

It is to be noted that how the arbitrary way the thermometer scale is defined. This scale depends 
on the expansion of mercury liquid. If we take ethanol as thermometric substance, then expansion 
of ethanol can be taken to measure the temperature. But these two thermometers would show 
little bit different temperature when used to record the temperature of the substance. Further, 
apart from simplicity, there is no other reason to choose linear relationship T and l. Since 
temperature is a fundamental concept so it should be less arbitrary. This can be obtained when 
ideal gas is proposed in absolute scale. 

If the systems A and B have same temperature (TA = TB), i.e. they are in thermal equilibrium and 
B and C have different temperatures (TB ≠ TC), then although the numerical values of the 
temperature in the two thermometers, based on liquid mercury and liquid ethanol, may be 
different yet A and B have same temperature and B and C have different temperatures in both the 
thermometer. 
Other properties utilized in measuring temperature:   Electrical resistance, light emission of hot 
bodies can be used to measure the temperature of a system. 
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Mathematical interlude: 
                                         Some simple calculi are often used in thermodynamical treatments.  
A prior familiarity with these would be helpful. 
 
(1) Partial derivatives:  Let a quantity z is a function of two independent variables of x and y. 
     That is , z =  f (x, y). If the coordinates x, y change by very small amounts dx and dy, then the      

     change in the value of z is given by dy
y

z
dx

x

z
dz

xy

























  ----------  (1)                                

where, 
yx

z












is the change of z for unit change of x at constant y. Similarly, 

x
y

z












 is the 

change of z for unit change of y when x  remains constant. The subscript x and y indicate the 
constancy during the change of the others. 
                       Let us suppose the three quantities x , y and z are related as f ( x , y, z) = 0, 
 then we have x  = ψ (y, z) and y = φ (z, x ), then we can write, 

dz
z

x
dy

y

x
dx

yz


























 ------- (2)     

and 
x z

y y
dy dz dx

z x

    
    

    
-------------  (3).  Substituting equation (3) in (2) we get, 
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x
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




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










  

Or, d x  = dx
x

y

y

x

zz

















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






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z

x

z

y

y

x

yxz 














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






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


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






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


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






 ------- (4)  

Now the equation (4) is generally true for all values of x , y and z  
 Let us consider x and y as independent variables so that d x  and dz may have any value. 
 
(a) Let us suppose dz = 0 but d x  ≠ 0,  

then, d x  = dx
x

y

y
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z
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
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  ------------- (5) 

(b) Let us take dz ≠ 0 but d x  = 0, then 0
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 or, 
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. But, 
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  hence 1
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---------   (6) 

 
The ideal gas equation PV = RT may be used to prove the relation. 

Here, f (P, V, T) = 0 and ,
2V

RT

V

P

T






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


   

P
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T
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  and 

R
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P

T

V
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
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




. Thus,  

Two 
important 
deductions 

 

One proof 
of the 

equation 
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                                1
2
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
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

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




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R

V

P

R

V
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P

T

T

V

V

P

VPT

.  

So,                                                        
TV

P












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V





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




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T

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








= ─1 

                                                                   This is called cyclic rule. 

Perfect differentials: 
                                    Let us consider a quantity z whose value is determined solely by two other 
variables x  and y at any moment in any given state. That is, if x  and y are given a particular 
value, the value if z is thereby fixed. If x  and y vary, then z will also vary. Thus x  and y are 
called independent variables while z is dependent variable. Thus z is also a single-valued 
quantity. dz is called perfect or complete or exact differential. Mathematically, we say, z = f ( x , 
y) 
The change in z  can be estimated provided the derivative of the function z with respect to x  and 
y are known. The derivative is the rate of change of dependent variable (z) with the independent 
variable ( x or y). Thus, 

yx

z












= Rate of change of z with x  at const. y and 

x
y

z












= Rate of change of z with y at 

constant, x  
Therefore, the change of z for change of x  at constant y is equal to the rate of change of z with 

x  at constant y multiplied by d x  i.e. dz = 
yx

z












d x  and dz = 

x
y

z












dy.  

But if both x  and y are changed simultaneously, then the total change  

 dz = 
yx

z












d x  + 

x
y

z












dy. 

This is called total differential of the function z. To make the meaning of the exact differential 
clear, let us represent graphically the variables x and y along two axes right angles. 
At point P, the value of z is 1z and it is determined by the variables x and y. 

At the point Q, the magnitude of z is 2z  and it is determined by ( yandx  ).  

Then, dz = 2z - 1z  will always have the same value determined by x , y, yandx  . 
dz is perfect differential and dz is independent of the path of transformation. It is obvious that if a 
change from P to Q is brought about by the path (I) and reverse change is effected by path (II),the 
magnitude of z will come back to the same value, defined by x  and y at P. Hence for a complete 
cyclic process of change reverting to the original state 
 

 ∑ ∆ z = 0 or,   0dz . In another way,                        

it is possible to show that if dz is perfectly 

differential, then, .
22

xy

z

yx

z









       

This is called Euler’s reciprocal theorem.  
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